1
|
Choleva M, Antonopoulou S, Fragopoulou E. Winery By-Products In Vitro and In Vivo Effects on Atherothrombotic Markers: Focus on Platelet-Activating Factor. FRONT BIOSCI-LANDMRK 2025; 30:25859. [PMID: 39862073 DOI: 10.31083/fbl25859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 01/27/2025]
Abstract
Platelet aggregation and inflammation play a crucial role in atherothrombosis. Wine contains micro-constituents of proper quality and quantity that exert cardioprotective actions, partly through inhibiting platelet-activating factor (PAF), a potent inflammatory and thrombotic lipid mediator. However, wine cannot be consumed extensively due to the presence of ethanol. Alternatively, winery by-products are abundant in similar-to-wine micro-constituents that could be used in food fortification and dietary supplements. Also, the vinification process produces millions of tons of by-products worldwide, posing an environmental matter of waste management. Therefore, the purpose of this literature review is to update the existing data concerning the in vitro anti-platelet and anti-inflammatory properties of winery by-product extracts and their possible health effects through controlled clinical trials in humans, specifically focused on their effects on PAF's actions. Data from in vitro studies report that winery by-product compounds are able to inhibit platelet aggregation against several aggregation factors, as well as to downregulate inflammatory markers. Among their actions, extracts or phenolic compounds present in winery by-products inhibit PAF's actions, a potent inflammatory and thrombotic mediator. Similar conclusions have been drawn from human supplementation studies, which suggest that winery by-product extracts may have beneficial biological effects on the cardiovascular system. Evidence from long-term studies shows that consumption may lower total and low density lipoprotein (LDL) cholesterol, improve insulin sensitivity, decrease lipid and protein oxidative damage, enhance antioxidant capacity, and have mild anti-inflammatory action toward reducing cytokine expression and levels. Data from the limited postprandial studies report that the acute consumption of winery by-product extracts improves glycemic response and reduces platelet reactivity to aggregatory stimuli. Although wine extracts and phenolic compounds have been reported to inhibit PAF's actions and reduce the activity of its biosynthetic enzymes, no data exist concerning the influence of winery by-product extracts. In the future, additional long-term randomized controlled trials or postprandial studies are needed to draw definitive conclusions and establish a viable cardioprotective strategy that incorporates the sustainable use of winery by-products.
Collapse
Affiliation(s)
- Maria Choleva
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece
| | - Smaragdi Antonopoulou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece
| | - Elizabeth Fragopoulou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece
| |
Collapse
|
2
|
Jia Y, Zhang Q, Zhang Y, Wang H, Niu Q, Zhu R, Li J, Fan W, Zhang Y. Effects of Polyphenol-Rich Foods on Lipids and Oxidative Stress Status in Patients with Hyperlipidemia: A Systematic Review of Randomized Controlled Trials. J Multidiscip Healthc 2024; 17:3167-3179. [PMID: 39006877 PMCID: PMC11245574 DOI: 10.2147/jmdh.s471372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Background Hyperlipidemia has been demonstrated to be an autonomous predictor of numerous cardiovascular and cerebrovascular ailments, and research indicates that polyphenols have preventive and therapeutic effects on hyperlipidemia. Nevertheless, the impact of polyphenol-rich foods on blood lipids and oxidative stress status in patients with hyperlipidemia remains inconclusive. Objective To examine the impact of polyphenol-rich foods on lipid levels and oxidative stress in individuals with hyperlipidemia. Methods To retrieve papers published from the establishment of the database through October 9, 2023, eight databases were searched: the Chinese National Knowledge Infrastructure, the China Biomedical Literature Database, the Wanfang Database, the China Science and Technology Journal Database, PubMed, the Cochrane Library, Embase, and the Web of Science. The quality of include studies was assessed using the Cochrane Risk of Bias in Randomized Trials tool, v2. Results The study involved 13 surveys encompassing 640 patients diagnosed with hyperlipidemia. The scope of the food surveys included 12 commonly consumed food groups and medicinal and food homologous substances. All 13 studies reported the effects of polyphenol-rich foods on blood lipids, with significant improvements observed in blood lipid levels for 9 types of foods. Eight studies examined the impact on oxidative stress, and six foods demonstrated a significant reduction in oxidative stress levels. The observed effects were found to be influenced by factors such as dosage, duration of intervention, and gender. Conclusion Foods abundant in polyphenols play a crucial role in the prevention and treatment of hyperlipidemia by counteracting oxidative stress and regulating metabolic disorders. The confirmation of certain positive effects by several studies notwithstanding, discrepancies in results arise from various factors, necessitating further large-scale, prospective, well-designed randomized controlled studies to address this issue.
Collapse
Affiliation(s)
- Yatian Jia
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
- School of Nursing, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Qian Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
- School of Nursing, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
- School of Nursing/Research Center of Dietary Therapy Technology, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yihua Zhang
- School of Nursing, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Hui Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
- School of Nursing, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Qingmei Niu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
- School of Nursing, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Ruifang Zhu
- Editorial Office, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jia Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
| | - Wen Fan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
| | - Yuexing Zhang
- School of Nursing, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| |
Collapse
|
3
|
Liao G, Liu W, Dai Y, Shi X, Liu Y, Li D, Xu T. Beneficial effects of flavonoids on animal models of atherosclerosis: A systematic review and meta-analysis. iScience 2023; 26:108337. [PMID: 38026172 PMCID: PMC10665821 DOI: 10.1016/j.isci.2023.108337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is the main cause of cardiovascular diseases that seriously endanger human health. The existing treatment drugs are effective, but they have some side effects. Accumulating evidence suggests that flavonoids have attracted wide attention due to their multiple cardioprotective effects and fewer side effects. PubMed, Web of Science database, Embase, and Cochrane Library were searched for studies evaluating the effects of flavonoids against atherosclerosis. 119 studies published from August 1954 to April 2023 were included. Random-effects models were performed for synthesis. Compared with the control group, flavonoids significantly reduced longitudinal and cross-sectional plaque area. The findings indicated that flavonoids significantly reduced the concentrations of serum TC, TG, and LDL-C and increased serum HDL-C concentrations. Besides, flavonoids reduced the levels of circulating pro-inflammatory factors, including TNF-α, IL-1β, and IL-6, and increased the serum IL-10 level. This study provides evidence for the potential cardiovascular benefits of flavonoids.
Collapse
Affiliation(s)
- Gege Liao
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Wanlu Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Yiming Dai
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Xiangxiang Shi
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yang Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Tongda Xu
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Witte K, Wolk K, Witte-Händel E, Krause T, Kokolakis G, Sabat R. Targeting Metabolic Syndrome in Hidradenitis Suppurativa by Phytochemicals as a Potential Complementary Therapeutic Strategy. Nutrients 2023; 15:3797. [PMID: 37686829 PMCID: PMC10490062 DOI: 10.3390/nu15173797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by the appearance of painful inflamed nodules, abscesses, and pus-draining sinus tracts in the intertriginous skin of the groins, buttocks, and perianal and axillary regions. Despite its high prevalence of ~0.4-1%, therapeutic options for HS are still limited. Over the past 10 years, it has become clear that HS is a systemic disease, associated with various comorbidities, including metabolic syndrome (MetS) and its sequelae. Accordingly, the life expectancy of HS patients is significantly reduced. MetS, in particular, obesity, can support sustained inflammation and thereby exacerbate skin manifestations and the chronification of HS. However, MetS actually lacks necessary attention in HS therapy, underlining the high medical need for novel therapeutic options. This review directs attention towards the relevance of MetS in HS and evaluates the potential of phytomedical drug candidates to alleviate its components. It starts by describing key facts about HS, the specifics of metabolic alterations in HS patients, and mechanisms by which obesity may exacerbate HS skin alterations. Then, the results from the preclinical studies with phytochemicals on MetS parameters are evaluated and the outcomes of respective randomized controlled clinical trials in healthy people and patients without HS are presented.
Collapse
Affiliation(s)
- Katrin Witte
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Inflammation and Regeneration of Skin, BIH Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Kerstin Wolk
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Inflammation and Regeneration of Skin, BIH Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Ellen Witte-Händel
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Torben Krause
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Georgios Kokolakis
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Robert Sabat
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
5
|
Grohmann T, Walker AW, Russell WR, Hoggard N, Zhang X, Horgan G, de Roos B. A grape seed and bilberry extract reduces blood pressure in individuals at risk of developing type 2 diabetes: the PRECISE study, a double-blind placebo-controlled cross-over intervention study. Front Nutr 2023; 10:1139880. [PMID: 37351191 PMCID: PMC10283353 DOI: 10.3389/fnut.2023.1139880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/26/2023] [Indexed: 06/24/2023] Open
Abstract
Background Type 2 Diabetes Mellitus (T2DM) is a major risk factor for the development of cardiometabolic diseases. T2DM prevention is largely based on weight-loss and whole diet changes, but intervention with dietary plant bioactives may also improve metabolic health. Objective To assess whether supplementation with bilberry and grape seed extract for 12 weeks improves cardiometabolic outcomes in individuals at risk of developing T2DM, and to determine whether individual treatment response is associated with differences in gut microbiota composition and levels of phenolic metabolites in blood and feces. Methods In the randomized, double-blind, placebo-controlled, cross-over PRECISE intervention study, 14 participants, aged ≥45 years, with a BMI >28 kg/m2, and having an increased risk of T2DM, received a supplement containing 250 mg of bilberry plus 300 mg of grape seed extract, or 550 mg of a control extract, per day, for 12 weeks each. Blood samples were obtained for the assessment of HbA1c, fasting glucose, oral glucose tolerance tests, insulin, glucagon levels, total, LDL and HDL cholesterol, and phenolic acids. We also assessed advanced glycation end products in the skin, ambulatory 24 hours blood pressure, 7-day dietary intake by weighed food diaries, fecal levels of phenolic metabolites using LC-MS/MS and gut microbiota composition using 16S rRNA gene sequencing analysis. Results The combined bilberry and grape seed extract did not affect glucose and cholesterol outcomes, but it decreased systolic and diastolic ambulatory blood pressure by 4.7 (p < 0.001) and 2.3 (p = 0.0009) mmHg, respectively. Eight out of fourteen participants were identified as blood pressure 'responders'. These responders had higher levels of phenylpropionic and phenyllactic acids in their fecal samples, and a higher proportional abundance of Fusicatenibacter-related bacteria (p < 0.01) in their baseline stool samples. Conclusion Long-term supplementation with bilberry and grape seed extract can improve systolic and diastolic blood pressure in individuals at risk of T2DM. Individual responsiveness was correlated with the presence of certain fecal bacterial strains, and an ability to metabolize (epi)catechin into smaller phenolic metabolites.Clinical trial registry number: Research Registry (number 4084).
Collapse
Affiliation(s)
- Teresa Grohmann
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Alan W. Walker
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Wendy R. Russell
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Nigel Hoggard
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | | | - Graham Horgan
- Biomathematics and Statistics Scotland, Aberdeen, United Kingdom
| | - Baukje de Roos
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
6
|
Debortoli da Silva A, Izidoro NO, de Macedo LR, de Matos IM, Silva M. The effects of grape products on metabolic syndrome risk factors: A systematic review and meta-analysis. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
7
|
Talebi M, Esmaeeli H, İlgün S, Talebi M, Farkhondeh T, Mishra G, Samarghandian S. The Protective Role of Grape Seed in Obesity and Lipid Profile: An Updated Narrative Overview of Preclinical and Clinical Studies. Endocr Metab Immune Disord Drug Targets 2023; 23:46-62. [PMID: 35786197 DOI: 10.2174/1871530322666220630091859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
Abstract
Obesity and dyslipidemia are common disorders universally. According to the acquired outcomes of recent studies, dietary supplementations which have great content of phenolic compounds exert protective effects against obesity and dyslipidemia. Grape [Vitis vinifera] seeds are considered attractive sources of phenolic compounds with anti-oxidative stress and anti-inflammatory effects. There are also various experimental studies describing hepatoprotective, neuroprotective, anti-aging, cardioprotective, and anti-carcinogenic effects of polyphenols isolated from grape seed, highlighting the therapeutic and biological aspects of proanthocyanidins. The present review article first discusses pharmacological, botanical, toxicological, and phytochemical characteristics of Vitis vinifera seeds and afterward designates the protective properties which are attributed to the intake of grape seeds in obesity and hyperlipidemia. Overall valuable and updated findings of this study display that polyphenol of grape seeds has meaningful impacts on the regulation of lipid profile levels and management of obesity.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 1991953381, Iran
| | - Hadi Esmaeeli
- Research and Development Unit, NIAK Pharmaceutical Company, Gorgan, Iran.,Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Mohsen Talebi
- Viatris Pharmaceuticals Inc., 3300 Research Plaza, San Antonio, Texas, United States.,Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, United States
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Gaurav Mishra
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
8
|
Postprandial Metabolic and Oxidative Stress Responses to Grape Pomace Extract in Healthy Normal and Overweight/Obese Women: A Randomized, Double-Blind, Placebo-Controlled Crossover Study. Nutrients 2022; 15:nu15010156. [PMID: 36615813 PMCID: PMC9824782 DOI: 10.3390/nu15010156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Postprandial oxidative stress has been shown to promote atherosclerosis. Grape pomace (GP) is a source of similar-to-wine bioactive micro-constituents with known antioxidant properties. The aim of the present study was to evaluate metabolic and oxidative stress responses after the intake of grape pomace (GP) extract along with a high-fat meal, in normal and overweight healthy women. In a randomized, double-blind, placebo-controlled crossover study, 18 women were finally included, 11 with BMI < 25 kg/m2 and 7 with BMI > 25 kg/m2, and consumed a high-fat meal with placebo or GP extract capsules in two separate visits. Blood samples were collected before and 6 h after the consumption. Measurements included basic biochemical markers, uric acid (UA), protein carbonyls (PC), thiobarbituric acid substance (TBARS) levels, as well as superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. At certain time points, the GP extract consumption in normal-weight women reduced UA, TBARS levels, and SOD activity, whereas it increased UA and reduced PC levels in overweight/obese women, compared to the placebo. GP-derived bioactive compounds may exert antioxidant actions during the postprandial state in healthy women, through different mechanisms according to their BMI status.
Collapse
|
9
|
The Role of By-Products of Fruit and Vegetable Processing for the Dietary Treatment of Cardiovascular Risk Factors: A Narrative Review. Antioxidants (Basel) 2022; 11:antiox11112170. [DOI: 10.3390/antiox11112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Polyphenols-rich food has been utilized to induce a positive effect on human health. Considering that fruit and vegetable by-products (seeds, pomace, and peels) are sources of polyphenols, previous studies have investigated the effect of dietary supplementation with food by-products on cardiometabolic disorders, such as high fasting blood glucose, dyslipidemia, and obesity. Endothelial dysfunction has also been considered a cardiometabolic parameter, given that it precedes cardiovascular disease. However, there is a scarcity of narrative reviews reporting the effect of food by-product supplementation on cardiometabolic disorders in animal and human clinical trials. In this sense, the present narrative review aims to investigate the impact of fruit and vegetable by-product supplementation on cardiometabolic disorders in humans and animals, exploring the possible mechanisms whenever possible. Research articles were retrieved based on a search of the following databases: PubMed, ScienceDirect, and Google Scholar using the following keywords and synonyms combined: (“fruit by-products” or “food waste” or “pomace” or “bagasse” or “seeds” or “waste products”) AND (“heart disease risk factors” or “endothelial dysfunction” or “atherosclerosis”). It was shown that fruit and vegetable by-products could efficiently improve cardiometabolic disorders in patients with chronic diseases, including hypertension, type II diabetes mellitus, and dyslipidemia. Such effects can be induced by the polyphenols present in food by-products. In conclusion, food by-product supplementation has a positive effect on cardiometabolic disorders. However, further studies investigating the effect of food by-products on cardiometabolic disorders in humans are still necessary so that solid conclusions can be drawn.
Collapse
|
10
|
The Utilization of Physiologically Active Molecular Components of Grape Seeds and Grape Marc. Int J Mol Sci 2022; 23:ijms231911165. [PMID: 36232467 PMCID: PMC9570270 DOI: 10.3390/ijms231911165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Nutritional interventions may highly contribute to the maintenance or restoration of human health. Grapes (Vitis vinifera) are one of the oldest known beneficial nutritional components of the human diet. Their high polyphenol content has been proven to enhance human health beyond doubt in statistics-based public health studies, especially in the prevention of cardiovascular disease and cancer. The current review concentrates on presenting and classifying polyphenol bioactive molecules (resveratrol, quercetin, catechin/epicatechin, etc.) available in high quantities in Vitis vinifera grapes or their byproducts. The molecular pathways and cellular signaling cascades involved in the effects of these polyphenol molecules are also presented in this review, which summarizes currently available in vitro and in vivo experimental literature data on their biological activities mostly in easily accessible tabular form. New molecules for different therapeutic purposes can also be synthesized based on existing polyphenol compound classes available in high quantities in grape, wine, and grape marc. Therefore an overview of these molecular structures is provided. Novel possibilities as dendrimer nanobioconjugates are reviewed, too. Currently available in vitro and in vivo experimental literature data on polyphenol biological activities are presented in easily accessible tabular form. The scope of the review details the antidiabetic, anticarcinogenic, antiviral, vasoprotective, and neuroprotective roles of grape-origin flavonoids. The novelty of the study lies in the description of the processing of agricultural by-products (grape seeds and skins) of industrial relevance, and the detailed description of the molecular mechanisms of action. In addition, the review of the clinical therapeutic applications of polyphenols is unique as no summary study has yet been done.
Collapse
|
11
|
Foshati S, Rouhani MH, Amani R. The effect of grape seed extract supplementation on oxidative stress and inflammation: A systematic review and meta-analysis of controlled trials. Int J Clin Pract 2021; 75:e14469. [PMID: 34107109 DOI: 10.1111/ijcp.14469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Grape seed extract (GSE) seems to have antioxidant and anti-inflammatory properties due to its high polyphenolic content. Nevertheless, the scientific literature in this field is controversial and inconclusive. Therefore, we aimed to conduct a systematic review and meta-analysis of controlled trials to evaluate the effect of supplementation with GSE on biomarkers of oxidative stress and inflammation. METHODS Medline, Scopus, Cochrane Library, Google Scholar and Web of Science databases were searched up to 10 September 2020 using appropriate keywords without restrictions. In the systematic review phase, all biomarkers of oxidative stress and inflammation were considered as outcomes. In the meta-analysis phase, six biomarkers were selected as outcomes, and weighted mean difference (WMD) or standardised mean difference (SMD) with 95% confidence interval (CI) was calculated for them using a random-effects model. RESULTS Twenty-three studies were included in the systematic review, and 19 studies were included in the meta-analysis. GSE supplementation caused a significant decrease in malondialdehyde (SMD: -1.04, 95% CI: -1.65, -0.42), oxidised low-density lipoprotein (SMD: -0.44, 95% CI: -0.75, -0.13) and high-sensitivity C-reactive protein (WMD: -0.48 mg/L, 95% CI: -0.94, -0.03) and a marginally significant increase in total antioxidant capacity (SMD: 0.49, 95% CI: -0.05, 1.04) but did not significantly influence C-reactive protein (WMD: -0.36 mg/L, 95% CI: -1.02, 0.30) and white blood cell count (WMD: 0.12 × 109 /L, 95% CI: -0.25, 0.48). CONCLUSION It appears that GSE supplementation can remarkably modulate the body's redox system, particularly through the inhibition of lipid peroxidation, but has neutral or mildly beneficial effects on inflammatory responses.
Collapse
Affiliation(s)
- Sahar Foshati
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Rouhani
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Amani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
The effect of monomeric and oligomeric FLAVAnols in patients with type 2 diabetes and microalbuminuria (FLAVA-trial): A double-blind randomized controlled trial. Clin Nutr 2021; 40:5587-5594. [PMID: 34656955 DOI: 10.1016/j.clnu.2021.09.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Microalbuminuria is an early sign of vascular complications of type 2 diabetes and predicts cardiovascular disease and mortality. Monomeric and oligomeric flavanols (MOFs) are linked to improved vascular health. The aim of this study was to assess the effect of 3 months MOFs on albuminuria and endothelial function markers in patients with type 2 diabetes and microalbuminuria. METHODS We conducted a double-blind, placebo-controlled trial among patients with type 2 diabetes and microalbuminuria. Patients with type 2 diabetes received either 200 mg MOFs or placebo daily on top of their habitual diet and medication. The primary endpoint was the between-group difference of the change in 24-h Albumin Excretion Rate (AER) over three months. Secondary endpoints were the between-group differences of the change in plasma levels of different markers of endothelial dysfunction. Mixed-modelling was applied for the longitudinal analyses. RESULTS Participants (n = 97) were 63.0 ± 9.5 years old; diabetes-duration was 15.7 ± 8.5 years. Median baseline AER was 60 (IQR 20-120) mg/24 h. There was no within-group difference in median change of AER from baseline to 3 months in the intervention (0 (-35-21) mg/24 h, p = 0.41) or the control group (0 (-20-10) mg/24 h, p = 0.91). There was no between-group difference in the course of AER over three months (log-transformed data: β = -0.02 (95%CI -0.23-0.20), p = 0.88), nor in the plasma levels of the endothelial dysfunction markers. CONCLUSION Daily 200 mg MOFs for three months on top of habitual diet and usual care did not reduce AER and plasma markers of endothelial dysfunction compared to placebo, in patients with long-term type 2 diabetes and microalbuminuria. CLINICAL TRIALS REGISTRATION NTR4669, www.trialregister.nl.
Collapse
|
13
|
Proanthocyanidins and Where to Find Them: A Meta-Analytic Approach to Investigate Their Chemistry, Biosynthesis, Distribution, and Effect on Human Health. Antioxidants (Basel) 2021; 10:antiox10081229. [PMID: 34439477 PMCID: PMC8389005 DOI: 10.3390/antiox10081229] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Proanthocyanidins (PACs) are a class of polyphenolic compounds that are attracting considerable interest in the nutraceutical field due to their potential health benefits. However, knowledge about the chemistry, biosynthesis, and distribution of PACs is limited. This review summarizes the main chemical characteristics and biosynthetic pathways and the main analytical methods aimed at their identification and quantification in raw plant matrices. Furthermore, meta-analytic approaches were used to identify the main plant sources in which PACs were contained and to investigate their potential effect on human health. In particular, a cluster analysis identified PACs in 35 different plant families and 60 different plant parts normally consumed in the human diet. On the other hand, a literature search, coupled with forest plot analyses, highlighted how PACs can be actively involved in both local and systemic effects. Finally, the potential mechanisms of action through which PACs may impact human health were investigated, focusing on their systemic hypoglycemic and lipid-lowering effects and their local anti-inflammatory actions on the intestinal epithelium. Overall, this review may be considered a complete report in which chemical, biosynthetic, ecological, and pharmacological aspects of PACs are discussed.
Collapse
|
14
|
Grohmann T, Litts C, Horgan G, Zhang X, Hoggard N, Russell W, de Roos B. Efficacy of Bilberry and Grape Seed Extract Supplement Interventions to Improve Glucose and Cholesterol Metabolism and Blood Pressure in Different Populations-A Systematic Review of the Literature. Nutrients 2021; 13:1692. [PMID: 34067538 PMCID: PMC8156535 DOI: 10.3390/nu13051692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
Intervention with fruit extracts may lower glucose and lipid levels, as well as blood pressure. We reviewed the efficacy of bilberry and grape seed extracts to affect these outcomes across populations with varying health status, age and ethnicity, across intervention doses and durations, in 24 intervention studies with bilberry and blackcurrant (n = 4) and grape seed extract (n = 20). Bilberry and blackcurrant extract lowered average levels of glycated hemoglobin (HbA1c), at least in Chinese subjects, especially in those who were older, who were diagnosed with Type 2 Diabetes Mellitus (T2DM) and who were participating in longer-term studies. We also found good evidence that across studies and in subjects with hypercholesterolemia, T2DM or metabolic syndrome, intervention with bilberry and blackcurrant extract, and to some extent grape seed extract, significantly lowered total and low density lipoprotein (LDL) cholesterol levels after four weeks. Intervention with grape seed extract may reduce systolic and diastolic blood pressure in subjects with hypertension or metabolic syndrome. Differential responsiveness in cholesterol and blood pressure outcomes between stratified populations could not be explained by age, dose or study duration. In conclusion, bilberry and blackcurrant extract appears effective in lowering HbA1c and total and LDL cholesterol, whereas grape seed extract may lower total and LDL cholesterol, and blood pressure, in specific population groups.
Collapse
Affiliation(s)
- Teresa Grohmann
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (T.G.); (C.L.); (N.H.); (W.R.)
| | - Caroline Litts
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (T.G.); (C.L.); (N.H.); (W.R.)
- Formerly Rowett Institute, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Graham Horgan
- Biomathematics & Statistics Scotland, Aberdeen AB25 2ZD, UK;
| | - Xuguang Zhang
- By-Health Ltd. Co, No.3 Kehui 3rd Street, No.99 Kexue Avenue Central, Luogang District, Guangzhou 510000, China;
| | - Nigel Hoggard
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (T.G.); (C.L.); (N.H.); (W.R.)
| | - Wendy Russell
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (T.G.); (C.L.); (N.H.); (W.R.)
| | - Baukje de Roos
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (T.G.); (C.L.); (N.H.); (W.R.)
| |
Collapse
|
15
|
Arfaoui L. Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability. Molecules 2021; 26:molecules26102959. [PMID: 34065743 PMCID: PMC8156030 DOI: 10.3390/molecules26102959] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary plant polyphenols are natural bioactive compounds that are increasingly attracting the attention of food scientists and nutritionists because of their nutraceutical properties. In fact, many studies have shown that polyphenol-rich diets have protective effects against most chronic diseases. However, these health benefits are strongly related to both polyphenol content and bioavailability, which in turn depend on their origin, food matrix, processing, digestion, and cellular metabolism. Although most fruits and vegetables are valuable sources of polyphenols, they are not usually consumed raw. Instead, they go through some processing steps, either industrially or domestically (e.g., cooling, heating, drying, fermentation, etc.), that affect their content, bioaccessibility, and bioavailability. This review summarizes the status of knowledge on the possible (positive or negative) effects of commonly used food-processing techniques on phenolic compound content and bioavailability in fruits and vegetables. These effects depend on the plant type and applied processing parameters (type, duration, media, and intensity). This review attempts to shed light on the importance of more comprehensive dietary guidelines that consider the recommendations of processing parameters to take full advantage of phenolic compounds toward healthier foods.
Collapse
Affiliation(s)
- Leila Arfaoui
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80324, Jeddah 21589, Saudi Arabia
| |
Collapse
|
16
|
Proanthocyanidins Should Be a Candidate in the Treatment of Cancer, Cardiovascular Diseases and Lipid Metabolic Disorder. Molecules 2020; 25:molecules25245971. [PMID: 33339407 PMCID: PMC7766935 DOI: 10.3390/molecules25245971] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
The conventional view of using medicines as routine treatment of an intractable disease is being challenged in the face of extensive and growing evidence that flavonoids in foods, especially proanthocyanidins (PAs), can participate in tackling fatal diseases like cancer, cardiovascular and lipid metabolic diseases, both as a precautionary measure or as a dietary treatment. Although medical treatment with medicines will remain necessary in some cases, at least in the short term, PAs’ function as antioxidant, anti-inflammatory drugs, signal pathway regulators remain critical in many diseases. This review article demonstrates the physical and biological properties of PAs, summarizes the health benefits of PAs found by researchers previously, and shows the possibility and importance of being a dietary treatment substance.
Collapse
|
17
|
Ramos VP, da Silva PG, Oliveira PS, Bona NP, Soares MSP, Cardoso JDS, Hoffmann JF, Chaves FC, Schneider A, Spanevello RM, Lencina CL, Stefanello FM, Tavares RG. Hypolipidemic and anti-inflammatory properties of phenolic rich Butia odoratafruit extract: potential involvement of paraoxonase activity. Biomarkers 2020; 25:417-424. [DOI: 10.1080/1354750x.2020.1781261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Vanessa Plasse Ramos
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Pamela Gonçalves da Silva
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Pathise Souto Oliveira
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Natália Pontes Bona
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Mayara Sandrielly Pereira Soares
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Juliane de Souza Cardoso
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Jessica Fernanda Hoffmann
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Fábio Clasen Chaves
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Roselia Maria Spanevello
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Claiton Leoneti Lencina
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Francieli Moro Stefanello
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Rejane Giacomelli Tavares
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
18
|
Abstract
BACKGROUND Alcohol is consumed by over 2 billion people worldwide. It is a common substance of abuse and its use can lead to more than 200 disorders including hypertension. Alcohol has both acute and chronic effects on blood pressure. This review aimed to quantify the acute effects of different doses of alcohol over time on blood pressure and heart rate in an adult population. OBJECTIVES Primary objective To determine short-term dose-related effects of alcohol versus placebo on systolic blood pressure and diastolic blood pressure in healthy and hypertensive adults over 18 years of age. Secondary objective To determine short-term dose-related effects of alcohol versus placebo on heart rate in healthy and hypertensive adults over 18 years of age. SEARCH METHODS The Cochrane Hypertension Information Specialist searched the following databases for randomised controlled trials up to March 2019: the Cochrane Hypertension Specialised Register; the Cochrane Central Register of Controlled Trials (CENTRAL; 2019, Issue 2), in the Cochrane Library; MEDLINE (from 1946); Embase (from 1974); the World Health Organization International Clinical Trials Registry Platform; and ClinicalTrials.gov. We also contacted authors of relevant articles regarding further published and unpublished work. These searches had no language restrictions. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing effects of a single dose of alcohol versus placebo on blood pressure (BP) or heart rate (HR) in adults (≥ 18 years of age). DATA COLLECTION AND ANALYSIS Two review authors (ST and CT) independently extracted data and assessed the quality of included studies. We also contacted trial authors for missing or unclear information. Mean difference (MD) from placebo with 95% confidence interval (CI) was the outcome measure, and a fixed-effect model was used to combine effect sizes across studies. MAIN RESULTS: We included 32 RCTs involving 767 participants. Most of the study participants were male (N = 642) and were healthy. The mean age of participants was 33 years, and mean body weight was 78 kilograms. Low-dose alcohol (< 14 g) within six hours (2 RCTs, N = 28) did not affect BP but did increase HR by 5.1 bpm (95% CI 1.9 to 8.2) (moderate-certainty evidence). Medium-dose alcohol (14 to 28 g) within six hours (10 RCTs, N = 149) decreased systolic blood pressure (SBP) by 5.6 mmHg (95% CI -8.3 to -3.0) and diastolic blood pressure (DBP) by 4.0 mmHg (95% CI -6.0 to -2.0) and increased HR by 4.6 bpm (95% CI 3.1 to 6.1) (moderate-certainty evidence for all). Medium-dose alcohol within 7 to 12 hours (4 RCTs, N = 54) did not affect BP or HR. Medium-dose alcohol > 13 hours after consumption (4 RCTs, N = 66) did not affect BP or HR. High-dose alcohol (> 30 g) within six hours (16 RCTs, N = 418) decreased SBP by 3.5 mmHg (95% CI -6.0 to -1.0), decreased DBP by 1.9 mmHg (95% CI-3.9 to 0.04), and increased HR by 5.8 bpm (95% CI 4.0 to 7.5). The certainty of evidence was moderate for SBP and HR, and was low for DBP. High-dose alcohol within 7 to 12 hours of consumption (3 RCTs, N = 54) decreased SBP by 3.7 mmHg (95% CI -7.0 to -0.5) and DBP by 1.7 mmHg (95% CI -4.6 to 1.8) and increased HR by 6.2 bpm (95% CI 3.0 to 9.3). The certainty of evidence was moderate for SBP and HR, and low for DBP. High-dose alcohol ≥ 13 hours after consumption (4 RCTs, N = 154) increased SBP by 3.7 mmHg (95% CI 2.3 to 5.1), DBP by 2.4 mmHg (95% CI 0.2 to 4.5), and HR by 2.7 bpm (95% CI 0.8 to 4.6) (moderate-certainty evidence for all). AUTHORS' CONCLUSIONS: High-dose alcohol has a biphasic effect on BP; it decreases BP up to 12 hours after consumption and increases BP > 13 hours after consumption. High-dose alcohol increases HR at all times up to 24 hours. Findings of this review are relevant mainly to healthy males, as only small numbers of women were included in the included trials.
Collapse
Affiliation(s)
- Sara Tasnim
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Chantel Tang
- Faculty of Health Sciences, McGill University, Montreal, Canada
| | - Vijaya M Musini
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - James M Wright
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
19
|
Cerbaro AF, Rodrigues VSB, Rigotti M, Branco CS, Rech G, de Oliveira DL, Salvador M. Grape seed proanthocyanidins improves mitochondrial function and reduces oxidative stress through an increase in sirtuin 3 expression in EA.hy926 cells in high glucose condition. Mol Biol Rep 2020; 47:3319-3330. [PMID: 32266639 DOI: 10.1007/s11033-020-05401-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
Proanthocyanidins are phenolic compounds abundant in the diet, commonly found in grapes and derivatives, foods known for their health-promoting benefits. There is previous evidence showing the antidiabetic activity of proanthocyanidins, however, their mechanisms of action have not been fully elucidated. This study evaluated the capacity of grape seed proanthocyanidins extract (GSPE) to modulate oxidative stress, nitric oxide levels, mitochondrial dysfunction, apoptosis, and sirtuin expression in endothelial cells EA.hy926 under high glucose condition. In addition, the possible toxic effects of GSPE was evaluated in a zebrafish embryos model. The results showed that GSPE was able to enhance cell viability and avoid the disturbance in redox metabolism induced by high glucose. Moreover, GSPE was able to avoid mitochondria dysfunction and the increased in p53 and poly-(ADP-ribose) polymerase expression induced by high glucose exposition. These effects were attributed to the increase in expression of sirtuin 3, a protein able to regulate mitochondrial function. GSPE in an effective concentration did not show toxic effects in zebrafish embryos model. Taken together, these data elucidate the key molecular target of GSPE for future pharmacological interventions in diabetic patients.
Collapse
Affiliation(s)
- Aline Fagundes Cerbaro
- Laboratory of Oxidative Stress and Antioxidants, Biotechnology Institute, University of Caxias Do Sul, Caxias do Sul, RS, 95070560, Brazil
| | | | - Marina Rigotti
- Laboratory of Oxidative Stress and Antioxidants, Biotechnology Institute, University of Caxias Do Sul, Caxias do Sul, RS, 95070560, Brazil
| | - Catia Santos Branco
- Laboratory of Oxidative Stress and Antioxidants, Biotechnology Institute, University of Caxias Do Sul, Caxias do Sul, RS, 95070560, Brazil
| | - Giovana Rech
- Cellular Neurochemistry Laboratory, Department of Biochemistry, Institute Health Basic Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, RS, 90035003, Brazil
| | - Diogo Losch de Oliveira
- Cellular Neurochemistry Laboratory, Department of Biochemistry, Institute Health Basic Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, RS, 90035003, Brazil
| | - Mirian Salvador
- Laboratory of Oxidative Stress and Antioxidants, Biotechnology Institute, University of Caxias Do Sul, Caxias do Sul, RS, 95070560, Brazil.
| |
Collapse
|
20
|
Effects of grape seed extract on dyslipidaemia: a systematic review and dose–response meta-analysis of randomised controlled trials. Br J Nutr 2020; 124:121-134. [DOI: 10.1017/s0007114520000902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractData on the effect of grape seed extract (GSE) on lipid profiles are inconclusive. We undertook a systematic review and meta-analysis of randomised controlled clinical trials on the effect of GSE on serum lipid profiles. The online databases of PubMed, ISI Web of Science, Scopus, ProQuest, Science Direct and Embase were searched for relevant publications until March 2019, using MeSH and non-MeSH keywords. Study selection, data extraction and quality assessment were completed independently by two investigators. Meta-regression and subgroup analyses were performed to identify the source of heterogeneity. Assessment of study quality was conducted using the Jadad scale. Eleven randomised clinical trials involving 536 participants were included in the present meta-analysis. Combining effect sizes from earlier studies, we found that GSE supplementation significantly decreased serum levels of LDL-cholesterol (−0·17 mmol/l; 95 % CI −0·34, −0·01) and TAG (−0·11 mmol/l; 95 % CI −0·18, −0·05). Although no overall significant effect of GSE supplementation on circulating total- and HDL-cholesterol levels was observed, there were significant reductions in these lipids in studies with <10 weeks of intervention and those that had administered the dosages of <300 mg/d of GSE. In conclusion, GSE supplementation seems to favourably affect serum levels of LDL and TAG concentrations, but it did not affect total- and HDL-cholesterol concentrations.
Collapse
|
21
|
Plant-Derived Bioactives and Oxidative Stress-Related Disorders: A Key Trend towards Healthy Aging and Longevity Promotion. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030947] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plants and their corresponding botanical preparations have been used for centuries due to their remarkable potential in both the treatment and prevention of oxidative stress-related disorders. Aging and aging-related diseases, like cardiovascular disease, cancer, diabetes, and neurodegenerative disorders, which have increased exponentially, are intrinsically related with redox imbalance and oxidative stress. Hundreds of biologically active constituents are present in each whole plant matrix, providing promissory bioactive effects for human beings. Indeed, the worldwide population has devoted increased attention and preference for the use of medicinal plants for healthy aging and longevity promotion. In fact, plant-derived bioactives present a broad spectrum of biological effects, and their antioxidant, anti-inflammatory, and, more recently, anti-aging effects, are considered to be a hot topic among the medical and scientific communities. Nonetheless, despite the numerous biological effects, it should not be forgotten that some bioactive molecules are prone to oxidation and can even exert pro-oxidant effects. In this sense, the objective of the present review is to provide a detailed overview of plant-derived bioactives in age-related disorders. Specifically, the role of phytochemicals as antioxidants and pro-oxidant agents is carefully addressed, as is their therapeutic relevance in longevity, aging-related disorders, and healthy-aging promotion. Finally, an eye-opening look into the overall evidence of plant compounds related to longevity is presented.
Collapse
|
22
|
Impact of Grape Products on Lipid Profile: A Meta-Analysis of Randomized Controlled Studies. J Clin Med 2020; 9:jcm9020313. [PMID: 31979098 PMCID: PMC7073656 DOI: 10.3390/jcm9020313] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Growing evidence shows that grape polyphenols can improve cardiovascular risk factors. Although there are clear data supporting a beneficial effect of grape supplementation on blood pressure and glucose metabolism, the effects of grape polyphenols on lipid metabolism are still controversial. Objective: We performed a meta-analysis of randomized controlled trials (RCTs) to assess the effect of grape products on lipid profile. Design: A systematic search was performed in the PubMed, Web of Science, Scopus, and EMBASE databases without any language or publication year restriction. The reference lists of all retrieved articles were manually reviewed. RCTs evaluating the impact of grape products/juice/extracts on lipid profile were included. Difference in total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), oxidized low-density lipoprotein cholesterol (oxLDL-C), apolipoprotein (apo) A, apo B before and after administration of grape products or placebo were expressed as mean differences (MD) with pertinent 95% confidence intervals (95% CI). The impact of clinical and demographic features on effect size was assessed by meta-regression. Results: The administration of grape products is associated with a significant improvement of lipid profile, as evidenced by changes in TC (MD: −7.6 mg/dL (−0.2 mmol/L); 95% CI: −10.8, −4.4; p < 0.001), HDL-C (MD: 1.4 mg/dL (0.04 mmol/L); 95% CI: 0.8, 1.9; p < 0.001, I2 = 74.7%, p < 0.001), LDL-C (−6.3 mg/dL (−0.16 mmol/L); 95% CI: −9.5, −3.0; p < 0.001), oxLDL-C (MD: −4.5 U/L; 95% CI: −7.5, −1.5; p = 0.003, I2 = 90.6%, p < 0.001), apo B (MD: −2.4 mg/dL (−0.05 µmol/L); 95% CI: −4.5, −0.3; p = 0.026), and TG (MD: −14.5 mg/dL (−0.16 mmol/L); 95% CI: −17.7, −11.2; p < 0.001) levels in subjects receiving grape products compared to placebo. With regard to the extent of the lipid-lowering effect, compared to baseline values, the highest reduction was reported for LDL-C (MD: −5.6 mg/dL (−0.14 mmol/L); 95% CI: −9.5, −1.7; p = 0.005) and for oxLDL-C (MD: −5.0 U/L; 95% CI: −8.8, −1.2; p = 0.010, I2 = 0%, p = 0.470). Conclusions: Grape polyphenols exert a favorable effect on lipid profile in humans by significantly reducing plasma levels of LDL-C and oxLDL-C.
Collapse
|
23
|
Asbaghi O, Nazarian B, Reiner Ž, Amirani E, Kolahdooz F, Chamani M, Asemi Z. The effects of grape seed extract on glycemic control, serum lipoproteins, inflammation, and body weight: A systematic review and meta‐analysis of randomized controlled trials. Phytother Res 2019; 34:239-253. [DOI: 10.1002/ptr.6518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/18/2019] [Accepted: 09/08/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Omid Asbaghi
- Student Research CommitteeLorestan University of Medical Sciences Khorramabad Iran
| | - Behzad Nazarian
- Student Research CommitteeLorestan University of Medical Sciences Khorramabad Iran
| | - Željko Reiner
- Department of Internal MedicineUniversity Hospital Centre Zagreb, School of Medicine, University of Zagreb Kispaticeva 12, 10000, Zagreb Croatia
| | - Elaheh Amirani
- Research Center for Biochemistry and Nutrition in Metabolic DiseasesKashan University of Medical Sciences Kashan Iran
| | - Fariba Kolahdooz
- Indigenous and Global Health Research, Department of MedicineUniversity of Alberta Edmonton Canada
| | - Maryam Chamani
- Department of Gynecology and Obstetrics, School of MedicineIran University of Medical Sciences Tehran Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic DiseasesKashan University of Medical Sciences Kashan Iran
| |
Collapse
|
24
|
The impact of dyslipidemia and oxidative stress on vasoactive mediators in patients with renal dysfunction. Int Urol Nephrol 2019; 51:2235-2242. [DOI: 10.1007/s11255-019-02319-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/11/2019] [Indexed: 12/27/2022]
|
25
|
Youn JS, Ham YM, Yoon WJ, Choi HC, Lee JE, Cho B, Kim JY. Cynanchum wilfordii Etanolic Extract Controls Blood Cholesterol: A Double-blind, Randomized, Placebo-Controlled, Parallel Trial. Nutrients 2019; 11:E836. [PMID: 31013851 PMCID: PMC6521060 DOI: 10.3390/nu11040836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/06/2019] [Accepted: 04/10/2019] [Indexed: 12/26/2022] Open
Abstract
We evaluated the effects of Cynanchum wilfordii (CW) ethanolic extract on blood cholesterol levels in adults with high low-density lipoprotein cholesterol (LDL-C) levels. In a double-blind, randomized, placebo-controlled, parallel trial, 84 subjects were recruited. Participants were randomly divided into two groups with a low-dose (300 mg/d) or high-dose (600 mg/d) of CW. Levels of very low-density lipoprotein (p = 0.022) and triglycerides (p = 0.022) were significantly lower in the low-dose CW group than in the placebo group after 8 weeks. In a subgroup of participants with LDL-C≥ 150 mg/dL (n = 33), there was a significant decrease in total cholesterol (low-dose, p = 0.012; high-dose, p = 0.021), apolipoprotein B (low-dose, p = 0.022; high-dose, p = 0.016), and cholesteryl ester transfer protein (low-dose, p = 0.037; high-dose, p = 0.016) after 8 weeks of CW. The correlation between changes in total cholesterol and baseline LDL-C levels was significant in the groups that received both doses of CW (low-dose, p = 0.010; high-dose, p = 0.015). These results show that the CW ethanolic extract can regulate blood cholesterol in subjects with LDL-C≥ 150 mg/dL.
Collapse
Affiliation(s)
- Ji Sun Youn
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea.
| | - Young Min Ham
- Biodiversity Research Institute, Jeju Technopark, Seogwipo, Jeju 63608, Korea.
| | - Weon-Jong Yoon
- Biodiversity Research Institute, Jeju Technopark, Seogwipo, Jeju 63608, Korea.
| | - Ho-Chun Choi
- Healthcare system Gangnam Center, Seoul National University Hospital, Seoul 06236, Korea.
| | - Ji Eun Lee
- Department of Family Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea.
| | - Belong Cho
- Department of Family Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea.
| |
Collapse
|
26
|
Potì F, Santi D, Spaggiari G, Zimetti F, Zanotti I. Polyphenol Health Effects on Cardiovascular and Neurodegenerative Disorders: A Review and Meta-Analysis. Int J Mol Sci 2019; 20:E351. [PMID: 30654461 PMCID: PMC6359281 DOI: 10.3390/ijms20020351] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
Several studies have demonstrated that polyphenol-enriched diets may have beneficial effects against the development of degenerative diseases, including atherosclerosis and disorders affecting the central nervous system. This activity has been associated not only with antioxidant and anti-inflammatory properties, but also with additional mechanisms, such as the modulation of lipid metabolism and gut microbiota function. However, long-term studies on humans provided controversial results, making the prediction of polyphenol impact on health uncertain. The aim of this review is to provide an overview and critical analysis of the literature related to the effects of the principal dietary polyphenols on cardiovascular and neurodegenerative disorders. We critically considered and meta-analyzed randomized controlled clinical trials involving subjects taking polyphenol-based supplements. Although some polyphenols might improve specific markers of cardiovascular risk and cognitive status, many inconsistent data are present in literature. Therefore, definitive recommendations for the use of these compounds in the prevention of cardiovascular disease and cognitive decline are currently not applicable. Once pivotal aspects for the definition of polyphenol bioactivity, such as the characterization of pharmacokinetics and safety, are addressed, it will be possible to have a clear picture of the realistic potential of polyphenols for disease prevention.
Collapse
Affiliation(s)
- Francesco Potì
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, via Volturno 39/F, 43125 Parma, Italy.
| | - Daniele Santi
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Unità di Endocrinologia, Università degli Studi di Modena e Reggio Emilia, via del Pozzo 71, 41124 Modena, Italy.
- Dipartimento di Medicine Specialistiche-Unità di Endocrinologia, Azienda Ospedaliero-Universitaria di Modena, Ospedale Civile di Baggiovara, via Giardini 1355, 41126 Modena, Italy.
| | - Giorgia Spaggiari
- Dipartimento di Medicine Specialistiche-Unità di Endocrinologia, Azienda Ospedaliero-Universitaria di Modena, Ospedale Civile di Baggiovara, via Giardini 1355, 41126 Modena, Italy.
| | - Francesca Zimetti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Ilaria Zanotti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
27
|
Sánchez M, Romero M, Gómez-Guzmán M, Tamargo J, Pérez-Vizcaino F, Duarte J. Cardiovascular Effects of Flavonoids. Curr Med Chem 2019; 26:6991-7034. [DOI: 10.2174/0929867326666181220094721] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
:
Cardiovascular Disease (CVD) is the major cause of death worldwide, especially in Western
society. Flavonoids are a large group of polyphenolic compounds widely distributed in plants, present
in a considerable amount in fruit and vegetable. Several epidemiological studies found an inverse association
between flavonoids intake and mortality by CVD. The antioxidant effect of flavonoids was
considered the main mechanism of action of flavonoids and other polyphenols. In recent years, the role
of modulation of signaling pathways by direct interaction of flavonoids with multiple protein targets,
namely kinases, has been increasingly recognized and involved in their cardiovascular protective effect.
There are strong evidence, in in vitro and animal experimental models, that some flavonoids induce
vasodilator effects, improve endothelial dysfunction and insulin resistance, exert platelet antiaggregant
and atheroprotective effects, and reduce blood pressure. Despite interacting with multiple targets, flavonoids
are surprisingly safe. This article reviews the recent evidence about cardiovascular effects that
support a beneficial role of flavonoids on CVD and the potential molecular targets involved.
Collapse
Affiliation(s)
- Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Tamargo
- Department of Pharmacology, School of Medicine, Complutense University of Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology, School of Medicine, Complutense University of Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
28
|
Ghaedi E, Moradi S, Aslani Z, Kord-Varkaneh H, Miraghajani M, Mohammadi H. Effects of grape products on blood lipids: a systematic review and dose–response meta-analysis of randomized controlled trials. Food Funct 2019; 10:6399-6416. [DOI: 10.1039/c9fo01248f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Grape products through several plausible mechanisms-of-action are reported to improve lipid profile. The present systematic review revealed that grape product supplementation might have a positive effect on achieving a lipid profile target.
Collapse
Affiliation(s)
- Ehsan Ghaedi
- Students’ Scientific Research Center (SSRC)
- Tehran University of Medical Sciences (TUMS)
- Tehran
- Iran
- Department of Cellular and Molecular Nutrition
| | - Sajjad Moradi
- Halal Research Centre of IRI
- FDA
- Tehran
- Iran
- Nutritional Sciences Department
| | - Zahra Aslani
- Department of Community Nutrition
- School of Nutritional Sciences and Dietetics
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Hamed Kord-Varkaneh
- Student Research Committee
- Department of Clinical Nutrition and Dietetics
- Faculty of Nutrition and Food Technology
- Shahid Beheshti University of Medical Sciences
- Tehran
| | - Maryam Miraghajani
- National Nutrition and Food Technology Research Institute
- Shahid Beheshti University of Medical Sciences
- Tehran
- Iran
- The Early Life Research Unit
| | - Hamed Mohammadi
- Student Research Committee
- Department of Clinical Nutrition
- School of Nutrition and Food Science
- Isfahan University of Medical Sciences
- Isfahan
| |
Collapse
|
29
|
Do grape polyphenols improve metabolic syndrome components? A systematic review. Eur J Clin Nutr 2017; 71:1381-1392. [PMID: 28145414 DOI: 10.1038/ejcn.2016.227] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/25/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES Epidemiological, in vitro and animal studies suggest that grape polyphenols, such as those present in wine, have favorable effects on the metabolic syndrome. However, controversy remains whether treatment with grape polyphenols is effective in humans. Here, we aimed to systemically review the effects of grape polyphenols on metabolic syndrome components in humans. SUBJECTS/METHODS We systematically searched Medline, EMBASE and the Cochrane database for all clinical trials assessing the effects of grape polyphenols on insulin sensitivity, glycemia, blood pressure or lipid levels. We screened all titles and reviewed abstracts of potentially relevant studies. Full papers were assessed for eligibility and quality-rated according to the Jadad scale by two independent assessors. RESULTS Thirty-nine studies met the eligibility criteria. In individuals without component criteria of the metabolic syndrome, only low- and medium-quality studies were found with primarily neutral results. In individuals with the metabolic syndrome or related conditions, one of two high-quality studies suggested improvement in insulin sensitivity. Glycemia was improved in 2 of 11 lower-quality studies and 2 of 4 high-quality studies. Seven of 22 studies demonstrated a significant decrease in blood pressure, but only one was of high quality. Two of four high-quality studies pointed towards effects on total cholesterol while other lipidemic parameters were not affected. CONCLUSIONS No compelling data exist that grape polyphenols can positively influence glycemia, blood pressure or lipid levels in individuals with or without the metabolic syndrome. Limited evidence suggests that grape polyphenols may improve insulin sensitivity.
Collapse
|
30
|
A formulation of grape seed, Indian gooseberry, turmeric and fenugreek helps controlling type 2 diabetes mellitus in advanced-stage patients. Eur J Integr Med 2016. [DOI: 10.1016/j.eujim.2016.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|