1
|
Wan L, Li S, Du J, Li A, Zhan Y, Zhu W, Zheng P, Qiao D, Nie C, Pan Q. Review of Metal-Polyphenol Self-Assembled Nanoparticles: Synthesis, Properties, and Biological Applications in Inflammatory Diseases. ACS Biomater Sci Eng 2025. [PMID: 40276988 DOI: 10.1021/acsbiomaterials.4c02366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Polyphenols, which are compounds characterized by the presence of phenolic hydroxyl groups, are abundantly found in natural plants and exist in highly complex forms within living organisms. As some of the most prevalent compounds in nature, polyphenols possess significant medicinal value due to their unique structural features, particularly their therapeutic efficacy in antitumor, anti-inflammatory, and antibacterial applications. In the context of inflammation therapy, polyphenolic compounds can inhibit the excessive release of inflammatory mediators from inflammatory cells, thereby mitigating inflammation. Furthermore, these compounds exhibit strong antioxidant properties, enabling them to scavenge free radicals and reactive oxygen species (ROS), reduce oxidative stress-related damage, and exert anti-inflammatory effects. Due to their multiple phenolic hydroxyl groups and their ability to chelate various metals, polyphenols are extensively utilized in the synthesis of self-assembled nanoparticles for the treatment of various diseases. Numerous studies have demonstrated that the therapeutic profile of nanoparticles formed through self-assembly with metal ions surpasses that of polyphenolic compounds alone. This Review will focus on the self-assembly of different polyphenolic compounds with various metal ions to generate nanoparticles, their characterization, and their therapeutic applications in inflammation-related diseases, providing researchers with new insights into the synthetic study of metal-polyphenol nanocomposites and their biological applications.
Collapse
Affiliation(s)
- Li Wan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Shizhe Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Jiawei Du
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Anqi Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yujie Zhan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Cunpeng Nie
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| |
Collapse
|
2
|
Bagó-Mas A, Korimová A, Bretová K, Deulofeu M, Verdú E, Fiol N, Dubový P, Boadas-Vaello P. Repeated Administrations of Polyphenolic Extracts Prevent Chronic Reflexive and Non-Reflexive Neuropathic Pain Responses by Modulating Gliosis and CCL2-CCR2/CX3CL1-CX3CR1 Signaling in Spinal Cord-Injured Female Mice. Int J Mol Sci 2025; 26:3325. [PMID: 40244217 PMCID: PMC11989601 DOI: 10.3390/ijms26073325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Neuropathic pain after spinal cord injury lacks any effective treatments, often leading to chronic pain. This study tested whether the daily administration of fully characterized polyphenolic extracts from grape stalks and coffee could prevent both reflexive and non-reflexive chronic neuropathic pain in spinal cord-injured mice by modulating the neuroimmune axis. Female CD1 mice underwent mild spinal cord contusion and received intraperitoneal extracts in weeks one, three, and six post-surgery. Reflexive pain responses were assessed weekly for up to 10 weeks, and non-reflexive pain was evaluated at the study's end. Neuroimmune crosstalk was investigated, focusing on glial activation and the expression of CCL2/CCR2 and CX3CL1/CX3CR1 in supraspinal pain-related areas, including the periaqueductal gray, rostral ventromedial medulla, anterior cingulate cortex, and amygdala. Repeated treatments prevented mechanical allodynia and thermal hyperalgesia, and also modulated non-reflexive pain. Moreover, they reduced supraspinal gliosis and regulated CCL2/CCR2 and CX3CL1/CX3CR1 signaling. Overall, the combination of polyphenols in these extracts may offer a promising pharmacological strategy to prevent chronic reflexive and non-reflexive pain responses by modifying central sensitization markers, not only at the contusion site but also in key supraspinal regions implicated in neuropathic pain. Overall, these data highlight the potential of polyphenolic extracts for spinal cord injury-induced chronic neuropathic pain.
Collapse
Affiliation(s)
- Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17071 Girona, Catalonia, Spain; (A.B.-M.); (M.D.); (E.V.)
- Division of Neuroanatomy, Department of Anatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.K.); (K.B.)
| | - Andrea Korimová
- Division of Neuroanatomy, Department of Anatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.K.); (K.B.)
| | - Karolína Bretová
- Division of Neuroanatomy, Department of Anatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.K.); (K.B.)
| | - Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17071 Girona, Catalonia, Spain; (A.B.-M.); (M.D.); (E.V.)
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17071 Girona, Catalonia, Spain; (A.B.-M.); (M.D.); (E.V.)
| | - Núria Fiol
- Department of Chemical Engineering, Agriculture and Food Technology, Polytechnic School, University of Girona, 17003 Girona, Catalonia, Spain;
| | - Petr Dubový
- Division of Neuroanatomy, Department of Anatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.K.); (K.B.)
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17071 Girona, Catalonia, Spain; (A.B.-M.); (M.D.); (E.V.)
| |
Collapse
|
3
|
Antonelli A, Bianchi M, Fear EJ, Giorgi L, Rossi L. Management of Fibromyalgia: Novel Nutraceutical Therapies Beyond Traditional Pharmaceuticals. Nutrients 2025; 17:530. [PMID: 39940388 PMCID: PMC11820827 DOI: 10.3390/nu17030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
The pathophysiology of fibromyalgia, a condition that causes chronic pain throughout the body, involves abnormal pain signaling, genetic predispositions, and abnormal neuroendocrine function, significantly impairing quality of life. Fibromyalgia is commonly characterized by musculoskeletal pain, chronic fatigue, and severe sleep alterations. Changes in the central processing of sensory input and defects in endogenous pain inhibition could be the basis of enhanced and persistent pain sensitivity in individuals with fibromyalgia. The term central sensitivity syndrome was chosen as an umbrella term for fibromyalgia and related illnesses, including myalgic encephalomyelitis/chronic fatigue syndrome, migraine, and irritable bowel syndrome. Given the substantial impact of fibromyalgia on health, there is a need for new prevention and treatment strategies, particularly those involving bioavailable nutraceuticals and/or phytochemicals. This approach is particularly important considering the adverse effects of current fibromyalgia pharmaceutical treatments, such as antidepressants and anticonvulsants, which can lead to physical dependence and tolerance. Natural products have recently been considered for the design of innovative analgesics and antinociceptive agents to manage fibromyalgia pain. Polyphenols show promise in the management of neuropathic pain and fibromyalgia, especially considering how anti-inflammatory treatments, including corticosteroids and nonsteroidal medical drugs, are effective only when inflammatory processes coexist and are not recommended as the primary treatment for fibromyalgia.
Collapse
Affiliation(s)
- Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino, Cà Le Suore 2/4, 61029 Urbino, Italy; (M.B.); (L.R.)
| | - Marzia Bianchi
- Department of Biomolecular Sciences, University of Urbino, Cà Le Suore 2/4, 61029 Urbino, Italy; (M.B.); (L.R.)
| | - Elizabeth Jane Fear
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Luca Giorgi
- Department of Pure and Applied Sciences, University of Urbino, Cà Le Suore 2/4, 61029 Urbino, Italy;
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino, Cà Le Suore 2/4, 61029 Urbino, Italy; (M.B.); (L.R.)
| |
Collapse
|
4
|
Yang M, Xu Y, Yu Q, Li M, Yang L, Yang Y. Spectroscopic Relationship between XOD and TAOZHI Total Polyphenols Based on Chemometrics and Molecular Docking Techniques. Molecules 2024; 29:4288. [PMID: 39339283 PMCID: PMC11433701 DOI: 10.3390/molecules29184288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Xanthine oxidase (XOD) is a key enzyme that promotes the oxidation of xanthine/hypoxanthine to form uric acid, and the accumulation of uric acid leads to hyperuricaemia. The prevalence of gout caused by hyperuricaemia is increasing year by year. TAOZHI (TZ) can be used for the treatment of rheumatic arthralgia due to qi stagnation and blood stasis and contains a large number of polyphenolic components. The aim of this study was to investigate the relationship between chromatograms and XOD inhibition of 21 batches of TZ total polyphenol extract samples. Chemometric methods such as grey correlation analysis, bivariate correlation analysis, and partial least squares regression were used to identify the active ingredient groups in the total polyphenol extracts of TZ, which were validated using molecular docking techniques. The total polyphenol content contained in the 21 batches did not differ significantly, and all batches showed inhibitory effects on XOD. Spectroeffect correlation analysis showed that the inhibitory effect of TZ on XOD activity was the result of the synergistic effect of multiple components, and the active component groups screened to inhibit XOD were F2 (4-O-Caffeoylquinic acid), F4, and F10 (naringenin). The molecular docking results showed that the binding energies of all nine dockings were lower than -7.5 kcal/mol, and the binding modes included hydrogen bonding, hydrophobic forces, salt bridges, and π-staking, and the small molecules might exert their pharmacological effects by binding to XOD through the residue sites of the amino acids, such as threonine, arginine, and leucine. This study provides some theoretical basis for the development and utilisation of TZ total polyphenols.
Collapse
Affiliation(s)
- Mingyu Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yitang Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Qihua Yu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Mengyu Li
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Liyong Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ye Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|