1
|
Socher KLR, Nunes DM, Lopes DCP, Coutinho AMN, Faria DDP, Squarzoni P, Busatto Filho G, Buchpiguel CA, Nitrini R, Brucki SMD. Diagnosing preclinical and clinical Alzheimer's disease with visual atrophy scales in the clinical practice. ARQUIVOS DE NEURO-PSIQUIATRIA 2025; 83:1-7. [PMID: 40020758 DOI: 10.1055/s-0045-1802960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
BACKGROUND Visual atrophy scales from the medial temporal region are auxiliary biomarkers of neurodegeneration in Alzheimer's disease (AD). Therefore, they may correlate with progression from cognitively unimpaired (CU) status to mild cognitive impairment (MCI) and AD, and they become a valuable tool for diagnostic accuracy. OBJECTIVE To compare the medial temporal lobe atrophy (MTA) and entorhinal cortex atrophy (ERICA) scores measured through magnetic resonance image (MRI) scans as a useful method for probable AD diagnosis regarding clinical diagnosis and amyloid positron-emission tomography (PET). METHODS Two neurologists blinded to the diagnoses classified 113 older adults (age > 65 years) through the MTA and ERICA scores. We investigated the correlations involving these scores and sociodemographic data, amyloid brain cortical burden measured through PET imaging with (11)C-labeled Pittsburgh Compound-B (11C-PIB PET), and clinical cognitive status, in individuals diagnosed as CU (CU; N = 30), presenting mild cognitive impairment (MCI, N = 52), and AD patients (N = 31). RESULTS The inter-rater reliability of the atrophy scales was excellent (0.8-1) according to the Cohen analysis. The CU group presented lower MTA scores (median value: 0) than ERICA (median value: 1) scores in both hemispheres. The 11C-PIB-PET was positive in 45% of the sample. In the MCI and AD groups, the ERICA score presented greater sensitivity, and the MTA score presented greater specificity. The accuracy of the clinical diagnosis was sufficient and no more than 70% for both scores in AD. CONCLUSION In the present study, we found moderate sensitivity for the ERICA score, which could be a better screening tool than the MTA score for the diagnosis of AD or MCI. However, none of the scores were useful imaging biomarkers in preclinical AD.
Collapse
Affiliation(s)
- Karen Luiza Ramos Socher
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brazil
| | - Douglas Mendes Nunes
- Universidade de São Paulo, Faculdade de Medicina, Instituto de Radiologia, Unidade de Neurorradiologia, São Paulo SP, Brazil
| | - Deborah Cristina P Lopes
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brazil
| | - Artur Martins Novaes Coutinho
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Radiologia e Oncologia, Laboratório de Medicina Nuclear (LIM/43), São Paulo SP, Brazil
| | - Daniele de Paula Faria
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Radiologia e Oncologia, Laboratório de Medicina Nuclear (LIM/43), São Paulo SP, Brazil
| | - Paula Squarzoni
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Psiquiatria, São Paulo SP, Brazil
| | - Geraldo Busatto Filho
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Psiquiatria, São Paulo SP, Brazil
| | - Carlos Alberto Buchpiguel
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Radiologia e Oncologia, Laboratório de Medicina Nuclear (LIM/43), São Paulo SP, Brazil
| | - Ricardo Nitrini
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brazil
| | - Sonia Maria Dozzi Brucki
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brazil
| |
Collapse
|
2
|
Borges CR, Poyares DLR, Studart-Neto A, Coutinho AM, Cassimiro L, Avolio I, Piovezan R, Trés ES, Teixeira TBM, Barbosa BJAP, Tufik S, Brucki SMD. Amyloid profile is associated with sleep quality in preclinical but not in prodromal Alzheimer's disease older adults. Sleep Med 2024; 121:359-364. [PMID: 39079370 DOI: 10.1016/j.sleep.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Few studies have assessed whether neuropathological markers of AD in the preclinical and prodromal stages are associated with polysomnographic changes and obstructive sleep apnea (OSA). METHODS This was a cross-sectional, case-control study of older adults (≥60 years) without relevant clinical and psychiatric comorbidities selected randomly from a cohort of individuals without dementia in a tertiary university hospital in São Paulo, Brazil. They underwent neuropsychological evaluation for clinical diagnosis and were allocated into two samples: cognitively unimpaired (CU) and mild cognitive impairment (MCI). Also, they underwent PET-PiB to determine the amyloid profile and all-night in-lab polysomnography. For each sample, we compared polysomnographic parameters according to the amyloid profile (A+ vs A-). RESULTS We allocated 67 participants (mean age 73 years, SD 10,1), 70 % females, 14 ± 5 years of education, into two samples: CU (n = 28, 42.4 %) and MCI (n = 39, 57.6 %). In the CU sample, the group A+ (n = 9) showed worse sleep parameters than A- (n = 19) (lower total sleep time (p = 0.007), and sleep efficiency (p = 0.005); higher sleep onset latency (p = 0.025), wake time after sleep onset (p = 0.011), and arousal index (AI) (p = 0.007)), and changes in sleep structure: higher %N1 (p = 0.005), and lower %REM (p = 0.006). In the MCI sample, MCI A-had higher AI (p = 0.013), respiratory disturbance index (p = 0.025, controlled for age), and higher rates of severe OSA than A+. DISCUSSION The amyloid profile was associated with polysomnographic markers of worse sleep quality in individuals with preclinical AD but not with prodromal AD, probably due to the higher frequencies of severe OSA.
Collapse
Affiliation(s)
- Conrado Regis Borges
- Universidade de São Paulo - Faculdade de Medicina, R. Dr.Enéas de Carvalho Aguiar, 255, São Paulo (SP), Brazil.
| | - Dalva L R Poyares
- Universidade Federal de São Paulo - Escola Paulista de Medicina, R. Botucatu, 862, São Paulo (SP), Brazil
| | - Adalberto Studart-Neto
- Universidade de São Paulo - Faculdade de Medicina, R. Dr.Enéas de Carvalho Aguiar, 255, São Paulo (SP), Brazil
| | - Artur M Coutinho
- Universidade de São Paulo - Faculdade de Medicina, R. Dr.Enéas de Carvalho Aguiar, 255, São Paulo (SP), Brazil
| | - Luciana Cassimiro
- Universidade de São Paulo - Faculdade de Medicina, R. Dr.Enéas de Carvalho Aguiar, 255, São Paulo (SP), Brazil
| | - Isabela Avolio
- Universidade de São Paulo - Faculdade de Medicina, R. Dr.Enéas de Carvalho Aguiar, 255, São Paulo (SP), Brazil
| | - Ronaldo Piovezan
- Universidade Federal de São Paulo - Escola Paulista de Medicina, R. Botucatu, 862, São Paulo (SP), Brazil
| | - Eduardo S Trés
- Universidade de São Paulo - Faculdade de Medicina, R. Dr.Enéas de Carvalho Aguiar, 255, São Paulo (SP), Brazil
| | - Thiago B M Teixeira
- Universidade de São Paulo - Faculdade de Medicina, R. Dr.Enéas de Carvalho Aguiar, 255, São Paulo (SP), Brazil
| | - Breno J A P Barbosa
- Universidade de São Paulo - Faculdade de Medicina, R. Dr.Enéas de Carvalho Aguiar, 255, São Paulo (SP), Brazil
| | - Sergio Tufik
- Universidade Federal de São Paulo - Escola Paulista de Medicina, R. Botucatu, 862, São Paulo (SP), Brazil
| | - Sonia M D Brucki
- Universidade de São Paulo - Faculdade de Medicina, R. Dr.Enéas de Carvalho Aguiar, 255, São Paulo (SP), Brazil
| |
Collapse
|
3
|
Parmera JB, de Godoi Carneiro C, de Almeida IJ, de Oliveira MCB, Barbosa PM, Studart‐Neto A, Ono CR, Nitrini R, Buchpiguel CA, Barbosa ER, Brucki SMD, Coutinho AM. Probable 4-Repeat Tauopathy Criteria Predict Brain Amyloid Negativity, Distinct Clinical Features, and FDG-PET/MRI Neurodegeneneration Patterns in Corticobasal Syndrome. Mov Disord Clin Pract 2024; 11:238-247. [PMID: 38155526 PMCID: PMC10928325 DOI: 10.1002/mdc3.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/29/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Corticobasal syndrome (CBS) is associated with diverse underlying pathologies, including the four-repeat (4R)-tauopathies. The Movement Disorders Society (MDS) criteria for progressive supranuclear palsy (PSP) proposed the novel category "probable 4R-tauopathy" to address the phenotypic overlap between PSP and corticobasal degeneration (CBD). OBJECTIVES To investigate the clinical ability of the MDS-PSP criteria for probable 4R-tauopathy in predicting a negative amyloid-PET in CBS. Additionally, this study aims to explore CBS patients classified as 4R-tauopathy concerning their clinical features and neuroimaging degeneration patterns. METHODS Thirty-two patients with probable CBS were prospectively evaluated and split into those who fulfilled or did not fulfill the 4R-tauopathy criteria (CBS-4RT+ vs. CBS-4RT-). All patients underwent positron emission tomographies (PET) with [18 F]fluorodeoxyglucose and [11 C]Pittsburgh Compound-B (PIB) on a hybrid PET-MRI scanner to perform multimodal quantitative comparisons with a control group. RESULTS Eleven patients were clinically classified as CBS-4RT+, and only one had a positive PIB-PET. The CBS-4RT+ classification had 92% specificity, 52% sensitivity, and 69% accuracy in predicting a negative PIB-PET. The CBS-4RT+ group presented with dysarthria and perseveration more often than the CBS-4RT- group. Moreover, the CBS-4RT+ group showed a prominent frontal hypometabolism extending to the supplementary motor area and striatum, and brain atrophy at the anterior cingulate and bilateral striata. CONCLUSIONS The 4R-tauopathy criteria were highly specific in predicting a negative amyloid-PET in CBS. Patients classified as 4R-tauopathy presented distinct clinical aspects, as well as brain metabolism and atrophy patterns previously associated with tauopathies.
Collapse
Affiliation(s)
- Jacy Bezerra Parmera
- Department of Neurology, Hospital das ClínicasFaculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | - Camila de Godoi Carneiro
- Laboratory of Nuclear Medicine (LIM 43), Nuclear Medicine Division and Institute of RadiologyHospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | - Isabel Junqueira de Almeida
- Department of Physical Therapy, Speech, and Occupational Therapy, Hospital das ClínicasFaculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | | | - Pedro Melo Barbosa
- Department of Neurology, Hospital das ClínicasFaculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | - Adalberto Studart‐Neto
- Department of Neurology, Hospital das ClínicasFaculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | - Carla Rachel Ono
- Laboratory of Nuclear Medicine (LIM 43), Nuclear Medicine Division and Institute of RadiologyHospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | - Ricardo Nitrini
- Department of Neurology, Hospital das ClínicasFaculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM 43), Nuclear Medicine Division and Institute of RadiologyHospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | - Egberto Reis Barbosa
- Department of Neurology, Hospital das ClínicasFaculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | - Sonia Maria Dozzi Brucki
- Department of Neurology, Hospital das ClínicasFaculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | - Artur Martins Coutinho
- Laboratory of Nuclear Medicine (LIM 43), Nuclear Medicine Division and Institute of RadiologyHospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| |
Collapse
|
4
|
Cools R, Kerkhofs K, Leitao RCF, Bormans G. Preclinical Evaluation of Novel PET Probes for Dementia. Semin Nucl Med 2023; 53:599-629. [PMID: 37149435 DOI: 10.1053/j.semnuclmed.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
The development of novel PET imaging agents that selectively bind specific dementia-related targets can contribute significantly to accurate, differential and early diagnosis of dementia causing diseases and support the development of therapeutic agents. Consequently, in recent years there has been a growing body of literature describing the development and evaluation of potential new promising PET tracers for dementia. This review article provides a comprehensive overview of novel dementia PET probes under development, classified by their target, and pinpoints their preclinical evaluation pathway, typically involving in silico, in vitro and ex/in vivo evaluation. Specific target-associated challenges and pitfalls, requiring extensive and well-designed preclinical experimental evaluation assays to enable successful clinical translation and avoid shortcomings observed for previously developed 'well-established' dementia PET tracers are highlighted in this review.
Collapse
Affiliation(s)
- Romy Cools
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kobe Kerkhofs
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; NURA, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Renan C F Leitao
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Kim JH, Kim HK, Lee SW, Son YD, Kim JH. The Relationship between Character Traits and In Vivo Cerebral Serotonin Transporter Availability in Healthy Subjects: A High-Resolution PET Study with C-11 DASB. Pharmaceuticals (Basel) 2023; 16:ph16050759. [PMID: 37242542 DOI: 10.3390/ph16050759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
To elucidate the potential roles of serotonergic activity in human character traits (i.e., self-directedness, cooperativeness, and self-transcendence), we investigated the relationship between these character traits and serotonin transporter (5-HTT) in healthy subjects. Twenty-four participants underwent High-Resolution Research Tomograph-positron emission tomography scans with [11C]DASB. To quantify 5-HTT availability, binding potential (BPND) of [11C]DASB was obtained using the simplified reference tissue model. The Temperament and Character Inventory was used to assess subjects' levels of three character traits. There were no significant correlations between the three character traits. Self-directedness was significantly positively correlated with [11C]DASB BPND in the left hippocampus, left middle occipital gyrus, bilateral superior parietal gyrus, left inferior parietal gyrus, left middle temporal gyrus (MTG), and left inferior temporal gyrus (ITG). Cooperativeness was significantly negatively correlated with [11C]DASB BPND in the median raphe nucleus. Self-transcendence was significantly negatively correlated with [11C]DASB BPND in the right MTG and right ITG. Our results show significant correlations between the three character traits and 5-HTT availability in specific brain regions. In particular, self-directedness was significantly positively correlated with 5-HTT availability, suggesting that a goal-oriented, self-confident, and resourceful character may be related to higher serotonergic neurotransmission.
Collapse
Affiliation(s)
- Jeong-Hee Kim
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Republic of Korea
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Hang-Keun Kim
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Republic of Korea
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Young-Don Son
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Republic of Korea
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
6
|
Parra MA, Orellana P, Leon T, Victoria CG, Henriquez F, Gomez R, Avalos C, Damian A, Slachevsky A, Ibañez A, Zetterberg H, Tijms BM, Yokoyama JS, Piña-Escudero SD, Cochran JN, Matallana DL, Acosta D, Allegri R, Arias-Suárez BP, Barra B, Behrens MI, Brucki SMD, Busatto G, Caramelli P, Castro-Suarez S, Contreras V, Custodio N, Dansilio S, De la Cruz-Puebla M, de Souza LC, Diaz MM, Duque L, Farías GA, Ferreira ST, Guimet NM, Kmaid A, Lira D, Lopera F, Meza BM, Miotto EC, Nitrini R, Nuñez A, O'neill S, Ochoa J, Pintado-Caipa M, de Paula França Resende E, Risacher S, Rojas LA, Sabaj V, Schilling L, Sellek AF, Sosa A, Takada LT, Teixeira AL, Unaucho-Pilalumbo M, Duran-Aniotz C. Biomarkers for dementia in Latin American countries: Gaps and opportunities. Alzheimers Dement 2023; 19:721-735. [PMID: 36098676 PMCID: PMC10906502 DOI: 10.1002/alz.12757] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 12/13/2022]
Abstract
Limited knowledge on dementia biomarkers in Latin American and Caribbean (LAC) countries remains a serious barrier. Here, we reported a survey to explore the ongoing work, needs, interests, potential barriers, and opportunities for future studies related to biomarkers. The results show that neuroimaging is the most used biomarker (73%), followed by genetic studies (40%), peripheral fluids biomarkers (31%), and cerebrospinal fluid biomarkers (29%). Regarding barriers in LAC, lack of funding appears to undermine the implementation of biomarkers in clinical or research settings, followed by insufficient infrastructure and training. The survey revealed that despite the above barriers, the region holds a great potential to advance dementia biomarkers research. Considering the unique contributions that LAC could make to this growing field, we highlight the urgent need to expand biomarker research. These insights allowed us to propose an action plan that addresses the recommendations for a biomarker framework recently proposed by regional experts.
Collapse
Affiliation(s)
- Mario A. Parra
- School of Psychological Sciences and Health, University of Strathclyde. Glasgow, United Kingdom
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez. Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez. Santiago, Chile
| | - Tomas Leon
- Global Brain Health Institute, Trinity College. Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador y Facultad de Medicina, Universidad de Chile. Santiago, Chile
| | - Cabello G. Victoria
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez. Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, Universidad de Chile. Santiago, Chile
- Unit of Brain Health, Department of Neurology and Neurosurgery, Faculty of Medicine, Universidad de Chile. Santiago, Chile
| | - Fernando Henriquez
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, Universidad de Chile. Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO). Santiago, Chile
- Laboratory for Cognitive and Evolutionary Neuroscience (LaNCE), Department of Psychiatry, Faculty of Medicine, Pontificia Universidad Católica de Chile. Santiago, Chile
| | - Rodrigo Gomez
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador y Facultad de Medicina, Universidad de Chile. Santiago, Chile
- Graduate School, Faculty of Medicine, Universidad Mayor, Chile - Centro de Apoyo Comunitario a personas con Demencia Kintun. Santiago, Chile
| | - Constanza Avalos
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez. Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez. Santiago, Chile
| | - Andres Damian
- Centro Uruguayo de Imagenología Molecular (CUDIM) - Centro de Medicina Nuclear e Imagenología Molecular, Hospital de Clínicas, Universidad de la República. Montevideo, Uruguay
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador y Facultad de Medicina, Universidad de Chile. Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, Universidad de Chile. Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO). Santiago, Chile
- Department of Neurology and Psyquiatry, Clínica Alemana-Universidad del Desarrollo. Santiago, Chile
| | - Agustin Ibañez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez. Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez. Santiago, Chile
- Global Brain Health Institute, Trinity College. Dublin, Ireland
- Global Brain Health Institute and the Memory and Aging Center, Weill Institute for Neurosciences, Departments of Neurology and Radiology & Biomedical Imaging, University of California, San Francisco (UCSF). San Francisco, USA
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET). Buenos Aires, Argentina
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg. Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital. Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology. Queen Square, London, UK
- UK Dementia Research Institute at UCL. London, UK
- Hong Kong Center for Neurodegenerative Diseases. Clear Water Bay, Hong Kong, China
| | - Betty M. Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience. Amsterdam UMC, The Netherlands
| | - Jennifer S. Yokoyama
- Global Brain Health Institute and the Memory and Aging Center, Weill Institute for Neurosciences, Departments of Neurology and Radiology & Biomedical Imaging, University of California, San Francisco (UCSF). San Francisco, USA
- Department of Neurology, Memory and Aging Center, UCSF. San Francisco, USA
| | - Stefanie D. Piña-Escudero
- Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), University of California San Francisco. San Francisco, USA
| | | | - Diana L Matallana
- Medical School, Aging Institute and Psychiatry Department, Neuroscience PhD Program, Pontificia Universidad Javeriana. Bogotá,Colombia
- Memory and Cognition Center, Intellectus, Hospital Universitario San Ignacio. Bogotá, Colombia
- Psychiatry Department, Hospital Universitario Santa Fe de Bogotá. Bogotá, Colombia
| | - Daisy Acosta
- Universidad Nacional Pedro Henriquez Urena (UNPHU). Santo Domingo, República Dominicana
| | - Ricardo Allegri
- Department of Cognitive Neurology, Neuropsychiatry and Neuropsychology, Instituto Neurológico Fleni. Buenos Aires, Argentina
- Department of Neurosciences, Universidad de la Costa. Barranquilla, Colombia
| | - Bianca P. Arias-Suárez
- Faculty of Human Medicine, Postgraduate Section, National University of San Marcos. Lima, Perú
| | - Bernardo Barra
- Mental Health Service, Clínica Universidad de los Andes. Santiago, Chile
- Department of Psychiatry, Medicine School, Andrés Bello University of Santiago (UNAB). Santiago, Chile
| | - Maria Isabel Behrens
- Department of Neurology and Psyquiatry, Clínica Alemana-Universidad del Desarrollo. Santiago, Chile
- Center for Advanced Clinical Research (CICA). Department of Neurology & Neurosurgery and Neuroscience Department, Faculty of Medicine, Universidad de Chile. Santiago, Chile
- Department of Neurology and Neurosurgery, Hospital Clínico Universidad de Chile. Santiago, Chile
- Department of Neurocience, Faculty of Medicine, Universidad de Chile. Santiago, Chile
| | - Sonia M. D. Brucki
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo Medical School, University of São Paulo. São Paulo, Brazil
| | - Geraldo Busatto
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP. São Paulo, Brazil
| | - Paulo Caramelli
- Behavioral and Cognitive Neurology Unit, Faculdade de Medicina, Universidade Federal de Minas Gerais. Belo Horizonte, Brazil
| | - Sheila Castro-Suarez
- Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), University of California San Francisco. San Francisco, USA
- Instituto Nacional de Ciencias Neurológicas. Lima, Perú
| | | | - Nilton Custodio
- Unit of diagnosis of cognitive impairment and dementia prevention, Instituto Peruano de Neurociencias.Lima, Perú
| | - Sergio Dansilio
- Department of Neuropsychology, Institut of Neurology, Hospital de Clínicas, Faculty of Medicine,Universidad de la República. Montevideo, Uruguay
| | - Myriam De la Cruz-Puebla
- Global Brain Health Institute and the Memory and Aging Center, Weill Institute for Neurosciences, Departments of Neurology and Radiology & Biomedical Imaging, University of California, San Francisco (UCSF). San Francisco, USA
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute. Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Neuroscience Institute, Autonomous University of Barcelona. Barcelona, Spain
- Department of Internal Medicine, Health Sciences Faculty, Technical University of Ambato. Tungurahua, Ecuador
| | - Leonardo Cruz de Souza
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP. São Paulo, Brazil
- Neurology Service, School of Medicine, Pontifical University of Rio Grande do Sul (PUCRS). Porto Alegre, Brazil
| | - Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill. North Carolina, USA
- School of Public Health, Universidad Peruana Cayetano Heredia. Lima, Peru
| | - Lissette Duque
- Unit of Cognitive diseases, Neuromedicenter. Quito, Ecuador
| | - Gonzalo A. Farías
- Center for Advanced Clinical Research (CICA). Department of Neurology & Neurosurgery and Neuroscience Department, Faculty of Medicine, Universidad de Chile. Santiago, Chile
| | - Sergio T. Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro. Rio de Janeiro, Brazil
| | - Nahuel Magrath Guimet
- Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), University of California San Francisco. San Francisco, USA
- Department of Cognitive Neurology, Neuropsychiatry and Neuropsychology, Instituto Neurológico Fleni. Buenos Aires, Argentina
| | - Ana Kmaid
- Unit of Cognitive evaluation. Department of Geriatry ang Gerentology. Hospital de Clínicas. Faculty of Medicine. Universidad de la República. Montevideo, Uruguay
| | - David Lira
- Unit of diagnosis of cognitive impairment and dementia prevention, Instituto Peruano de Neurociencias.Lima, Perú
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, School of Medicine. Medellín, Colombia
| | - Beatriz Mar Meza
- Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), University of California San Francisco. San Francisco, USA
- Department of Geriatry ang Gerentology, Hospital Central de la Fuerza Aérea del Perú. Lima, Perú
| | - Eliane C Miotto
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo Medical School, University of São Paulo. São Paulo, Brazil
| | - Ricardo Nitrini
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo Medical School, University of São Paulo. São Paulo, Brazil
| | - Alberto Nuñez
- Unit of Cognitive diseases, Neuromedicenter. Quito, Ecuador
| | - Santiago O'neill
- Neurosciences Institute, Favaloro Foundation University Hospital. Buenos Aires, Argentina
| | - John Ochoa
- Group of Neuropsychology and behavior, Universidad de Antioquia, School of Medicine. Medellín, Colombia
| | - Maritza Pintado-Caipa
- Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), University of California San Francisco. San Francisco, USA
- Unit of diagnosis of cognitive impairment and dementia prevention, Instituto Peruano de Neurociencias.Lima, Perú
| | - Elisa de Paula França Resende
- Global Brain Health Institute and the Memory and Aging Center, Weill Institute for Neurosciences, Departments of Neurology and Radiology & Biomedical Imaging, University of California, San Francisco (UCSF). San Francisco, USA
- Behavioral and Cognitive Neurology Unit, Faculdade de Medicina, Universidade Federal de Minas Gerais. Belo Horizonte, Brazil
- Neurology Service, School of Medicine, Pontifical University of Rio Grande do Sul (PUCRS). Porto Alegre, Brazil
- Brain Institute of Rio Grande do Sul, Pontifical University of Rio Grande do Sul (PUCRS). Porto Alegre, Brazil
- Faculdade de Ciências Médicas de Minas Gerais. Belo Horizonte, Brazil
| | - Shannon Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana Alzheimer’s Disease Research Center, Department of Neurology, Indiana University School of Medicine. Indianapolis, USA
| | - Luz Angela Rojas
- Research Group, MI Dneuropsy, Universidad Surcolombiana. Neiva, Colombia
| | - Valentina Sabaj
- Unit of Neuropsychogeriatry, Instituto Nacional de Geriatría. Santiago, Chile
| | - Lucas Schilling
- Neurology Service, School of Medicine, Pontifical University of Rio Grande do Sul (PUCRS). Porto Alegre, Brazil
- Brain Institute of Rio Grande do Sul, Pontifical University of Rio Grande do Sul (PUCRS). Porto Alegre, Brazil
- Graduate Program in Biomedical Gerontology, Pontifical University of Rio Grande do Sul (PUCRS). Porto Alegre, Brazil
| | | | - Ana Sosa
- Instituto Nacional de Neurología y Neurocirugía (INNN), Manuel Velasco Suarez. Ciudad de México, México
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo Medical School, University of São Paulo. São Paulo, Brazil
| | - Antonio L. Teixeira
- Faculdade Santa Casa BH. Belo Horizonte, Brazil
- Neuropsychiatry Program, University of Texas Health Science Center at Houston. Houston, USA
| | - Martha Unaucho-Pilalumbo
- Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), University of California San Francisco. San Francisco, USA
- Departamento de Neurología, Hospital Universidad Técnica Particular de Loja. Loja, Ecuador
| | - Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez. Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez. Santiago, Chile
| |
Collapse
|
7
|
Carneiro CDG, Faria DDP, Coutinho AM, Ono CR, Duran FLDS, da Costa NA, Garcez AT, da Silveira PS, Forlenza OV, Brucki SMD, Nitrini R, Busatto G, Buchpiguel CA. Evaluation of 10-minute post-injection 11C-PiB PET and its correlation with 18F-FDG PET in older adults who are cognitively healthy, mildly impaired, or with probable Alzheimer's disease. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2022; 44:495-506. [PMID: 36420910 PMCID: PMC9561831 DOI: 10.47626/1516-4446-2021-2374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Positron emission tomography (PET) allows in vivo evaluation of molecular targets in neurodegenerative diseases, such as Alzheimer's disease. Mild cognitive impairment is an intermediate stage between normal cognition and Alzheimer-type dementia. In vivo fibrillar amyloid-beta can be detected in PET using [11C]-labeled Pittsburgh compound B (11C-PiB). In contrast, [18F]fluoro-2-deoxy-d-glucose (18F-FDG) is a neurodegeneration biomarker used to evaluate cerebral glucose metabolism, indicating neuronal injury and synaptic dysfunction. In addition, early cerebral uptake of amyloid-PET tracers can determine regional cerebral blood flow. The present study compared early-phase 11C-PiB and 18F-FDG in older adults without cognitive impairment, amnestic mild cognitive impairment, and clinical diagnosis of probable Alzheimer's disease. METHODS We selected 90 older adults, clinically classified as healthy controls, with amnestic mild cognitive impairment, or with probable Alzheimer's disease, who underwent an 18F-FDG PET, early-phase 11C-PiB PET and magnetic resonance imaging. All participants were also classified as amyloid-positive or -negative in late-phase 11C-PiB. The data were analyzed using statistical parametric mapping. RESULTS We found that the probable Alzheimer's disease and amnestic mild cognitive impairment group had lower early-phase 11C-PiB uptake in limbic structures than 18F-FDG uptake. The images showed significant interactions between amyloid-beta status (negative or positive). However, early-phase 11C-PiB appears to provide different information from 18F-FDG about neurodegeneration. CONCLUSIONS Our study suggests that early-phase 11C-PiB uptake correlates with 18F-FDG, irrespective of the particular amyloid-beta status. In addition, we observed distinct regional distribution patterns between both biomarkers, reinforcing the need for more robust studies to investigate the real clinical value of early-phase amyloid-PET imaging.
Collapse
Affiliation(s)
- Camila de Godoi Carneiro
- Laboratório de Medicina Nuclear (LIM 43), Departamento de Radiologia e Oncologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil,Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Daniele de Paula Faria
- Laboratório de Medicina Nuclear (LIM 43), Departamento de Radiologia e Oncologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil,Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Artur Martins Coutinho
- Laboratório de Medicina Nuclear (LIM 43), Departamento de Radiologia e Oncologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Carla Rachel Ono
- Laboratório de Medicina Nuclear (LIM 43), Departamento de Radiologia e Oncologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Fábio Luís de Souza Duran
- Laboratório Neuro-Imagem em Psiquiatria (LIM 21), Departamento de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Naomi Antunes da Costa
- Laboratório Neuro-Imagem em Psiquiatria (LIM 21), Departamento de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Alexandre Teles Garcez
- Laboratório de Medicina Nuclear (LIM 43), Departamento de Radiologia e Oncologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Paula Squarzoni da Silveira
- Laboratório Neuro-Imagem em Psiquiatria (LIM 21), Departamento de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Orestes Vicente Forlenza
- Laboratório de Neurociências (LIM 27), Departamento de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Sonia Maria Dozzi Brucki
- Departamento de Neurologia, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Ricardo Nitrini
- Departamento de Neurologia, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Geraldo Busatto
- Laboratório Neuro-Imagem em Psiquiatria (LIM 21), Departamento de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratório de Medicina Nuclear (LIM 43), Departamento de Radiologia e Oncologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil,Correspondence: Carlos Alberto Buchpiguel, Universidade de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, CEP 01255-090, São Paulo, SP, Brazil. E-mail:
| |
Collapse
|
8
|
Miotto EC, Brucki SMD, Cerqueira CT, Bazán PR, Silva GADA, Martin MDGM, da Silveira PS, Faria DDP, Coutinho AM, Buchpiguel CA, Busatto Filho G, Nitrini R. Episodic Memory, Hippocampal Volume, and Function for Classification of Mild Cognitive Impairment Patients Regarding Amyloid Pathology. J Alzheimers Dis 2022; 89:181-192. [PMID: 35871330 PMCID: PMC9484090 DOI: 10.3233/jad-220100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Previous studies of hippocampal function and volume related to episodic memory deficits in patients with amnestic mild cognitive impairment (aMCI) have produced mixed results including increased or decreased activity and volume. However, most of them have not included biomarkers, such as amyloid-β (Aβ) deposition which is the hallmark for early identification of the Alzheimer’s disease continuum. Objective: We investigated the role of Aβ deposition, functional hippocampal activity and structural volume in aMCI patients and healthy elderly controls (HC) using a new functional MRI (fMRI) ecological episodic memory task. Methods: Forty-six older adults were included, among them Aβ PET PIB positive (PIB+) aMCI (N = 17), Aβ PET PIB negative (PIB–) aMCI (N = 15), and HC (N = 14). Hippocampal volume and function were analyzed using Freesurfer v6.0 and FSL for news headlines episodic memory fMRI task, and logistic regression for group classification in conjunction with episodic memory task and traditional neuropsychological tests. Results: The aMCI PIB+ and PIB–patients showed significantly worse performance in relation to HC in most traditional neuropsychological tests and within group difference only on story recall and the ecological episodic memory fMRI task delayed recall. The classification model reached a significant accuracy (78%) and the classification pattern characterizing the PIB+ included decreased left hippocampal function and volume, increased right hippocampal function and volume, and worse episodic memory performance differing from PIB–which showed increased left hippocampus volume. Conclusion: The main findings showed differential neural correlates, hippocampal volume and function during episodic memory in aMCI patients with the presence of Aβ deposition.
Collapse
Affiliation(s)
- Eliane Correa Miotto
- Department of Neurology, University of São Paulo, São Paulo, Brazil.,Institute of Radiology, LIM-44, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | - Paulo R Bazán
- Institute of Radiology, LIM-44, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Maria da Graça M Martin
- Institute of Radiology, LIM-44, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine, LIM 43, Department of Radiology and Oncology, University of Sao Paulo, Brazil
| | - Artur Martins Coutinho
- Laboratory of Nuclear Medicine, LIM 43, Department of Radiology and Oncology, University of Sao Paulo, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine, LIM 43, Department of Radiology and Oncology, University of Sao Paulo, Brazil
| | | | - Ricardo Nitrini
- Department of Neurology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Pitombeira MS, Koole M, Campanholo KR, Souza AM, Duran FLS, Solla DJF, Mendes MF, Pereira SLA, Rimkus CM, Busatto GF, Callegaro D, Buchpiguel CA, de Paula Faria D. Innate immune cells and myelin profile in multiple sclerosis: a multi-tracer PET/MR study. Eur J Nucl Med Mol Imaging 2022; 49:4551-4566. [PMID: 35838758 DOI: 10.1007/s00259-022-05899-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/30/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Neuropathological studies have demonstrated distinct profiles of microglia activation and myelin injury among different multiple sclerosis (MS) phenotypes and disability stages. PET imaging using specific tracers may uncover the in vivo molecular pathology and broaden the understanding of the disease heterogeneity. METHODS We used the 18-kDa translocator protein (TSPO) tracer (R)-[11C]PK11195 and [11C]PIB PET images acquired in a hybrid PET/MR 3 T system to characterize, respectively, the profile of innate immune cells and myelin content in 47 patients with MS compared to 18 healthy controls (HC). For the volume of interest (VOI)-based analysis of the dynamic data, (R)-[11C]PK11195 distribution volume (VT) was determined for each subject using a metabolite-corrected arterial plasma input function while [11C]PIB distribution volume ratio (DVR) was estimated using a reference region extracted by a supervised clustering algorithm. A voxel-based analysis was also performed using Statistical Parametric Mapping. Functional disability was evaluated by the Expanded Disability Status Scale (EDSS), Multiple Sclerosis Functional Composite (MSFC), and Symbol Digit Modality Test (SDMT). RESULTS In the VOI-based analysis, [11C]PIB DVR differed between patients and HC in the corpus callosum (P = 0.019) while no differences in (R)-[11C]PK11195 VT were observed in patients relative to HC. Furthermore, no correlations or associations were observed between both tracers within the VOI analyzed. In the voxel-based analysis, high (R)-[11C]PK11195 uptake was observed diffusively in the white matter (WM) when comparing the progressive phenotype and HC, and lower [11C]PIB uptake was observed in certain WM regions when comparing the relapsing-remitting phenotype and HC. None of the tracers were able to differentiate phenotypes at voxel or VOI level in our cohort. Linear regression models adjusted for age, sex, and phenotype demonstrated that higher EDSS was associated with an increased (R)-[11C]PK11195 VT and lower [11C]PIB DVR in corpus callosum (P = 0.001; P = 0.023), caudate (P = 0.015; P = 0.008), and total T2 lesion (P = 0.007; P = 0.012), while better cognitive scores in SDMT were associated with higher [11C]PIB DVR in the corpus callosum (P = 0.001), and lower (R)-[11C]PK11195 VT (P = 0.013). CONCLUSIONS Widespread innate immune cells profile and marked loss of myelin in T2 lesions and regions close to the ventricles may occur independently and are associated with disability, in both WM and GM structures.
Collapse
Affiliation(s)
- Milena Sales Pitombeira
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Michel Koole
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Flanders, Belgium
| | - Kenia R Campanholo
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Aline M Souza
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fábio L S Duran
- Laboratory of Psychiatric Neuroimaging (LIM21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Davi J Fontoura Solla
- Department of Neurology, Division of Neurosurgery, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria F Mendes
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Carolina M Rimkus
- Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Geraldo Filho Busatto
- Laboratory of Psychiatric Neuroimaging (LIM21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Dagoberto Callegaro
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carlos A Buchpiguel
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Vidal KSM, Decleva D, Barboni MTS, Nagy BV, de Menezes PAH, Aher A, Coutinho AM, Squarzoni P, Faria DDP, Duran FLDS, Buchpiguel CA, Kremers J, Filho GB, Ventura DF. The Association Between Acquired Color Deficiency and PET Imaging of Neurodegeneration in Mild Cognitive Impairment and Alzheimer Disease. Invest Ophthalmol Vis Sci 2022; 63:20. [PMID: 35579902 PMCID: PMC9123488 DOI: 10.1167/iovs.63.5.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To evaluate color vision changes and retinal processing of chromatic and luminance pathways in subjects with Alzheimer disease (AD) and mild cognitive impairment (MCI) compared with a matched control group and whether such changes are associated with impaired brain glucose metabolism and β-amyloid deposition in the brain. Methods We evaluated 13 patients with AD (72.4 ± 7.7 years), 23 patients with MCI (72.5 ± 5.5 years), and 18 controls of comparable age (P = 0.44) using Cambridge color test and the heterochromatic flicker ERG (HF-ERG). The Cambridge color test was performed using the trivector protocol to estimate the protan, deutan and tritan color confusion axes. HF-ERG responses were measured at a frequency of 12 Hz, which ERGs reflect chromatic activity, and at 36 Hz, reflecting luminance pathway. A study subsample was performed using neuropsychological assessments and positron emission tomography. Results Patients with AD presented higher mean values indicating poorer color discrimination for protan (P = 0.04) and deutan (P = 0.001) axes compared with the controls. Along the tritan axis, both patients with AD and patients with MCI showed decreased color vision (P = 0.001 and P = 0.001) compared with controls. The analyses from the HF-ERG protocol revealed no differences between the groups (P = 0.31 and P = 0.41). Diffuse color vision loss was found in individuals with signs of neurodegeneration (protan P = 0.002, deutan P = 0.003 and tritan P = 0.01), but not in individuals with signs of β-amyloid deposition only (protan P = 0.39, deutan P = 0.48, tritan P = 0.63), regardless of their clinical classification. Conclusions Here, patients with AD and patients with MCI present acquired color vision deficiency that may be linked with impaired brain metabolism.
Collapse
Affiliation(s)
- Kallene Summer Moreira Vidal
- Laboratory of Vision, Institute of Psychology, University of São Paulo, São Paulo, Brazil.,Prevent Senior Private Health Operator, São Paulo, Brazil.,Young medical Leadership Program of National Academy of Medicine in Brazil, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Decleva
- Laboratory of Vision, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - Mirella Telles Salgueiro Barboni
- Laboratory of Vision, Institute of Psychology, University of São Paulo, São Paulo, Brazil.,Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Balàzs Vince Nagy
- Department of Mechatronics, Optics and Mechanical Engineering Informatics, University of Technology and Economics, Budapest, Hungary
| | | | - Avinash Aher
- Section for Retinal Physiology, University Hospital Erlangen, Erlangen, Germany
| | - Artur Martins Coutinho
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Medical School (FMUSP), University of São Paulo, São Paulo, Brazil.,Laboratory of Nuclear Medicine (LIM-43), Department of Radiology and Oncology, Medical School (FMUSP), University of São Paulo, São Paulo, Brazil
| | - Paula Squarzoni
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Medical School (FMUSP), University of São Paulo, São Paulo, Brazil.,Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA), Universidade de São Paulo, São Paulo, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM-43), Department of Radiology and Oncology, Medical School (FMUSP), University of São Paulo, São Paulo, Brazil
| | - Fabio Luis de Souza Duran
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Medical School (FMUSP), University of São Paulo, São Paulo, Brazil.,Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA), Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM-43), Department of Radiology and Oncology, Medical School (FMUSP), University of São Paulo, São Paulo, Brazil
| | - Jan Kremers
- Section for Retinal Physiology, University Hospital Erlangen, Erlangen, Germany
| | - Geraldo Busatto Filho
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Medical School (FMUSP), University of São Paulo, São Paulo, Brazil.,Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA), Universidade de São Paulo, São Paulo, Brazil
| | - Dora Fix Ventura
- Laboratory of Vision, Institute of Psychology, University of São Paulo, São Paulo, Brazil.,Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA), Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Wimalarathne D, Ruan W, Sun X, Liu F, Gai Y, Liu Q, Hu F, Lan X. Impact of TOF on Brain PET With Short-Lived 11C-Labeled Tracers Among Suspected Patients With AD/PD: Using Hybrid PET/MRI. Front Med (Lausanne) 2022; 9:823292. [PMID: 35308534 PMCID: PMC8926006 DOI: 10.3389/fmed.2022.823292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the impact of the time-of-flight (TOF) reconstruction on brain PET with short-lived 11C-labeled tracers in PET magnetic resonance (PET/MR) brain images among suspected patients with Alzheimer's and Parkinson's disease (AD/PD). Methods Patients who underwent 11C-2-ß-carbomethoxy-3-b-(4-fluorophenyl) tropane (11C-CFT) and 2-(4-N-[11C] methylaminophenyl)-6-hydroxybenzothiazole (11C-PiB) PET/MRI were retrospectively included in the study. Each PET LIST mode data were reconstructed with and without the TOF reconstruction algorithm. Standard uptake values (SUVs) of Caudate Nucleus (CN), Putamen (PU), and Whole-brain (WB) were measured. TOF and non-TOF SUVs were assessed by using paired t-test. Standard formulas were applied to measure contrast, signal-to-noise ratio (SNR), and percentage relative average difference of SUVs (%RAD-SUVs). Results Total 75 patients were included with the median age (years) and body mass index (BMI-kg/m2) of 60.2 ± 10.9 years and 23.9 ± 3.7 kg/m2 in 11C-CFT (n = 41) and 62.2 ± 6.8 years and 24.7 ± 2.9 kg/m2 in 11C-PiB (n = 34), respectively. Higher average SUVs and positive %RAD-SUVs were observed in CN and PU in TOF compared with non-TOF reconstructions for the two 11C-labeled radiotracers. Differences of SUVmean were significant (p < 0.05) in CN and PU for both 11C-labeled radiotracers. SUVmax was enhanced significantly in CN and PU for 11C-CFT and CN for 11C-PiB, but not in PU. Significant contrast enhancement was observed in PU for both 11C-labeled radiotracers, whereas SNR gain was significant in PU, only for 11C-PiB in TOF reconstruction. Conclusion Time-of-flight leads to a better signal vs. noise trade-off than non-TOF in 11C-labeled tracers between CN and PU, improving the SUVs, contrast, and SNR, which were valuable for reducing injected radiation dose. Improved timing resolution aided the rapid decay rate of short-lived 11C-labeled tracers, and it shortened the scan time, increasing the patient comfort, and reducing the motion artifact among patients with AD/PD. However, one should adopt the combined TOF algorithm with caution for the quantitative analysis because it has different effects on the SUVmax, contrast, and SNR of different brain regions.
Collapse
Affiliation(s)
- D.D.N Wimalarathne
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiography and Radiotherapy, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka
| | - Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Sun
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Myelin imaging measures as predictors of cognitive impairment in MS patients: A hybrid PET-MRI study. Mult Scler Relat Disord 2022; 57:103331. [PMID: 35158445 DOI: 10.1016/j.msard.2021.103331] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cognitive impairment is one of the concerns of Multiple Sclerosis (MS) and has been related to myelin loss. Different neuroimaging methods have been used to quantify myelin and relate it to cognitive dysfunctions, among them Magnetization Transfer Ratio (MTR), Diffusion Tensor Imaging (DTI), and, more recently, Positron Emission Tomography (PET) with 11C-PIB. OBJECTIVE To investigate different myelin imaging modalities as predictors of cognitive dysfunction. METHODS Fifty-one MS patients and 24 healthy controls underwent clinical and neuropsychological assessment and MTR, DTI (Axial Diffusion-AD and Fractional Anisotropy-FA maps), and 11C-PIB PET images in a PET/MR hybrid system. RESULTS MTR and DTI(FA) differed in patients with or without cognitive impairment. There was an association of DTI(FA) and DTI(AD) with cognition and psychomotor speed for progressive MS, and of 11C-PIB uptake and MTR for relapsing-remitting MS. MTR in the Thalamus (β= -0.51, p = 0.021) and Corpus Callosum (β= -0.24, p = 0.033) were predictive of cognitive impairment. DTI-FA in the Caudate (β= -26.93, p = 0.006) presented abnormal predictive result. CONCLUSION Lower myelin content by 11C-PIB uptake was associated with worse cognitive status. MTR was predictive of cognitive impairment in MS.
Collapse
|
13
|
Parmera JB, de Almeida IJ, de Oliveira MCB, Silagi ML, de Godoi Carneiro C, Studart-Neto A, Ono CR, Reis Barbosa E, Nitrini R, Buchpiguel CA, Brucki SMD, Coutinho AM. Metabolic and Structural Signatures of Speech and Language Impairment in Corticobasal Syndrome: A Multimodal PET/MRI Study. Front Neurol 2021; 12:702052. [PMID: 34526958 PMCID: PMC8435851 DOI: 10.3389/fneur.2021.702052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Corticobasal syndrome (CBS) is a progressive neurological disorder related to multiple underlying pathologies, including four-repeat tauopathies, such as corticobasal degeneration and progressive supranuclear palsy, and Alzheimer's disease (AD). Speech and language are commonly impaired, encompassing a broad spectrum of deficits. We aimed to investigate CBS speech and language impairment patterns in light of a multimodal imaging approach. Materials and Methods: Thirty-one patients with probable CBS were prospectively evaluated concerning their speech–language, cognitive, and motor profiles. They underwent positron emission tomography with [18F]fluorodeoxyglucose (FDG-PET) and [11C]Pittsburgh Compound-B (PIB-PET) on a hybrid PET-MRI machine to assess their amyloid status. PIB-PET images were classified based on visual and semi-quantitative analyses. Quantitative group analyses were performed on FDG-PET data, and atrophy patterns on MRI were investigated using voxel-based morphometry (VBM). Thirty healthy participants were recruited as imaging controls. Results: Aphasia was the second most prominent cognitive impairment, presented in 67.7% of the cases, following apraxia (96.8%). We identified a wide linguistic profile, ranging from nonfluent variant-primary progressive aphasia to lexical–semantic deficits, mostly with impaired verbal fluency. PIB-PET was classified as negative (CBS-A– group) in 18/31 (58%) and positive (CBS-A+ group) in 13/31 (42%) patients. The frequency of dysarthria was significantly higher in the CBS-A– group than in the CBS-A+ group (55.6 vs. 7.7%, p = 0.008). CBS patients with dysarthria had a left-sided hypometabolism at frontal regions, with a major cluster at the left inferior frontal gyrus and premotor cortex. They showed brain atrophy mainly at the opercular frontal gyrus and putamen. There was a positive correlation between [18F]FDG uptake and semantic verbal fluency at the left inferior (p = 0.006, R2 = 0.2326), middle (0.0054, R2 = 0.2376), and superior temporal gyri (p = 0.0066, R2 = 0.2276). Relative to the phonemic verbal fluency, we found a positive correlation at the left frontal opercular gyrus (p = 0.0003, R2 = 0.3685), the inferior (p = 0.0004, R2 = 0.3537), and the middle temporal gyri (p = 0.0001, R2 = 0.3993). Discussion: In the spectrum of language impairment profile, dysarthria might be helpful to distinguish CBS patients not related to AD. Metabolic and structural signatures depicted from this feature provide further insights into the motor speech production network and are also helpful to differentiate CBS variants.
Collapse
Affiliation(s)
- Jacy Bezerra Parmera
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Isabel Junqueira de Almeida
- Department of Physical Therapy, Speech, and Occupational Therapy, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marcos Castello Barbosa de Oliveira
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Neurology Unit, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Marcela Lima Silagi
- Department of Speech, Language and Hearing Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Camila de Godoi Carneiro
- Laboratory of Nuclear Medicine, Nuclear Medicine Center and Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Adalberto Studart-Neto
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carla Rachel Ono
- Laboratory of Nuclear Medicine, Nuclear Medicine Center and Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Egberto Reis Barbosa
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo Nitrini
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine, Nuclear Medicine Center and Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sonia Maria Dozzi Brucki
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Artur Martins Coutinho
- Laboratory of Nuclear Medicine, Nuclear Medicine Center and Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Cecchini MA, Yassuda MS, Squarzoni P, Coutinho AM, de Paula Faria D, Duran FLDS, Costa NAD, Porto FHDG, Nitrini R, Forlenza OV, Brucki SMD, Buchpiguel CA, Parra MA, Busatto GF. Deficits in short-term memory binding are detectable in individuals with brain amyloid deposition in the absence of overt neurodegeneration in the Alzheimer's disease continuum. Brain Cogn 2021; 152:105749. [PMID: 34022637 DOI: 10.1016/j.bandc.2021.105749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
The short-term memory binding (STMB) test involves the ability to hold in memory the integration between surface features, such as shapes and colours. The STMB test has been used to detect Alzheimer's disease (AD) at different stages, from preclinical to dementia, showing promising results. The objective of the present study was to verify whether the STMB test could differentiate patients with distinct biomarker profiles in the AD continuum. The sample comprised 18 cognitively unimpaired (CU) participants, 30 mild cognitive impairment (MCI) and 23 AD patients. All participants underwent positron emission tomography (PET) with Pittsburgh compound-B labelled with carbon-11 ([11C]PIB) assessing amyloid beta (Aβ) aggregation (A) and 18fluorine-fluorodeoxyglucose ([18F]FDG)-PET assessing neurodegeneration (N) (A-N- [n = 35]); A+N- [n = 11]; A+ N+ [n = 19]). Participants who were negative and positive for amyloid deposition were compared in the absence (A-N- vs. A+N-) of neurodegeneration. When compared with the RAVLT and SKT memory tests, the STMB was the only cognitive task that differentiated these groups, predicting the group outcome in logistic regression analyses. The STMB test showed to be sensitive to the signs of AD pathology and may represent a cognitive marker within the AD continuum.
Collapse
Affiliation(s)
- Mario Amore Cecchini
- Human Cognitive Neuroscience, Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Mônica Sanches Yassuda
- Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil; Gerontology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil.
| | - Paula Squarzoni
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Artur Martins Coutinho
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil; Laboratory of Nuclear Medicine (LIM43), Centro de Medicina Nuclear, Department of Radiology and Oncology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Daniele de Paula Faria
- Laboratory of Neuroscience (LIM 27), Department of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil; Núcleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), University of São Paulo, São Paulo, Brazil
| | - Fábio Luiz de Souza Duran
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Naomi Antunes da Costa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Fábio Henrique de Gobbi Porto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ricardo Nitrini
- Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Orestes Vicente Forlenza
- Laboratory of Neuroscience (LIM 27), Department of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM43), Centro de Medicina Nuclear, Department of Radiology and Oncology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mario A Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Geraldo F Busatto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil; Núcleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Busatto G, Rosa PG, Serpa MH, Squarzoni P, Duran FL. Psychiatric neuroimaging research in Brazil: historical overview, current challenges, and future opportunities. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2021; 43:83-101. [PMID: 32520165 PMCID: PMC7861184 DOI: 10.1590/1516-4446-2019-0757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/03/2020] [Indexed: 11/23/2022]
Abstract
The last four decades have witnessed tremendous growth in research studies applying neuroimaging methods to evaluate pathophysiological and treatment aspects of psychiatric disorders around the world. This article provides a brief history of psychiatric neuroimaging research in Brazil, including quantitative information about the growth of this field in the country over the past 20 years. Also described are the various methodologies used, the wealth of scientific questions investigated, and the strength of international collaborations established. Finally, examples of the many methodological advances that have emerged in the field of in vivo neuroimaging are provided, with discussion of the challenges faced by psychiatric research groups in Brazil, a country of limited resources, to continue incorporating such innovations to generate novel scientific data of local and global relevance.
Collapse
Affiliation(s)
- Geraldo Busatto
- Laboratório de Neuroimagem em Psiquiatria (LIM 21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Pedro G. Rosa
- Laboratório de Neuroimagem em Psiquiatria (LIM 21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mauricio H. Serpa
- Laboratório de Neuroimagem em Psiquiatria (LIM 21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paula Squarzoni
- Laboratório de Neuroimagem em Psiquiatria (LIM 21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fabio L. Duran
- Laboratório de Neuroimagem em Psiquiatria (LIM 21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
16
|
Borges CR, Piovezan RD, Poyares DR, Busatto Filho G, Studart-Neto A, Coutinho AM, Tufik S, Nitrini R, Brucki SM. Subjective sleep parameters in prodromal Alzheimer's disease: a case-control study. BRAZILIAN JOURNAL OF PSYCHIATRY 2020; 43:510-513. [PMID: 33331534 PMCID: PMC8555634 DOI: 10.1590/1516-4446-2020-1503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/28/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE People with Alzheimer's disease (AD) dementia have impaired sleep. However, the characteristics of sleep in the early stages of AD are not well known, and studies with the aid of biomarkers are lacking. We assessed the subjective sleep characteristics of non-demented older adults and compared their amyloid profiles. METHODS We enrolled 30 participants aged ≥ 60 years, with no dementia or major clinical and psychiatric diseases. They underwent [11C]PiB-PET-CT, neuropsychological evaluations, and completed two standardized sleep assessments (Pittsburgh Sleep Quality Inventory and Epworth Sleep Scale). RESULTS Comparative analysis of subjective sleep parameters across the two groups showed longer times in bed (p = 0.024) and reduced sleep efficiency (p = 0.05) in individuals with positive amyloid. No differences in other subjective sleep parameters were observed. We also found that people with multiple-domain mild cognitive impairment (MCI) had shorter self-reported total sleep times (p = 0.034) and worse overall sleep quality (p = 0.027) compared to those with single-domain MCI. CONCLUSIONS Older adults testing positive for amyloid had a longer time in bed and lower sleep efficiency, regardless of cognitive status. In parallel, individuals with multiple-domain MCI reported shorter sleep duration and lower overall sleep quality.
Collapse
Affiliation(s)
- Conrado R Borges
- Departamento de Neurologia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Ronaldo D Piovezan
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Dalva R Poyares
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | | | | | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Ricardo Nitrini
- Departamento de Neurologia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Sonia M Brucki
- Departamento de Neurologia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
17
|
Squarzoni P, Faria DDP, Yassuda MS, Porto FHDG, Coutinho AM, Costa NAD, Nitrini R, Forlenza OV, Duran FLDS, Brucki SMD, Buchpiguel CA, Busatto GF. Relationship Between PET-Assessed Amyloid Burden and Visual and Verbal Episodic Memory Performance in Elderly Subjects. J Alzheimers Dis 2020; 78:229-244. [PMID: 32986673 DOI: 10.3233/jad-200758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Studies of elderly subjects using biomarkers that are proxies for Alzheimer's disease (AD) pathology have the potential to document meaningful relationships between cognitive performance and biomarker changes along the AD continuum. OBJECTIVE To document cognitive performance differences across distinct AD stages using a categorization based on the presence of PET-assessed amyloid-β (Aβ) burden and neurodegeneration. METHODS Patients with mild dementia compatible with AD (n = 38) or amnestic mild cognitive impairment (aMCI; n = 43) and a cognitively unimpaired group (n = 27) underwent PET with Pittsburgh compound-B (PiB) assessing Aβ aggregation (A+) and [18F]FDG-PET assessing neurodegeneration ((N)+). Cognitive performance was assessed with verbal and visual episodic memory tests and the Mini-Mental State Examination. RESULTS The A+(N)+ subgroup (n = 32) showed decreased (p < 0.001) cognitive test scores compared to both A+(N)-(n = 18) and A-(N)-(n = 49) subjects, who presented highly similar mean cognitive scores. Despite its modest size (n = 9), the A-(N)+ subgroup showed lower (p < 0.043) verbal memory scores relative to A-(N)-subjects, and trend lower (p = 0.096) scores relative to A+(N)-subjects. Continuous Aβ measures (standard uptake value ratios of PiB uptake) were correlated most significantly with visual memory scores both in the overall sample and when analyses were restricted to dementia or (N)+ subjects, but not in non-dementia or (N)-groups. CONCLUSION These results demonstrate that significant Aβ-cognition relationships are highly salient at disease stages involving neurodegeneration. The fact that findings relating Aβ burden to memory performance were detected only at (N)+ stages, together with the similarity of test scores between A+(N)-and A-(N)-subjects, reinforce the view that Aβ-cognition relationships during early AD stages may remain undetectable unless substantially large samples are evaluated.
Collapse
Affiliation(s)
- Paula Squarzoni
- Laboratory of Psychiatric Neuroimaging (LIM 21), Departament of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniele de Paula Faria
- Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Mônica Sanches Yassuda
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Fábio Henrique de Gobbi Porto
- Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Artur Martins Coutinho
- Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Naomi Antunes da Costa
- Laboratory of Psychiatric Neuroimaging (LIM 21), Departament of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ricardo Nitrini
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Orestes Vicente Forlenza
- Laboratory of Neuroscience (LIM 27), Departament of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Fabio Luiz de Souza Duran
- Laboratory of Psychiatric Neuroimaging (LIM 21), Departament of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sonia Maria Dozzi Brucki
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Carlos Alberto Buchpiguel
- Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Geraldo F Busatto
- Laboratory of Psychiatric Neuroimaging (LIM 21), Departament of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
18
|
Busatto Filho G, Duran FLDS, Squarzoni P, Coutinho AMN, Rosa PGP, Torralbo L, Pachi CGDF, da Costa NA, Porto FHDG, Carvalho CL, Brucki SMD, Nitrini R, Forlenza OV, Leite CDC, Buchpiguel CA, de Paula Faria D. Hippocampal subregional volume changes in elders classified using positron emission tomography-based Alzheimer's biomarkers of β-amyloid deposition and neurodegeneration. J Neurosci Res 2020; 99:481-501. [PMID: 33073383 DOI: 10.1002/jnr.24739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022]
Abstract
Changes in hippocampal subfield volumes (HSV) along the Alzheimer's disease (AD) continuum have been scarcely investigated to date in elderly subjects classified based on the presence of β-amyloid aggregation and signs of neurodegeneration. We classified patients (either sex) with mild dementia compatible with AD (n = 35) or amnestic mild cognitive impairment (n = 39), and cognitively unimpaired subjects (either sex; n = 26) using [11 C]PIB-PET to assess β-amyloid aggregation (A+) and [18 F]FDG-PET to account for neurodegeneration ((N)+). Magnetic resonance imaging-based automated methods were used for HSV and white matter hyperintensity (WMH) measurements. Significant HSV reductions were found in A+(N)+ subjects in the presubiculum/subiculum complex and molecular layer, related to worse memory performance. In both the A+(N)+ and A+(N)- categories, subicular volumes were inversely correlated with the degree of Aβ deposition. The A-(N)+ subgroup showed reduced HSV relative to the A-(N)- subgroup also in the subiculum/presubiculum. Combining all (N)- subjects, HSV were lower in subjects presenting significant cognitive decline irrespective of A+/A- classification (controlling for WMH load); these between-group differences were detected again in the presubiculum, but also involved the CA4 and granular layer. These findings demonstrate that differential HSV reductions are detectable both in (N)+ and (N)- categories along the AD continuum, and are directly related to the severity of cognitive deficits. HSV reductions are larger both in A+(N)+ and A+(N)- subjects in direct proportion to the degree of Aβ deposition. The meaningful HSV reductions detected in the A-(N)+ subgroup highlights the strength of biomarker-based classifications outside of the classical AD continuum.
Collapse
Affiliation(s)
- Geraldo Busatto Filho
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fabio Luiz de Souza Duran
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Paula Squarzoni
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Artur Martins Novaes Coutinho
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Pedro Gomes Penteado Rosa
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leticia Torralbo
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Clarice Gameiro da Fonseca Pachi
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Naomi Antunes da Costa
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fabio Henrique de Gobbi Porto
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Cleudiana Lima Carvalho
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sonia Maria Dozzi Brucki
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ricardo Nitrini
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Orestes Vicente Forlenza
- Laboratory of Neuroscience (LIM 27), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Claudia da Costa Leite
- Laboratory of Magnetic Resonance in Neuroradiology (LIM44), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
19
|
Abstract
In this issue, an article by Tiepolt et al. shows that PET scanning using [11C]PiB can demonstrate both cerebral blood flow (CBF) changes and amyloid-β (Aβ) deposition in patients with mild cognitive dysfunction or mild dementia of Alzheimer’s disease (AD). The CBF changes can be determined because the early scan counts (1–9 minutes) reflect the flow of the radiotracer in the blood passing through the brain, while the Aβ levels are measured by later scan counts (40–70 minutes) after the radiotracer has been cleared from regions to which the radiotracer did not bind. Thus, two different diagnostic measures are obtained with a single injection. Unexpectedly, the mild patients with Aβ positivity had scan data with only a weak relationship to memory, while the relationships to executive function and language function were relatively strong. This divergence of findings from studies of severely impaired patients highlights the importance of determining how AD pathology affects the brain. A possibility suggested in this commentary is that Aβ deposits occur early in AD and specifically in critical areas of the neocortex affected only later by the neurofibrillary pathology indicating a different role of the amyloid-β protein precursor (AβPP) in the development of those neocortical regions, and a separate component of AD pathology may selectively impact functions of these neocortical regions. The effects of adverse AβPP metabolism in the medial temporal and brainstem regions occur later possibly because of different developmental issues, and the later, different pathology is clearly more cognitively and socially devastating.
Collapse
Affiliation(s)
- J Wesson Ashford
- War Related Illness and Injury Study Center, VA Palo Alto Health Care System and Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, USA
| |
Collapse
|
20
|
Coutinho AM, Busatto GF, de Gobbi Porto FH, de Paula Faria D, Ono CR, Garcez AT, Squarzoni P, de Souza Duran FL, de Oliveira MO, Tres ES, Brucki SMD, Forlenza OV, Nitrini R, Buchpiguel CA. Brain PET amyloid and neurodegeneration biomarkers in the context of the 2018 NIA-AA research framework: an individual approach exploring clinical-biomarker mismatches and sociodemographic parameters. Eur J Nucl Med Mol Imaging 2020; 47:2666-2680. [PMID: 32055966 DOI: 10.1007/s00259-020-04714-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE [18F]FDG-PET and [11C]PIB-PET are validated as neurodegeneration and amyloid biomarkers of Alzheimer's disease (AD). We used a PET staging system based on the 2018 NIA-AA research framework to compare the proportion of amyloid positivity (A+) and hypometabolism ((N)+) in cases of mild probable AD, amnestic mild cognitive impairment (aMCI), and healthy controls, incorporating an additional classification of abnormal [18F]FDG-PET patterns and investigating the co-occurrence of such with A+, exploring [18F]FDG-PET to generate hypotheses in cases presenting with clinical-biomarker "mismatches." METHODS Elderly individuals (N = 108) clinically classified as controls (N = 27), aMCI (N = 43) or mild probable AD (N = 38) were included. Authors assessed their A(N) profiles and classified [18F]FDG-PET neurodegenerative patterns as typical or non-typical of AD, performing re-assessments of images whenever clinical classification was in disagreement with the PET staging (clinical-biomarker "mismatches"). We also investigated associations between "mismatches" and sociodemographic and educational characteristics. RESULTS AD presented with higher rates of A+ and (N)+. There was also a higher proportion of A+ and (N)+ individuals in the aMCI group in comparison to controls, however without statistical significance regarding the A staging. There was a significant association between amyloid positivity and AD (N)+ hypometabolic patterns typical of AD. Non-AD (N)+ hypometabolism was seen in all A- (N)+ cases in the mild probable AD and control groups and [18F]FDG-PET patterns classified such individuals as "SNAP" and one as probable frontotemporal lobar degeneration. All A- (N)- cases in the probable AD group had less than 4 years of formal education and lower socioeconomic status (SES). CONCLUSION The PET-based staging system unveiled significant A(N) differences between AD and the other groups, whereas aMCI and controls had different (N) staging, explaining the cognitive impairment in aMCI. [18F]FDG-PET could be used beyond simple (N) staging, since it provided alternative hypotheses to cases with clinical-biomarker "mismatches." An AD hypometabolic pattern correlated with amyloid positivity. Low education and SES were related to dementia in the absence of biomarker changes.
Collapse
Affiliation(s)
- Artur Martins Coutinho
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil. .,Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil. .,Centro de Medicina Nuclear do Instituto de Radiologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 2° andar, Rua Doutor Ovídio Pires de Campos, 872, Cerqueira Cesar, São Paulo, SP, Brazil.
| | - Geraldo F Busatto
- Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Fábio Henrique de Gobbi Porto
- Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Carla Rachel Ono
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Centro de Medicina Nuclear do Instituto de Radiologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 2° andar, Rua Doutor Ovídio Pires de Campos, 872, Cerqueira Cesar, São Paulo, SP, Brazil
| | - Alexandre Teles Garcez
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Paula Squarzoni
- Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Fábio Luiz de Souza Duran
- Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Maira Okada de Oliveira
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Eduardo Sturzeneker Tres
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sonia Maria Dozzi Brucki
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Orestes Vicente Forlenza
- Laboratory of Neuroscience (LIM 27), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ricardo Nitrini
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Centro de Medicina Nuclear do Instituto de Radiologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 2° andar, Rua Doutor Ovídio Pires de Campos, 872, Cerqueira Cesar, São Paulo, SP, Brazil
| |
Collapse
|