1
|
Bartkoski M, Tumberger J, Martin L, Choi IY, Lee P, Strawn JR, Brooks WM, Stancil SL. Neuroimaging as a Tool for Advancing Pediatric Psychopharmacology. Paediatr Drugs 2025; 27:307-330. [PMID: 39899194 DOI: 10.1007/s40272-025-00683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
Neuroimaging, specifically magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET), plays an important role in improving the therapeutic landscape of pediatric neuropsychopharmacology by detecting target engagement, pathway modulation, and disease-related changes in the brain. This review provides a comprehensive update on the application of neuroimaging to detect neural effects of psychotropic medication in pediatrics. Additionally, we discuss opportunities and challenges for expanding the use of neuroimaging to advance pediatric neuropsychopharmacology. PubMed and Embase were searched for studies published between 2012 and 2024 reporting neural effects of attention deficit hyperactivity disorder (ADHD) medications (e.g., methylphenidate, amphetamine, atomoxetine, guanfacine), selective serotonin reuptake inhibitors (e.g., fluoxetine, escitalopram, sertraline), serotonin/norepinephrine reuptake inhibitors (e.g., duloxetine, venlafaxine), second-generation antipsychotics (e.g., aripiprazole, olanzapine, risperidone, quetiapine, ziprasidone), and others (e.g., lithium, carbamazepine, lamotrigine, ketamine, naltrexone) used to treat pediatric psychiatric conditions. Of the studies identified (N = 57 in 3314 pediatric participants), most (86%, total participants n = 3045) used MRI to detect functional pathway modulation or anatomical changes. Fewer studies (14%, total participants n = 269) used MRS to understand neurochemical modulation. No studies used PET. Studies that included healthy controls detected normalization of disease-altered pathways following treatment. Studies that focused on affected youth detected neuromodulation following single-dose and ongoing treatment. Neuroimaging is positioned to serve as a biomarker capable of demonstrating acute brain modulation, predicting clinical response, and monitoring disease, yet biomarker validation requires further work. Neuroimaging is also well suited to fill the notable knowledge gap of long-term neuromodulatory effects of psychotropic medications in the context of ongoing brain development in children and adolescents. Future studies can leverage advancements in neuroimaging technology, acquisition, and analysis to fill these gaps and accelerate the discovery of novel therapeutics, leading to more effective prescribing and ensuring faster recovery.
Collapse
Affiliation(s)
- Michael Bartkoski
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, USA
- Division of Adolescent and Young Adult Medicine, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - John Tumberger
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, USA
- Division of Adolescent and Young Adult Medicine, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Laura Martin
- Department of Population Health, University of Kansas School of Medicine, Kansas City, KS, USA
- Hoglund Biomedical Imaging Center, University of Kansas, Kansas City, KS, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - In-Young Choi
- Hoglund Biomedical Imaging Center, University of Kansas, Kansas City, KS, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, USA
- Department of Radiology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Phil Lee
- Hoglund Biomedical Imaging Center, University of Kansas, Kansas City, KS, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, USA
- Department of Radiology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William M Brooks
- Hoglund Biomedical Imaging Center, University of Kansas, Kansas City, KS, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Stephani L Stancil
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, USA.
- Division of Adolescent and Young Adult Medicine, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA.
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine and University of Kansas School of Medicine, Children's Mercy Kansas City, Kansas City, MO, USA.
| |
Collapse
|
2
|
Kang MJY, Eratne D, Dean O, Berk M, Walker AJ, Wannan C, Malpas CB, Cicognola C, Janelidze S, Hansson O, Grewal J, Mitchell PB, Hopwood M, Pantelis C, Santillo AF, Velakoulis D. Plasma Glial Fibrillary Acidic Protein and Neurofilament Light Are Elevated in Bipolar Depression: Evidence for Neuroprogression and Astrogliosis. Bipolar Disord 2025. [PMID: 40265626 DOI: 10.1111/bdi.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Recent advances now allow detection of brain-specific proteins in blood, including neurofilament light chain (NfL), a marker of axonal pathology, and glial fibrillary acidic protein (GFAP), indicative of astrocytic activation. Given the evidence of astroglial pathology and neuronal dysfunction in bipolar disorder, and ongoing debates on neuroprogression, we investigated plasma NfL and GFAP levels in affected individuals. METHODS This study analysed plasma NfL and GFAP measured in 216 individuals using Simoa. We used bootstrapped general linear models (GLM) to compare plasma NfL and GFAP levels between people with bipolar depression (n = 120) and healthy controls (n = 96), adjusting for age, sex, and weight. We examined associations between these biomarkers and clinical variables while adjusting for multiple comparisons. For sensitivity analyses, predictors were evaluated using Bayesian model averaging (BMA). RESULTS Plasma GFAP (β = 0.21 [0.07, 0.35], p = 0.006) and NfL (β = 0.06 [0.01, 0.10], p = 0.028) were elevated in people with bipolar depression. Illness duration was positively associated with NfL (r = 2.97, p = 0.002), and further supported by BMA analysis (posterior inclusion probability, PIP = 0.85). Age of onset was positively associated with GFAP (r = 0.246 p = 0.041), which was also supported by BMA analysis (PIP = 0.67). CONCLUSIONS These findings indicate increased plasma NfL and GFAP levels in bipolar disorder. Our findings support the neuroprogression hypothesis, where prolonged illness duration contributes to neuroaxonal damage. Elevated GFAP in those with later onset suggests a role for neuroinflammation, potentially linked to increased cardiovascular and metabolic comorbidities.
Collapse
Affiliation(s)
- Matthew J Y Kang
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Dhamidhu Eratne
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Olivia Dean
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University and Barwon Health, Geelong, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Michael Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University and Barwon Health, Geelong, Victoria, Australia
| | - Adam J Walker
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University and Barwon Health, Geelong, Victoria, Australia
| | - Cassandra Wannan
- Orygen, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Charles B Malpas
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Claudia Cicognola
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Jasleen Grewal
- Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia
| | - Philip B Mitchell
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Malcolm Hopwood
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
- Professorial Psychiatry Unit, Ramsay Clinic Albert Road, Melbourne, Victoria, Australia
| | - Christos Pantelis
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
- Western Centre for Health Research & Education, University of Melbourne & Western Health, Sunshine Hospital, St Albans, Victoria, Australia
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, Melbourne, Victoria, Australia
| | - Alexander F Santillo
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Dennis Velakoulis
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Cheng K, Kshirsagar A, Nixon J, Lau J, Yang K, Sawa A, Kathuria A. Model systems for emulating human tissue and physiology in psychiatric research. Front Neurosci 2025; 19:1527826. [PMID: 40255860 PMCID: PMC12006051 DOI: 10.3389/fnins.2025.1527826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/12/2025] [Indexed: 04/22/2025] Open
Abstract
The modeling of psychiatric disorders poses significant challenges due to the complex nature of these conditions, which encompass a range of neuropsychiatric diseases such as autism spectrum disorder (ASD), schizophrenia (SCZ), bipolar disorder (BD), post-traumatic stress disorder (PTSD), anxiety disorder (AD) and depression. The rising global prevalence of mental disorders and the urgency for more effective treatments have propelled the development of innovative in vitro models. This review presents a thorough examination of two-dimensional (2D) versus three-dimensional (3D) induced pluripotent stem cell (iPSC) models of neuropsychiatric diseases, offering insights into their respective capacities to mimic neurodevelopment and cellular phenotypes observed in these conditions. Our comparative analysis reveals that while traditional 2D cultures have been instrumental in elucidating disease pathways and high-throughput drug screening, they fall short in replicating the intricate cellular architecture and environment of the human brain. On the other hand, 3D organoid models, including brain organoids, better recapitulate the spatial organization, cell-type diversity, and functional connectivity of brain tissue, offering a more physiologically relevant context for studying disease mechanisms and testing therapeutic interventions. We assess the progress in modeling ASD, SCZ, BD, PTSD, AD, and depression, highlighting the advanced understanding of disease etiology and potential treatment avenues offered by 3D iPSC technologies. Challenges remain, including the scalability, reproducibility, and maturation of organoids, but the potential for personalized medicine and the elucidation of disease ontogeny is unparalleled. The review concludes with a perspective on the future directions of psychiatric disease modeling, emphasizing the integration of 3D iPSC models with high-throughput technologies and computational approaches to enhance our understanding and treatment of these debilitating conditions.
Collapse
Affiliation(s)
- Kai Cheng
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Anannya Kshirsagar
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - John Nixon
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jonathan Lau
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Mental Health, Pharmacology, Biomedical Engineering, and Genetic Medicine, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Annie Kathuria
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
4
|
Tan M, Guo Y, Liu S, Liu W, Cheng L, Gao Y, Ren Z. Abnormal network homogeneity in patients with bipolar disorder in attention network. Brain Imaging Behav 2025; 19:336-345. [PMID: 39873860 DOI: 10.1007/s11682-025-00974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Bipolar disorder (BD) is a complex psychiatric condition marked by significant mood fluctuations that deeply affect quality of life. Understanding the neural mechanisms underlying BD is critical for improving diagnostic accuracy and developing more effective treatments. This study utilized resting-state functional magnetic resonance imaging (rs-fMRI) to investigate functional connectivity within the ventral and dorsal attention networks in 52 patients with BD and 51 healthy controls. Independent Component Analysis (ICA) was employed to establish network templates, while Network Homogeneity (NH) analysis facilitated the comparison of NH values across various brain regions. We examined the association of NH values with clinical measures, including the Hamilton Depression Scale, Perceptual Deficit Questionnaire, and Young Mania Scale. Results indicated that BD patients exhibited lower NH values in the right inferior temporal gyrus of the dorsal attention network and the right middle temporal gyrus of the ventral attention network compared to controls. Notably, NH values in the right superior marginal gyrus of the ventral network were higher in the BD group. Although no significant correlations were found between NH values and clinical symptoms, Support Vector Machine (SVM) analysis demonstrated over 60% accuracy in differentiating BD patients based on NH values. These findings highlight the potential of NH measures as biomarkers for BD, underscore the importance of advanced neuroimaging in uncovering the disorder's complex neural dynamics, and point to the challenges and need for further research to improve predictive accuracy.
Collapse
Affiliation(s)
- Mengling Tan
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China
| | - Yunxiao Guo
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China
| | - Sijun Liu
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China
| | - Wei Liu
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China
| | - Liang Cheng
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China
| | - Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Clinical and Translational Sciences Lab, The Douglas Research Centre, McGill University, Montreal, Canada
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Beijing, China
| | - Zhihong Ren
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Wuhan, China.
- Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China.
- School of Psychology, Central China Normal University, No. 152 Luoyu Road, Wuhan, Hubei, 430079, P.R. China.
| |
Collapse
|
5
|
Sancassiani F, Carta MG, Primavera D, Tusconi M, Urban A, Atzori L, Ferreli C, Cantone E, Cuccu GV, Kalcev G, Orrù G, Cabitza F, Dursun SM, Aviles Gonzalez CI, Fragoso Castilla PJ, Giraldo Jaramillo S, Cossu G, Scano A. The Breathomics Profile of Volatile Sulfur Compounds in the Bipolar Spectrum, Does It Represent a Potential Tool for Early Diagnosis? J Clin Med 2025; 14:2025. [PMID: 40142833 PMCID: PMC11942791 DOI: 10.3390/jcm14062025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Emerging laboratory technologies, such as breathomics, may enhance the early diagnosis of psychiatric disorders, including Bipolar Disorder (BD). This study investigates the detection of volatile sulfur compounds (VSCs) in exhaled breath as potential biomarkers for BD, comparing VSC levels between individuals with BD, healthy controls, and individuals with non-pathological hyperactivity. Methods: A matched case-control study was conducted involving 24 patients with BD and 95 healthy controls recruited at the University Hospital of Cagliari. Controls were selected using a matched-pair design based on age (±5 years) and sex through a block-matching technique to ensure comparability with cases. Participants underwent psychiatric interviews, completed the Mood Disorder Questionnaire (MDQ), and had their exhaled breaths analyzed for VSCs using a gas chromatograph (OralChroma™). Controls were selected and randomized for age and sex. Results: Patients with BD exhibited significantly higher levels of methyl mercaptan (CH3SH) compared to healthy controls (18.62 ± 5.04 vs. 9.45 ± 18.64 ppb, p = 0.022). Among individuals without BD, those with positive MDQ scores showed lower levels of CH3SH than those with negative scores (9.17 ± 5.42 vs. 15.05 ± 18.03); however, this difference did not reach statistical significance (p = 0.254), highlighting how the deep connection between some clinical and laboratory aspects needs to be investigated more thoroughly. Conclusions: The results suggest a correlation between oral dysbiosis and metabolic alterations in patients with BD, with CH3SH levels being higher in cases compared to controls. Further studies are needed to validate the use of VSCs as potential biomarkers for BD and to investigate their role in individuals with non-pathological hyperactivity.
Collapse
Affiliation(s)
- Federica Sancassiani
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato Blocco I (CA), 09042 Cagliari, Italy; (F.S.); (M.G.C.); (D.P.); (A.U.); (E.C.); (G.V.C.); (G.K.); (G.C.)
| | - Mauro Giovanni Carta
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato Blocco I (CA), 09042 Cagliari, Italy; (F.S.); (M.G.C.); (D.P.); (A.U.); (E.C.); (G.V.C.); (G.K.); (G.C.)
- PhD Program in Tropical Medicine, Universidad Popular del Cesar, Valledupar 200001, Colombia;
- Department of Nursing, Universidad Popular del Cesar, Valledupar 200001, Colombia
| | - Diego Primavera
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato Blocco I (CA), 09042 Cagliari, Italy; (F.S.); (M.G.C.); (D.P.); (A.U.); (E.C.); (G.V.C.); (G.K.); (G.C.)
| | | | - Antonio Urban
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato Blocco I (CA), 09042 Cagliari, Italy; (F.S.); (M.G.C.); (D.P.); (A.U.); (E.C.); (G.V.C.); (G.K.); (G.C.)
- University Hospital of Cagliari, 09042 Cagliari, Italy
| | - Laura Atzori
- Dermatology Clinic, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (L.A.); (C.F.)
| | - Caterina Ferreli
- Dermatology Clinic, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (L.A.); (C.F.)
| | - Elisa Cantone
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato Blocco I (CA), 09042 Cagliari, Italy; (F.S.); (M.G.C.); (D.P.); (A.U.); (E.C.); (G.V.C.); (G.K.); (G.C.)
| | - Gloria Virginia Cuccu
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato Blocco I (CA), 09042 Cagliari, Italy; (F.S.); (M.G.C.); (D.P.); (A.U.); (E.C.); (G.V.C.); (G.K.); (G.C.)
| | - Goce Kalcev
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato Blocco I (CA), 09042 Cagliari, Italy; (F.S.); (M.G.C.); (D.P.); (A.U.); (E.C.); (G.V.C.); (G.K.); (G.C.)
| | - Germano Orrù
- Department of Surgical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy;
| | - Flavio Cabitza
- Fondazione per la Tutela dell’Identità Ogliastrina e della Barbagia di Seulo, Corso Vittorio Emanuele II, Perdasdefogu, 08046 Nuoro, Italy;
| | - Serdar M. Dursun
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2G5, Canada;
| | | | - Pedro José Fragoso Castilla
- PhD Program in Tropical Medicine, Universidad Popular del Cesar, Valledupar 200001, Colombia;
- Microbiology Program, Universidad Popular del Cesar, Valledupar 200001, Colombia
| | | | - Giulia Cossu
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato Blocco I (CA), 09042 Cagliari, Italy; (F.S.); (M.G.C.); (D.P.); (A.U.); (E.C.); (G.V.C.); (G.K.); (G.C.)
| | - Alessandra Scano
- Department of Surgical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy;
| |
Collapse
|
6
|
Sudhakar G, Nandeesha H, Menon V, Saravanan K. Neurexin-3 is Elevated and Associated with Cognition Status and 4-Hydroxynonenal in Bipolar Disorder. Ann Neurosci 2025:09727531251322019. [PMID: 40051441 PMCID: PMC11881091 DOI: 10.1177/09727531251322019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/29/2025] [Indexed: 03/09/2025] Open
Abstract
Background Alteration in synaptic plasticity and oxidative stress is involved in the pathogenesis of bipolar disorder (BD). Purpose The objectives of the study were to analyse neurexin-3 and 4-hydroxynonenal (4-HNE) levels in BD and their relation with cognitive scores and severity of the disease. Methods Eighty-four BD patients and 84 healthy volunteers were enrolled. Neurexin-3 and 4-HNE were analysed by enzyme-linked immunosorbent assay (ELISA). Cognitive scores were determined using Addenbrooke's Cognitive Examination III (ACE-III) scores. Results 4-HNE (p < .001) and neurexin-3 (p < .001) were higher in BD cases in comparison with controls. 4-HNE was positively related to neurexin-3 (p = .048). Neurexin-3 was related to the total ACE-III score (p = .029), attention (p = .040) and fluency (p = .026) scores in BD cases. When multivariate analysis was done, neurexin-3 was related to ACE-III score in BD (p = .005). Conclusion We conclude that neurexin-3 is increased and associated with 4-HNE and cognitive dysfunction in BD.
Collapse
Affiliation(s)
- Guguloth Sudhakar
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Hanumanthappa Nandeesha
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Vikas Menon
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Kothandan Saravanan
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
7
|
Canzian J, Borba JV, Resmim CM, Mohammed KA, Pretzel CW, Adedara IA, Rosemberg DB. The dopamine transporter inhibition using GBR 12909 as a novel pharmacological tool to assess bipolar disorder-like neurobehavioral phenotypes in zebrafish. Behav Brain Res 2025; 477:115302. [PMID: 39442564 DOI: 10.1016/j.bbr.2024.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Dopamine (DA) is a neurotransmitter that plays an important role in brain physiology. Changes in DA-mediated signaling have been implicated with the pathophysiology of various neuropsychiatric conditions. Bipolar disorder (BD) is a mental disorder, characterized by alterning between manic/hypomanic and depressive mood. In experimental research, the pharmacological inhibition of DA reuptake using GBR 12909 serves as a tool to elicit BD-like phenotypes. Alternative model organisms, such as the zebrafish (Danio rerio), have been considered important systems for investigating the neurobehavioral changes involved in different neuropsychiatric conditions, including BD. Here, we discuss the use of GBR 12909 as a novel pharmacological strategy to mimic BD-like phenotypes in zebrafish models. We also emphasize the well-conserved DA-mediated signaling in zebrafish and the early expression of dopaminergic biomarkers in the brain, especially focusing on dopamine transporter (DAT), the main target of GBR 12909. Finally, we discuss potential advantages and limitations in the field, the perspectives of using GBR 12909 in BD research, and how distinct validation criteria (i.e., face, predictive, and construct validity) can be assessed in translational approaches using zebrafish-based models.
Collapse
Affiliation(s)
- Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Khadija A Mohammed
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Camilla W Pretzel
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Isaac A Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
8
|
Chen BF, Liu L, Lin FZ, Zeng HM, Huang HQ, Zhang CF, Liu CC, Chen X, Peng J, Wang YF, Wang ZL, Chen B, Liu DL, Liu Y, Li ZZ, Zeng XX. Comprehensive bibliometric analysis of pharmacotherapy for bipolar disorders: Present trends and future directions. World J Psychiatry 2025; 15:100685. [PMID: 39831017 PMCID: PMC11684214 DOI: 10.5498/wjp.v15.i1.100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a severe mental illness characterized by significant mood swings. Effective drug treatment modalities are crucial for managing BD. AIM To analyze the current status and future trends of global research on BD drug treatment over the last decade. METHODS The Web of Science Core Collection database spanning from 2015 to 2024 was utilized to retrieve literature related to BD drug treatment. A total of 2624 articles were extracted. Data visualization and analysis were conducted using CiteSpace, VOSviewer, Pajek, Scimago Graphica, and R-studio bibliometrix to identify research hotspots, key contributors, and future trends. RESULTS The United States, China, and the United Kingdom have made the most significant contributions to research on BD drug treatment and formed notable research collaboration networks. The University of Pittsburgh, Massachusetts General Hospital, and the University of Michigan have been identified as the major research institutions in this field. The Journal of Affective Disorders is the most influential journal. A keyword analysis revealed research hotspots related to clinical symptoms, drug efficacy, and genetic mechanisms. A citation analysis identified the management guidelines published by Yatham et al in 2018 as the most cited paper. CONCLUSION This study provides a detailed overview of the field of BD drug treatment, highlighting key contributors, research hotspots, and future directions. The study findings can be employed as a reference for future research and policymaking, which may enable further development and optimization of BD pharmacotherapy.
Collapse
Affiliation(s)
- Bo-Fan Chen
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Li Liu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Fang-Zhen Lin
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hai-Min Zeng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hai-Qiang Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Chun-Fang Zhang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Cong-Cong Liu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiang Chen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jie Peng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yun-Fa Wang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zhi-Lin Wang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Bin Chen
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - De-Le Liu
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
| | - Yun Liu
- Department of Psychiatry, Jiangxi Mental Hospital, Hospital of Nanchang University, Nanchang University, Nanchang 330029, Jiangxi Province, China
| | - Zheng-Zheng Li
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xin-Xing Zeng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
9
|
Maheshwari H, Garg P, Srivastava P. In silico analysis predicts mutational consequences of CITED2, NUDT4, and Ar18B in patients with bipolar disorder. Behav Brain Res 2025; 476:115257. [PMID: 39299576 DOI: 10.1016/j.bbr.2024.115257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/08/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Bipolar disorder is a mood-related disorder, which can be portrayed as extreme shifts in energy, mood, and activity levels which can also be characterized by manic highs and depressive lows that can be often misdiagnosed as unipolar disorder due to primitive diagnostics techniques based on clinical assessments as well as diagnostic complexities arising due to its heterogeneous nature and overlapping symptoms with conditions like schizophrenia. leading to delays in treatment Strong evidence in support of genetic and epigenetic aspects of bipolar disorder, including mechanisms such as compromised hypothalamic-pituitary-adrenal axis, immune-inflammatory imbalances, oxidative stress, and mitochondrial dysfunction are found. Moreover, some previous research has already stated the role of genes like CITED2, NUDT4, and Arl8B in these processes. The primary goal of this study is to investigate the involvement of the genes in exploring and validating their potential as biomarkers for bipolar disorder. In silico tools like MutationTaster, PolyPhen2, SIFT, GTEx, PhenoScanner, and RegulomeDB were used to perform mutational and gene expression analyses. Results revealed potentially dangerous mutations caused in CITED2, NUDT4, and Arl8B, those which can have diverse outcomes. RegulomeDB, GTEx, and PhenoScanner reveal the involvement of these genes in various brain regions highlighting their relevance to bipolar disorder. This analysis suggests the potential utility of CITED2, NUDT4, and Arl8B as diagnostic markers hence shedding light on their roles to elaborate the molecular range of bipolar disorder. The study also contributes to providing valuable insights into the genetic and molecular basis of bipolar disorders.
Collapse
Affiliation(s)
- Harshita Maheshwari
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Prekshi Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India.
| |
Collapse
|
10
|
Ejiohuo O, Bilska K, Narożna B, Skibińska M, Kapelski P, Dmitrzak-Węglarz M, Szczepankiewicz A, Pawlak J. The implication of ADRA2A and AVPRIB gene variants in the aetiology of stress-related bipolar disorder. J Affect Disord 2025; 368:249-257. [PMID: 39278467 DOI: 10.1016/j.jad.2024.09.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
OBJECTIVE Bipolar disorder is a complex and severe mental illness characterised by manic and depressive episodes that can be triggered and exacerbated by psychosocial, environmental, and biological stressors. Genetic variations are a risk factor for bipolar disorder. However, the identification of the exact gene variants and genotypes remains complex. This study, therefore, aims to identify the potential association between genotypes of analysed single nucleotide polymorphisms and the presence of a stressor in bipolar disorder patients. METHOD We analysed 114 single nucleotide polymorphisms (SNPs) from bipolar and stress-related candidate genes in 550 patients with bipolar disorders (60.36 % females and 39.64 % male). We compared SNPs of patients reporting the presence (40.73 %) or absence of stressors (59.27 %) before the first episode using the Persons Chi-square test and Bayes Factor t-test. The genotyping of 114 SNPs was done using TaqMan assays. Statistical analysis was done using Statistica 13.3 software (StatSoft Poland, Krakow, Poland), R programming, and G*Power statistics. RESULT We found significant differences in genotype distribution (p < 0.05) in 6 polymorphisms (AVPRIB/rs28536160, FKBP4/rs2968909, ADRA2A/rs3750625, 5HTR2A/rs6311, 5HTR2A/rs6313, and GLCCI1/rs37972) when comparing BD patient with and without stressor with a small effect of d = 0.2. Of these, two gene variants (ADRA2A/rs3750625/AC and AVPRIB/rs28536160/CT) with minor alleles formed an association with the presence of a stressor prior to the disease onset and favoured the alternative hypothesis using Bayes Factor Analysis t-test for hypothesis testing. CONCLUSION This study presents a novel association of ADRA2A/rs3750625/AC and AVPR1B/rs28536160/CT gene variants in stress-related bipolar disorder with the AC genotype of ADRA2A/rs3750625 constituting a risk genotype and CT of AVPR1B/rs28536160 constituting a protective genotype. However, further functional analysis is required to fully understand their clinical and biological significance and interaction.
Collapse
Affiliation(s)
- Ovinuchi Ejiohuo
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland; Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland.
| | - Karolina Bilska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Beata Narożna
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Maria Skibińska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Paweł Kapelski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
11
|
Courtes AC, Jha R, Topolski N, Soares JC, Barichello T, Fries GR. Exploring accelerated aging as a target of bipolar disorder treatment: A systematic review. J Psychiatr Res 2024; 180:291-300. [PMID: 39476539 PMCID: PMC11793687 DOI: 10.1016/j.jpsychires.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Bipolar disorder (BD) has been linked to accelerated aging processes, with many studies suggesting that drugs used to treat BD may modulate pathways related to aging. This systematic review aimed to determine whether FDA-approved pharmacotherapies for BD have reported effects on aging biomarkers across clinical and preclinical studies. We conducted searches in PubMed and PsychINFO and followed PRISMA guidelines. Out of 6400 records identified, 19 studies met the inclusion criteria. Most preclinical studies tested the effects of BD drugs, especially lithium, on lifespan and telomere biology in cell and animal models. Clinical studies predominantly focused on lithium, evaluating aging markers like telomere length, telomerase, mitochondrial DNA copy number, and epigenetic age acceleration in individuals with BD. Findings indicate that chronic lithium treatment is associated with modulatory effects on aging biomarkers, particularly increased telomere length and telomerase activity. Conversely, some negative results were also reported. Limited evidence suggests potential aging-modulating properties of other mood stabilizers like valproic acid and lamotrigine, evidencing that further investigation is required. Despite variability across studies, the overall findings support the notion that pharmacotherapies used in BD present many effects of aging biomarkers. However, the field is still developing, with a clear emphasis on lithium and a lack of standardized methods to evaluate aging biomarkers in clinical samples. Further research exploring the anti-accelerated aging effects of BD drugs beyond lithium, their mechanisms of action, and potential synergistic effects is warranted.
Collapse
Affiliation(s)
- Alan C Courtes
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA
| | - Rohit Jha
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA
| | - Natasha Topolski
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX, 77030, USA
| | - Jair C Soares
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX, 77030, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX, 77030, USA
| | - Gabriel R Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Possamai-Della T, Peper-Nascimento J, Varela RB, Daminelli T, Fries GR, Ceretta LB, Juruena MF, Quevedo J, Valvassori SS. Exploring the impact of childhood maltreatment on epigenetic and brain-derived neurotrophic factor changes in bipolar disorder and healthy control. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01917-6. [PMID: 39540902 DOI: 10.1007/s00406-024-01917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Childhood maltreatment may be linked to epigenetics and brain-derived neurotrophic factor (BDNF) changes, which are mechanisms altered in several psychiatric conditions, including bipolar disorder (BD). However, the specific mechanisms connecting childhood maltreatment to the pathophysiology of BD remain unclear. The present study aims to examine the effects of childhood maltreatment on epigenetic and neurotrophic outcomes in BD patients and health controls. History of childhood maltreatment was obtained using the Childhood Trauma Questionnaire (CTQ) from 36 BD outpatients and 46 healthy subjects. DNA methyltransferase (DNMT) activity, HMTH3K9 activity, histone 3 lysine 9 tri-methylation (H3K9me3) levels, histone deacetylase (HDAC)1 levels, HDAC2 levels, histone 3 lysine 14 acetylation (H3K14ac) levels, and mRNA of BDNF were evaluated in peripheral blood mononuclear cells. Plasma BDNF levels were also measured. Total scores of CTQ, as well as the subscale scores of emotional abuse, sexual abuse, and emotional neglect, were predictive of changes in DNMT and HMTh3k9 activity, H3K9m3 levels, BDNF mRNA expression, and BDNF levels. These findings were observed in all our samples and, in some cases, among BD patients. Emotional abuse was the main childhood maltreatment subtype associated with epigenetic alterations in BD. Our results elucidate some mechanisms by which childhood maltreatment can alter epigenetic and neurotrophic markers. Especially in BD subjects, our results suggest childhood maltreatment per se is not a direct cause for epigenetic alterations. In another way, we suppose that the effect of childhood maltreatment could be cumulative and interact with other factors associated with the pathophysiology of BD.
Collapse
Affiliation(s)
- Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jefté Peper-Nascimento
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Roger B Varela
- Neuromodulation and Novel Therapeutics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Thiani Daminelli
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gabriel R Fries
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Luciane B Ceretta
- Graduate Program in Collective Health, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Mario F Juruena
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - João Quevedo
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
13
|
Wirowski N, Lobato AS, Bender LV, Cardoso TDA, Mondin TC, Souza LDDM, Silva RAD, Oses JP, Wiener CD, Jansen K, Pedrotti Moreira F. Serum biomarkers, lifetime substance use and conversion to bipolar disorder. L'ENCEPHALE 2024:S0013-7006(24)00196-9. [PMID: 39510872 DOI: 10.1016/j.encep.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION The diagnostic conversion of major depressive disorder (MDD) to bipolar disorder (BD) is a topic that is currently the subject of several studies. However, there are few studies that clarify the interaction between conversion, substance use and biomarkers. OBJECTIVES The aim of this study was to investigate serum biomarker levels and lifetime substance use as predictors for diagnostic conversion from major depressive disorder to bipolar disorder in an outpatient sample of adults. METHODS This was a prospective longitudinal study nested within a larger two-phase study. Male and female individuals, between the ages of 18 and 60, diagnosed with MDD by the Mini International Neuropsychiatric Interview Plus who participated in the two stages of the study were included. The instrument alcohol smoking and substance involvement screening test (ASSIST) was used to evaluate substance use. The enzyme linked immuno sorbent assay (ELISA) technique was used to measure the levels of the following biomarkers: brain derived neurotrophic factor (BDNF), nerve growth factor (NGF), glial cell line-derived neurotrophic factor (GDNF), interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α). RESULTS The conversion rate from MDD to BD was 12.4%. The prevalence of female individuals, subjects with up to eight years of schooling, who had lifetime psychotic symptoms and reported lifetime use of cocaine was higher among individuals who converted their diagnosis to BD than among individuals who did not (P<0.05). In the crude analysis, there was no interaction between biomarkers and substance use except for NGF with cocaine. Based on the adjusted analysis model, it was observed that the interaction remains (OR: 1.476; 95% CI: 1.019-2.137). CONCLUSIONS Individuals with late diagnosis and treatment of bipolar disorder may have a worse prognosis. Therefore, results suggesting that NGF and cocaine use are potential predictors of conversion to bipolar disorder can help in clinical practice, contributing to the identification of conversion and to more specific therapeutic interventions.
Collapse
Affiliation(s)
- Natália Wirowski
- Program in Health and Behavior, Universidade Católica de Pelotas (UCPEL), Pelotas, RS, Brazil
| | | | - Letícia Vasques Bender
- Program in Health and Behavior, Universidade Católica de Pelotas (UCPEL), Pelotas, RS, Brazil
| | - Taiane de Azevedo Cardoso
- Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Thaise Campos Mondin
- Pro-rectory of Student Affairs, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | | | | | - Jean Pierre Oses
- Graduate Program in Biochemistry and Bioprospecting, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Carolina David Wiener
- Program in Health and Behavior, Universidade Católica de Pelotas (UCPEL), Pelotas, RS, Brazil
| | - Karen Jansen
- Program in Health and Behavior, Universidade Católica de Pelotas (UCPEL), Pelotas, RS, Brazil
| | | |
Collapse
|
14
|
Ali Raja S, Batool A, Sana M, Khaliq HMH, Choudhry F, Devi D. Exploring the Mechanisms of Neuronal Protection by Glial Cell Line-Derived Neurotrophic Factor in Autism Spectrum Disorder. Cureus 2024; 16:e70913. [PMID: 39502974 PMCID: PMC11535394 DOI: 10.7759/cureus.70913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND A complicated neurological disease known as autism spectrum disorder (ASD) is typified by issues with social interaction, communication, and repetitive behavior. The neural protective mechanisms in ASD are thought to be influenced by genetic variables, including the expression of neurotrophic genes such as glial cell line-derived neurotrophic factor (GDNF). OBJECTIVE The aim was to examine the relationship between neuronal protection and cognitive functioning by crosslinking GDNF gene expression and serum levels in individuals with relation to Mini-Mental State Examination (MMSE) scores in ASD patients. MATERIALS AND METHODS After getting study approval and informed consent of patients, this case-control study experimental study was conducted for six months between July 2023 and December 2023. The blood samples (5 ml each) were drawn from the study population (n = 140), including 100 ASD patients with a disease course of 30 months based on patients' reports data and 40 healthy controls from four major clinical and hospital settings in Lahore, Karachi, and Bahawalpur from Pakistan. The analytical procedures included nucleic acid extraction, primer design and optimization, and GDNF-targeted real-time quantitative polymerase chain reaction expression analysis. To measure cognitive and behavioral deficits, enzyme-linked immunosorbent assay-based serum GDNF levels (pg/ml) and MMSE scores were compared, concluding the neuronal protection potential of GDNF. RESULTS In patients with ASD, lower serum levels of GDNF (9.371 ± 2.388 pg/ml) were linked to more severe behavioral and cognitive deficits confirmed by MMSE scores (13.6 ± 3.5) of ASD patients in comparison with the control group (27.1 ± 2.1). Healthy individuals showed higher relative gene fold expression (11.71) compared to the ASD patients (5.51). CONCLUSION There is a notable decrease in GDNF gene expression in people with ASD, which raises the possibility that GDNF is important for both cognitive performance and neuronal protection in these people. GDNF may be a useful biomarker for identifying ASD and comprehending its molecular causes, opening the door for focused treatment approaches.
Collapse
Affiliation(s)
- Sarwat Ali Raja
- Pharmacy, Yashfeen Education College of Pharmacy & Allied Health, Bhawalpur, PAK
| | - Amna Batool
- Surgery, Fatima Memorial Hospital, Lahore, PAK
| | - Maryum Sana
- Nursing, Akhtar Saeed College of Nursing, Lahore, PAK
- College of Nursing, Akhtar Saeed Medical and Dental College, Lahore, PAK
| | | | - Faiza Choudhry
- Medicine and Surgery, People's University of Medical and Health Sciences, Middlesex, USA
| | - Durga Devi
- Pathology, Liaquat University of Medical and Health Sciences, Jamshoro, PAK
| |
Collapse
|
15
|
Meng X, Zhang S, Zhou S, Ma Y, Yu X, Guan L. Putative Risk Biomarkers of Bipolar Disorder in At-risk Youth. Neurosci Bull 2024; 40:1557-1572. [PMID: 38710851 PMCID: PMC11422403 DOI: 10.1007/s12264-024-01219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/08/2024] [Indexed: 05/08/2024] Open
Abstract
Bipolar disorder is a highly heritable and functionally impairing disease. The recognition and intervention of BD especially that characterized by early onset remains challenging. Risk biomarkers for predicting BD transition among at-risk youth may improve disease prognosis. We reviewed the more recent clinical studies to find possible pre-diagnostic biomarkers in youth at familial or (and) clinical risk of BD. Here we found that putative biomarkers for predicting conversion to BD include findings from multiple sample sources based on different hypotheses. Putative risk biomarkers shown by perspective studies are higher bipolar polygenetic risk scores, epigenetic alterations, elevated immune parameters, front-limbic system deficits, and brain circuit dysfunction associated with emotion and reward processing. Future studies need to enhance machine learning integration, make clinical detection methods more objective, and improve the quality of cohort studies.
Collapse
Affiliation(s)
- Xinyu Meng
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Shengmin Zhang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Shuzhe Zhou
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yantao Ma
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xin Yu
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lili Guan
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
16
|
Chaves-Filho A, Eyres C, Blöbaum L, Landwehr A, Tremblay MÈ. The emerging neuroimmune hypothesis of bipolar disorder: An updated overview of neuroimmune and microglial findings. J Neurochem 2024; 168:1780-1816. [PMID: 38504593 DOI: 10.1111/jnc.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
Bipolar disorder (BD) is a severe and multifactorial disease, with onset usually in young adulthood, which follows a progressive course throughout life. Replicated epidemiological studies have suggested inflammatory mechanisms and neuroimmune risk factors as primary contributors to the onset and development of BD. While not all patients display overt markers of inflammation, significant evidence suggests that aberrant immune signaling contributes to all stages of the disease and seems to be mood phase dependent, likely explaining the heterogeneity of findings observed in this population. As the brain's immune cells, microglia orchestrate the brain's immune response and play a critical role in maintaining the brain's health across the lifespan. Microglia are also highly sensitive to environmental changes and respond to physiological and pathological events by adapting their functions, structure, and molecular expression. Recently, it has been highlighted that instead of a single population of cells, microglia comprise a heterogeneous community with specialized states adjusted according to the local molecular cues and intercellular interactions. Early evidence has highlighted the contribution of microglia to BD neuropathology, notably for severe outcomes, such as suicidality. However, the roles and diversity of microglial states in this disease are still largely undermined. This review brings an updated overview of current literature on the contribution of neuroimmune risk factors for the onset and progression of BD, the most prominent neuroimmune abnormalities (including biomarker, neuroimaging, ex vivo studies) and the most recent findings of microglial involvement in BD neuropathology. Combining these different shreds of evidence, we aim to propose a unifying hypothesis for BD pathophysiology centered on neuroimmune abnormalities and microglia. Also, we highlight the urgent need to apply novel multi-system biology approaches to characterize the diversity of microglial states and functions involved in this enigmatic disorder, which can open bright perspectives for novel biomarkers and therapeutic discoveries.
Collapse
Affiliation(s)
- Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
| | - Capri Eyres
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leonie Blöbaum
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Antonia Landwehr
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada
- Department of Molecular Medicine, Université Laval, Québec City, Quebec, Canada
| |
Collapse
|
17
|
Ahmed A, Patil PS. Elevated Cortisol Levels and Manic Symptoms in a 16-Year-Old Female: A Case Report. Cureus 2024; 16:e61693. [PMID: 38975397 PMCID: PMC11226222 DOI: 10.7759/cureus.61693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
This case report presents the clinical presentation, diagnosis, and management of a 16-year-old female with elevated cortisol levels who was diagnosed with mania. The patient exhibited symptoms consistent with a manic episode, including extreme euphoria, decreased need for sleep, impulsivity, and heightened irritability. Laboratory investigations revealed an elevated morning cortisol level, prompting further psychiatric evaluation. A diagnosis of bipolar I disorder, manic episode, was made based on established criteria. The patient was initiated on mood stabilizers and antipsychotic medications alongside psychoeducation for the patient and her family. This case underscores the potential association between cortisol dysregulation and mood disorders, highlighting the importance of comprehensive assessment and personalized treatment approaches in adolescents with bipolar disorder. Further research is needed to elucidate the underlying mechanisms linking cortisol dysregulation and mood disturbances and explore novel therapeutic interventions targeting hypothalamic-pituitary-adrenal axis dysfunction.
Collapse
Affiliation(s)
- Ateeba Ahmed
- Psychiatry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pradeep S Patil
- Psychiatry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
18
|
Zhou P, Li L, Ming X, Cai W, Hao B, Hu Y, He Z, Chen X. Causal relationship between psychiatric disorders and sensorineural hearing loss: A bidirectional two-sample mendelian randomization analysis. J Psychosom Res 2024; 179:111641. [PMID: 38461621 DOI: 10.1016/j.jpsychores.2024.111641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE This study employed bidirectional two-sample Mendelian randomization (MR) to investigate the causal links between psychiatric disorders and sensorineural hearing loss (SNHL). METHODS Instrumental variables were chosen from genome-wide association studies of schizophrenia (SCH, N = 127,906), bipolar disorder (BD, N = 51,710), major depressive disorder (MDD, N = 500,199), and SNHL (N = 212,544). In the univariable MR analysis, the inverse-variance weighted method (IVW) was conducted as the primary analysis, complemented by various sensitivity analyses to ensure result robustness. RESULTS SCH exhibited a decreased the risk of SNHL (OR = 0.949, P = 0.005), whereas BD showed an increased incidence of SNHL (OR = 1.145, P = 0.005). No causal association was found for MDD on SNHL (OR = 1.088, P = 0.246). Multivariable MR validated these results. In the reverse direction, genetically predicted SNHL was linked to a decreased risk of SCH with suggestive significance (OR = 0.912, P = 0.023). No reverse causal relationships were observed for SNHL influencing BD or MDD. These findings remained consistent across various MR methods and sensitivity analyses. CONCLUSION This study demonstrated that the causal relationships between diverse psychiatric disorders with SNHL were heterogeneous. Specifically, SCH was inversely associated with SNHL susceptibility, and similarly, a reduced risk of SNHL was observed in schizophrenia patients. In contrast, BD exhibited an increased incidence of SNHL, although SNHL did not influence the prevalence of BD. No causal association between MDD and SNHL was found.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ling Li
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Xiaoping Ming
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wanyue Cai
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bin Hao
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yifan Hu
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zuhong He
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.
| | - Xiong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Kumar A, Nader MA, Deep G. Emergence of Extracellular Vesicles as "Liquid Biopsy" for Neurological Disorders: Boom or Bust. Pharmacol Rev 2024; 76:199-227. [PMID: 38351075 PMCID: PMC10877757 DOI: 10.1124/pharmrev.122.000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 02/16/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as an attractive liquid biopsy approach in the diagnosis and prognosis of multiple diseases and disorders. The feasibility of enriching specific subpopulations of EVs from biofluids based on their unique surface markers has opened novel opportunities to gain molecular insight from various tissues and organs, including the brain. Over the past decade, EVs in bodily fluids have been extensively studied for biomarkers associated with various neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, major depressive disorders, substance use disorders, human immunodeficiency virus-associated neurocognitive disorder, and cancer/treatment-induced neurodegeneration. These studies have focused on the isolation and cargo characterization of either total EVs or brain cells, such as neuron-, astrocyte-, microglia-, oligodendrocyte-, pericyte-, and endothelial-derived EVs from biofluids to achieve early diagnosis and molecular characterization and to predict the treatment and intervention outcomes. The findings of these studies have demonstrated that EVs could serve as a repetitive and less invasive source of valuable molecular information for these neurological disorders, supplementing existing costly neuroimaging techniques and relatively invasive measures, like lumbar puncture. However, the initial excitement surrounding blood-based biomarkers for brain-related diseases has been tempered by challenges, such as lack of central nervous system specificity in EV markers, lengthy protocols, and the absence of standardized procedures for biological sample collection, EV isolation, and characterization. Nevertheless, with rapid advancements in the EV field, supported by improved isolation methods and sensitive assays for cargo characterization, brain cell-derived EVs continue to offer unparallel opportunities with significant translational implications for various neurological disorders. SIGNIFICANCE STATEMENT: Extracellular vesicles present a less invasive liquid biopsy approach in the diagnosis and prognosis of various neurological disorders. Characterizing these vesicles in biofluids holds the potential to yield valuable molecular information, thereby significantly impacting the development of novel biomarkers for various neurological disorders. This paper has reviewed the methodology employed to isolate extracellular vesicles derived from various brain cells in biofluids, their utility in enhancing the molecular understanding of neurodegeneration, and the potential challenges in this research field.
Collapse
Affiliation(s)
- Ashish Kumar
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| | - Michael A Nader
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| | - Gagan Deep
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| |
Collapse
|
20
|
Squarcina L, Lucini Paioni S, Bellani M, Rossetti MG, Houenou J, Polosan M, Phillips ML, Wessa M, Brambilla P. White matter integrity in bipolar disorder investigated with diffusion tensor magnetic resonance imaging and fractal geometry. J Affect Disord 2024; 345:200-207. [PMID: 37863367 DOI: 10.1016/j.jad.2023.10.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/14/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Growing evidence suggests the presence of white matter (WM) alterations in bipolar disorder (BD). In this study we aimed to investigate the state of WM structures, in terms of tissue integrity and morphological complexity, in BD patients compared to healthy controls (HC), in an attempt to better elucidate the microstructural changes associated with BD. METHODS We collected a dataset of 399 Diffusion Tensor Magnetic Resonance Imaging (167 BD and 232 healthy controls) images, acquired at five different sites, which was processed with Tract-Based Spatial Statistics (TBSS) and fractal analysis. RESULTS The TBSS analysis demonstrated significantly lower FA values in the BD group. Diffusion abnormalities were primarily located in the temporo-parietal network. The Fractal Dimension (FD) analysis did not reveal consistent significant differences in the morphological complexity of WM structures between the groups. When the FD values of patients were considered individually, it is possible to notice some localized significant deviations from the healthy population. LIMITATIONS DTI sequences have not been harmonized before acquisition, samples' sizes are heterogeneous. CONCLUSIONS This study, by applying both TBSS and FD analyses, allows to evaluate diffusion and structural alterations of WM at the same time. The evaluation of WM integrity from these two different perspectives could be useful to better understand the pathophysiological and morphological changes underpinning bipolar disorder.
Collapse
Affiliation(s)
- Letizia Squarcina
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Susanna Lucini Paioni
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Marcella Bellani
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Maria Gloria Rossetti
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; UOC Psichiatria, Azienda Ospedaliera Universitaria Integrata (AOUI), Verona, Italy
| | - Josselin Houenou
- APHP, Mondor Univ Hospitals, DMU IMPACT, INSERM U955, Translational NeuroPsychiatry Team, UPEC, Créteil, France & NeuroSpin, UNIACT Lab, PsyBrain Team, CEA Saclay, Gif-sur-Yvette, France
| | - Mircea Polosan
- Univ. Grenoble-Alpes, Grenoble Institut Neurosciences, Inserm U1216, CHU Grenoble Alpes, France
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Michèle Wessa
- Department of Clinical Psychology and Neuropsychology, Institute of Psychology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy.; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| |
Collapse
|
21
|
Perrottelli A, Marzocchi FF, Caporusso E, Giordano GM, Giuliani L, Melillo A, Pezzella P, Bucci P, Mucci A, Galderisi S. Advances in the understanding of the pathophysiology of schizophrenia and bipolar disorder through induced pluripotent stem cell models. J Psychiatry Neurosci 2024; 49:E109-E125. [PMID: 38490647 PMCID: PMC10950363 DOI: 10.1503/jpn.230112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/04/2023] [Accepted: 01/08/2024] [Indexed: 03/17/2024] Open
Abstract
The pathophysiology of schizophrenia and bipolar disorder involves a complex interaction between genetic and environmental factors that begins in the early stages of neurodevelopment. Recent advancements in the field of induced pluripotent stem cells (iPSCs) offer a promising tool for understanding the neurobiological alterations involved in these disorders and, potentially, for developing new treatment options. In this review, we summarize the results of iPSC-based research on schizophrenia and bipolar disorder, showing disturbances in neurodevelopmental processes, imbalance in glutamatergic-GABAergic transmission and neuromorphological alterations. The limitations of the reviewed literature are also highlighted, particularly the methodological heterogeneity of the studies, the limited number of studies developing iPSC models of both diseases simultaneously, and the lack of in-depth clinical characterization of the included samples. Further studies are needed to advance knowledge on the common and disease-specific pathophysiological features of schizophrenia and bipolar disorder and to promote the development of new treatment options.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Giuliani
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Melillo
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Paola Bucci
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armida Mucci
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | | |
Collapse
|
22
|
Messedi M, Makni-Ayadi F. 24S-Hydroxycholesterol in Neuropsychiatric Diseases: Schizophrenia, Autism Spectrum Disorder, and Bipolar Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:293-304. [PMID: 38036886 DOI: 10.1007/978-3-031-43883-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Neuropsychiatric diseases (NPDs) are severe, debilitating psychiatric conditions that affect the nervous system. These are among the most challenging disorders in medicine. Some examples include Alzheimer's, anxiety disorders, autism spectrum disorder, bipolar disorder, and schizophrenia. NPDs represent an ever-increasing burden on public health and are prevalent throughout the world. For most of these diseases, the particular etiopathogeneses are still enigmatic. NPDs are also associated with structural and functional changes in the brain, along with altered neurotransmitter and neuroendocrine systems.Approximately 25% of the total human body cholesterol is located in the brain. Its involvement in neuronal functions starts in the early growth stages and remains important throughout adulthood. It is also an integral part of the neuronal membrane, ensuring membrane lipid organization and regulating membrane fluidity. The main mechanism for removing cholesterol from the brain is cholesterol 24-hydroxylation by cytochrome P450 46A1 (CYP46A1), an enzyme specifically found in the central nervous system. Although research on 24S-OHC and its role in neuropsychiatric diseases is still in its early stages, this oxidized cholesterol metabolite is thought to play a crucial role in the etiology of NPDs. 24S-OHC can affect neurons, astrocytes, oligodendrocytes, and vascular cells. In addition to regulating the homeostasis of cholesterol in the brain, this oxysterol is involved in neurotransmission, oxidative stress, and inflammation. The role of 24S-OHC in NPDs has been found to be controversial in terms of the findings so far. There are several intriguing discrepancies in the data gathered so far regarding 24S-OHC and NPDs. In fact, 24S-OHC levels were reported to have decreased in a number of NPDs and increased in others.Hence, in this chapter, we first summarize the available data regarding 24S-OHC as a biomarker in NPDs, including schizophrenia, autism spectrum disorder, and bipolar disorder. Then, we present a brief synopsis of the pharmacological targeting of 24S-OHC levels through the modulation of CYP46A1 activity.
Collapse
Affiliation(s)
- Meriam Messedi
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Sfax, Tunisia
| | - Fatma Makni-Ayadi
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Sfax, Tunisia
- Department of Clinical biochemistry, Habib Bourguiba Hospital, Sfax, Tunisia
| |
Collapse
|
23
|
Hasser C, Ameresekere M, Girgis C, Knapp J, Shah R. Striking the Balance: Bipolar Disorder in the Perinatal Period. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2024; 22:3-15. [PMID: 38694148 PMCID: PMC11058914 DOI: 10.1176/appi.focus.20230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The authors reviewed the literature, published between 2018 and 2023, on treating bipolar disorder in the perinatal period in order to summarize current treatment perspectives. Mood episodes occur during pregnancy and there are high rates of both initial onset and recurrence in the postpartum period. Bipolar disorder itself is associated with higher risks of adverse pregnancy outcomes, including gestational hypertension, hemorrhage, cesarean delivery, and small for gestational age infants. A general principle of perinatal treatment includes maintaining psychiatric stability of the pregnant person while reducing medication exposure risk to the fetus. A variety of factors can compromise psychiatric stability, including rapid discontinuation of stabilizing medications, decreased efficacy due to physiologic changes of pregnancy, and exacerbation of underlying psychiatric illness. Psychosocial interventions include optimizing sleep, increasing support, and reducing stress. The American College of Obstetricians and Gynecologists recommends against discontinuing or withholding medications solely due to pregnancy or lactation status. Individualized treatment involves a discussion of the risks of undertreated bipolar disorder weighed against the risks of individual medication choice based on available evidence regarding congenital malformations, adverse neonatal and obstetrical events, and neurodevelopmental outcomes. Valproate is not a first-line treatment due to higher risks. Data are lacking on safety for many newer medications. The authors review current safety data regarding lithium, lamotrigine, and antipsychotics, which are the most commonly used treatments for managing bipolar disorder in the perinatal period. Due to physiologic changes during pregnancy, frequent therapeutic drug monitoring and dose adjustments are required.
Collapse
Affiliation(s)
- Caitlin Hasser
- Department of Psychiatry (Hasser, Knapp, Shah) and Department of Obstetrics and Gynecology (Knapp), School of Medicine, Oregon Health & Science University, Portland, Oregon; Portland VA Health Care System, Portland, Oregon (Hasser, Shah); Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston (Ameresekere); Edward Hines, Jr. VA Hospital, Hines, Illinois (Girgis); Department of Psychiatry, Stritch School of Medicine, Loyola University, Maywood, Illinois (Girgis)
| | - Maithri Ameresekere
- Department of Psychiatry (Hasser, Knapp, Shah) and Department of Obstetrics and Gynecology (Knapp), School of Medicine, Oregon Health & Science University, Portland, Oregon; Portland VA Health Care System, Portland, Oregon (Hasser, Shah); Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston (Ameresekere); Edward Hines, Jr. VA Hospital, Hines, Illinois (Girgis); Department of Psychiatry, Stritch School of Medicine, Loyola University, Maywood, Illinois (Girgis)
| | - Christina Girgis
- Department of Psychiatry (Hasser, Knapp, Shah) and Department of Obstetrics and Gynecology (Knapp), School of Medicine, Oregon Health & Science University, Portland, Oregon; Portland VA Health Care System, Portland, Oregon (Hasser, Shah); Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston (Ameresekere); Edward Hines, Jr. VA Hospital, Hines, Illinois (Girgis); Department of Psychiatry, Stritch School of Medicine, Loyola University, Maywood, Illinois (Girgis)
| | - Jacquelyn Knapp
- Department of Psychiatry (Hasser, Knapp, Shah) and Department of Obstetrics and Gynecology (Knapp), School of Medicine, Oregon Health & Science University, Portland, Oregon; Portland VA Health Care System, Portland, Oregon (Hasser, Shah); Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston (Ameresekere); Edward Hines, Jr. VA Hospital, Hines, Illinois (Girgis); Department of Psychiatry, Stritch School of Medicine, Loyola University, Maywood, Illinois (Girgis)
| | - Riva Shah
- Department of Psychiatry (Hasser, Knapp, Shah) and Department of Obstetrics and Gynecology (Knapp), School of Medicine, Oregon Health & Science University, Portland, Oregon; Portland VA Health Care System, Portland, Oregon (Hasser, Shah); Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston (Ameresekere); Edward Hines, Jr. VA Hospital, Hines, Illinois (Girgis); Department of Psychiatry, Stritch School of Medicine, Loyola University, Maywood, Illinois (Girgis)
| |
Collapse
|
24
|
Petruso F, Giff A, Milano B, De Rossi M, Saccaro L. Inflammation and emotion regulation: a narrative review of evidence and mechanisms in emotion dysregulation disorders. Neuronal Signal 2023; 7:NS20220077. [PMID: 38026703 PMCID: PMC10653990 DOI: 10.1042/ns20220077] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Emotion dysregulation (ED) describes a difficulty with the modulation of which emotions are felt, as well as when and how these emotions are experienced or expressed. It is a focal overarching symptom in many severe and prevalent neuropsychiatric diseases, including bipolar disorders (BD), attention deficit/hyperactivity disorder (ADHD), and borderline personality disorder (BPD). In all these disorders, ED can manifest through symptoms of depression, anxiety, or affective lability. Considering the many symptomatic similarities between BD, ADHD, and BPD, a transdiagnostic approach is a promising lens of investigation. Mounting evidence supports the role of peripheral inflammatory markers and stress in the multifactorial aetiology and physiopathology of BD, ADHD, and BPD. Of note, neural circuits that regulate emotions appear particularly vulnerable to inflammatory insults and peripheral inflammation, which can impact the neuroimmune milieu of the central nervous system. Thus far, few studies have examined the link between ED and inflammation in BD, ADHD, and BPD. To our knowledge, no specific work has provided a critical comparison of the results from these disorders. To fill this gap in the literature, we review the known associations and mechanisms linking ED and inflammation in general, and clinically, in BD, ADHD, and BD. Our narrative review begins with an examination of the routes linking ED and inflammation, followed by a discussion of disorder-specific results accounting for methodological limitations and relevant confounding factors. Finally, we critically discuss both correspondences and discrepancies in the results and comment on potential vulnerability markers and promising therapeutic interventions.
Collapse
Affiliation(s)
| | - Alexis E. Giff
- Department of Neuroscience, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Beatrice A. Milano
- Sant’Anna School of Advanced Studies, Pisa, Italy
- University of Pisa, Pisa, Italy
| | | | - Luigi Francesco Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Switzerland
- Department of Psychiatry, Geneva University Hospital, Switzerland
| |
Collapse
|
25
|
Cordeiro RC, Lima CNC, Fries GR, Zunta-Soares G, Soares JC, Quevedo J, Scaini G. Mitochondrial health index correlates with plasma circulating cell-free mitochondrial DNA in bipolar disorder. Mol Psychiatry 2023; 28:4622-4631. [PMID: 37723283 DOI: 10.1038/s41380-023-02249-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023]
Abstract
Although mitochondrial dysfunction is known to play an essential role in the pathophysiology of bipolar disorder (BD), there is a glaring gap in our understanding of how mitochondrial dysfunction can modulate clinical phenotypes. An emerging paradigm suggests mitochondria play an important non-energetic role in adaptation to stress, impacting cellular resilience and acting as a source of systemic allostatic load. Known as mitochondrial allostatic load, this (phenomenon) occurs when mitochondria are unable to recalibrate and maintain cell homeostasis. This study aimed to evaluate the composite mitochondrial health index (MHI) in BD subjects and non-psychiatry controls. We will also explore whether lower MIH will be related to higher cell-free mtDNA (ccf-mtDNA) levels and poor clinical outcomes. In this study, 14 BD-I patients and 16 age- and sex-matched non-psychiatry controls were enrolled. Peripheral blood mononuclear cells (PBMCs) were used to measure the enzymatic activities of citrate synthase and complexes I, II, and IV and mtDNA copy number. Ccf-mtDNA was evaluated by qPCR in plasma. Mitochondrial quality control (MQC) proteins were evaluated by western blotting. After adjusting for confounding variables, such as age, sex, body mass index (BMI), and smoking status, patients with BD presented lower MHI compared to non-psychiatry controls, as well as higher ccf-mtDNA levels that negatively correlated with MHI. Because the MQC network is essential to maintain mitochondrial health, MHI and ccf-mtDNA were also examined in relation to several MQC-related proteins, such as Fis-1, Opa-1, and LC3. Our results showed that MHI correlated negatively with Fis-1 and positively with Opa-1 and LC3. Accordingly, ccf-mtDNA had a positive correlation with Fis-1 and a negative correlation with Opa-1 and LC3. Furthermore, we found a noteworthy inverse correlation between illness severity and MHI, with lower MHI and higher ccf-mtDNA levels in subjects with a longer illness duration, worse functional status, and higher depressive symptoms. Our findings indicate that mitochondrial allostatic load contributes to BD, suggesting mitochondria represent a potential biological intersection point that could contribute to impaired cellular resilience and increased vulnerability to stress and mood episodes. Ultimately, by linking mitochondrial dysfunction to disease progression and poor outcomes, we might be able to build a predictive marker that explains how mitochondrial function and its regulation contribute to BD development and that may eventually serve as a treatment guide for both old and new therapeutic targets.
Collapse
Affiliation(s)
- Rafaela C Cordeiro
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Camila N C Lima
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Gabriel R Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Giovana Zunta-Soares
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| |
Collapse
|
26
|
Miguel N, Marquez-Arrico JE, Jodar M, Navarro JF, Adan A. Neuropsychological functioning of patients with major depression or bipolar disorder comorbid to substance use disorders: A systematic review. Eur Neuropsychopharmacol 2023; 75:41-58. [PMID: 37453267 DOI: 10.1016/j.euroneuro.2023.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Major depression disorder (MDD) and bipolar disorder (BD) are usual comorbidities in patients with substance use disorders (SUD), a condition known as dual disorder (DD). MDD, BD and SUD are associated with cognitive impairment, potentially leading to a greater functional impairment in the context of DD. OBJECTIVES To review the existing data on the cognitive impairment in DD patients with comorbid MDD or BD, considering the influence of the depressive symptomatology. METHODS Following the PRISMA protocol 19 studies were selected from the last 17 years, 13 of which focused on BD, five on MDD and one included both diagnoses. RESULTS Studies based in BD+SUD showed that the most affected cognitive domains were attention and executive functions, but not all of them found a greater impairment due to the comorbidity. While fewer studies were found for depression, MDD+SUD works point to a similar impairment cognitive pattern. Furthermore, depression improvement could be associated to better cognitive performance. LIMITATIONS More standardized research is needed regarding the influence of depression on cognitive performance of DD patients, especially on those with comorbid MDD. Factors such as main substance, abstinence, or MDD/BD-related variables should be considered. Unstudied factors, like gender or circadian rhythms, are proposed to improve knowledge in this area. CONCLUSIONS Current studies suggest that DD could potentiate cognitive impairment in BD, MDD and SUD. However, additional research is needed to improve the understanding of comorbidity to apply more individualized therapies in the treatment of these patients, considering the interference of their neurocognitive functioning.
Collapse
Affiliation(s)
- Nuria Miguel
- Department of Clinical Psychology and Psychobiology, Universitat de Barcelona, Spain
| | - Julia E Marquez-Arrico
- Department of Clinical Psychology and Psychobiology, Universitat de Barcelona, Spain; Institute of Neurosciences (UBNeuro), Universitat de Barcelona, Spain
| | - Mercè Jodar
- Neurology Service, Hospital Universitari Parc Taulí, Sabadell, Spain; Department of Clinical and Health Psychology, Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud mental (CIBERSAM), Instituto de salud Carlos III, Madrid, Spain
| | | | - Ana Adan
- Department of Clinical Psychology and Psychobiology, Universitat de Barcelona, Spain; Institute of Neurosciences (UBNeuro), Universitat de Barcelona, Spain.
| |
Collapse
|
27
|
Ewald VAM, Trapp NT, Sarrett ME, Pace BD, Wendt L, Richards JG, Gala IK, Miller JN, Wessel JR, Magnotta VA, Wemmie JA, Boes AD, Parker KL. Supra-second interval timing in bipolar disorder: examining the role of disorder sub-type, mood, and medication status. Int J Bipolar Disord 2023; 11:32. [PMID: 37779127 PMCID: PMC10542629 DOI: 10.1186/s40345-023-00312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Widely reported by bipolar disorder (BD) patients, cognitive symptoms, including deficits in executive function, memory, attention, and timing are under-studied. Work suggests that individuals with BD show impairments in interval timing tasks, including supra-second, sub-second, and implicit motor timing compared to the neuronormative population. However, how time perception differs within individuals with BD based on disorder sub-type (BDI vs II), depressed mood, or antipsychotic medication-use has not been thoroughly investigated. The present work administered a supra-second interval timing task concurrent with electroencephalography (EEG) to patients with BD and a neuronormative comparison group. As this task is known to elicit frontal theta oscillations, signal from the frontal (Fz) lead was analyzed at rest and during the task. RESULTS Results suggest that individuals with BD show impairments in supra-second interval timing and reduced frontal theta power during the task compared to neuronormative controls. However, within BD sub-groups, neither time perception nor frontal theta differed in accordance with BD sub-type, depressed mood, or antipsychotic medication use. CONCLUSIONS This work suggests that BD sub-type, depressed mood status or antipsychotic medication use does not alter timing profile or frontal theta activity. Together with previous work, these findings point to timing impairments in BD patients across a wide range of modalities and durations indicating that an altered ability to assess the passage of time may be a fundamental cognitive abnormality in BD.
Collapse
Affiliation(s)
| | - Nicholas T Trapp
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | | | - Benjamin D Pace
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
| | - Linder Wendt
- Institute for Clinical and Translational Science, The University of Iowa, Iowa City, IA, USA
| | - Jenny G Richards
- Department of Radiology, The University of Iowa, Iowa City, IA, USA
| | - Ilisa K Gala
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
| | | | - Jan R Wessel
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA
- Department of Neurology, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Vincent A Magnotta
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
- Department of Radiology, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - John A Wemmie
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Aaron D Boes
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
- Department of Pediatrics, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Krystal L Parker
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA.
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
28
|
de Jesus JR, de Araujo Andrade T, de Figueiredo EC. Biomarkers in psychiatric disorders. Adv Clin Chem 2023; 116:183-208. [PMID: 37852719 DOI: 10.1016/bs.acc.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Psychiatric disorders represent a significant socioeconomic and healthcare burden worldwide. Of these, schizophrenia, bipolar disorder, major depressive disorder and anxiety are among the most prevalent. Unfortunately, diagnosis remains problematic and largely complicated by the lack of disease specific biomarkers. Accordingly, much research has focused on elucidating these conditions to more fully understand underlying pathophysiology and potentially identify biomarkers, especially those of early stage disease. In this chapter, we review current status of this endeavor as well as the potential development of novel biomarkers for clinical applications and future research study.
Collapse
Affiliation(s)
| | | | - Eduardo Costa de Figueiredo
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
29
|
Machado-Vieira R, Courtes AC, Zarate CA, Henter ID, Manji HK. Non-canonical pathways in the pathophysiology and therapeutics of bipolar disorder. Front Neurosci 2023; 17:1228455. [PMID: 37592949 PMCID: PMC10427509 DOI: 10.3389/fnins.2023.1228455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Bipolar disorder (BD) is characterized by extreme mood swings ranging from manic/hypomanic to depressive episodes. The severity, duration, and frequency of these episodes can vary widely between individuals, significantly impacting quality of life. Individuals with BD spend almost half their lives experiencing mood symptoms, especially depression, as well as associated clinical dimensions such as anhedonia, fatigue, suicidality, anxiety, and neurovegetative symptoms. Persistent mood symptoms have been associated with premature mortality, accelerated aging, and elevated prevalence of treatment-resistant depression. Recent efforts have expanded our understanding of the neurobiology of BD and the downstream targets that may help track clinical outcomes and drug development. However, as a polygenic disorder, the neurobiology of BD is complex and involves biological changes in several organelles and downstream targets (pre-, post-, and extra-synaptic), including mitochondrial dysfunction, oxidative stress, altered monoaminergic and glutamatergic systems, lower neurotrophic factor levels, and changes in immune-inflammatory systems. The field has thus moved toward identifying more precise neurobiological targets that, in turn, may help develop personalized approaches and more reliable biomarkers for treatment prediction. Diverse pharmacological and non-pharmacological approaches targeting neurobiological pathways other than neurotransmission have also been tested in mood disorders. This article reviews different neurobiological targets and pathophysiological findings in non-canonical pathways in BD that may offer opportunities to support drug development and identify new, clinically relevant biological mechanisms. These include: neuroinflammation; mitochondrial function; calcium channels; oxidative stress; the glycogen synthase kinase-3 (GSK3) pathway; protein kinase C (PKC); brain-derived neurotrophic factor (BDNF); histone deacetylase (HDAC); and the purinergic signaling pathway.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, United States
| | - Alan C. Courtes
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, United States
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Ioline D. Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Husseini K. Manji
- Deparment of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Aguiar-Geraldo JM, Possamai-Della T, Menegas S, Peper-Nascimento J, Quevedo J, Valvassori SS. Folic acid does not have an anti-manic effect but protect the brain against oxidative stress in an animal model of mania induced by ouabain. J Affect Disord 2023; 334:307-316. [PMID: 37150224 PMCID: PMC10464577 DOI: 10.1016/j.jad.2023.04.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a complex and severe mental disorder that affects 1-3 % of the world population. Studies have suggested the involvement of oxidative stress in the physiopathology of this psychiatry disorder. Folic acid (FA), a vitamin from the B complex, is a nutraceutical that has recently been researched as a possible treatment for BD since folate is reduced in patients with the disorder. The present study aimed to evaluate the effects of lithium (Li) and FA on behavioral changes and oxidative stress parameters in an animal model of mania induced by ouabain (OUA). METHODS Wistar rats received a single intracerebroventricular (ICV) injection of OUA or artificial cerebrospinal fluid (aCSF). From the day following ICV injection, the rats were treated for seven days with gavage injections of Li (47.5 mg/kg/mL), FA (50 mg/kg/mL), or water (1 mL/kg). On the 7th day after OUA injection, locomotor activity was measured using the open-field test. In addition, the oxidative stress parameters were evaluated in rats' frontal cortex, striatum, and hippocampus. RESULTS OUA induced mania-like behavior and oxidative stress in rats' brains, but Li could reverse these alterations. FA did not affect behavior parameters; however, it presents an antioxidant effect on the brain structures evaluated. LIMITATIONS The study was only evaluated male rats and ICV injection is an invasive procedure. CONCLUSION These results indicate that even though FA has an effect against the oxidative stress induced by OUA, this effect was not strong enough to interfere with behavior parameters.
Collapse
Affiliation(s)
- Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Samira Menegas
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Jefté Peper-Nascimento
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA; Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.
| |
Collapse
|
31
|
Salem D, Fecek RJ. Role of microtubule actin crosslinking factor 1 (MACF1) in bipolar disorder pathophysiology and potential in lithium therapeutic mechanism. Transl Psychiatry 2023; 13:221. [PMID: 37353479 DOI: 10.1038/s41398-023-02483-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
Bipolar affective disorder (BPAD) are life-long disorders that account for significant morbidity in afflicted patients. The etiology of BPAD is complex, combining genetic and environmental factors to increase the risk of disease. Genetic studies have pointed toward cytoskeletal dysfunction as a potential molecular mechanism through which BPAD may arise and have implicated proteins that regulate the cytoskeleton as risk factors. Microtubule actin crosslinking factor 1 (MACF1) is a giant cytoskeletal crosslinking protein that can coordinate the different aspects of the mammalian cytoskeleton with a wide variety of actions. In this review, we seek to highlight the functions of MACF1 in the nervous system and the molecular mechanisms leading to BPAD pathogenesis. We also offer a brief perspective on MACF1 and the role it may be playing in lithium's mechanism of action in treating BPAD.
Collapse
Affiliation(s)
- Deepak Salem
- Lake Erie College of Osteopathic Medicine at Seton Hill, Department of Microbiology, Greensburg, USA
- University of Maryland Medical Center/Sheppard Pratt Psychiatry Residency Program, Baltimore, USA
| | - Ronald J Fecek
- Lake Erie College of Osteopathic Medicine at Seton Hill, Department of Microbiology, Greensburg, USA.
| |
Collapse
|
32
|
Müller Ewald VA, Trapp NT, Sarrett ME, Pace BD, Wendt L, Richards JG, Gala IK, Miller JN, Wessel JR, Magnotta VA, Wemmie JA, Boes AD, Parker KL. Supra-second interval timing in bipolar disorder: examining the role of disorder sub-type, mood, and medication status. RESEARCH SQUARE 2023:rs.3.rs-3006203. [PMID: 37398216 PMCID: PMC10312933 DOI: 10.21203/rs.3.rs-3006203/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background : Widely reported by bipolar disorder (BD) patients, cognitive symptoms, including deficits in executive function, memory, attention, and timing are under-studied. Work suggests that individuals with BD show impairments in interval timing tasks, including supra-second, sub-second, and implicit motor timing compared to the neuronormative population. However, how time perception differs within individuals with BD based on BD sub-type (BDI vs II), mood, or antipsychotic medication-use has not been thoroughly investigated. The present work administered a supra-second interval timing task concurrent with electroencephalography (EEG) to patients with BD and a neuronormative comparison group. As this task is known to elicit frontal theta oscillations, signal from the frontal (Fz) lead was analyzed at rest and during the task. Results : Results suggest that individuals with BD show impairments in supra-second interval timing and reduced frontal theta power compared during the task to neuronormative controls. However, within BD sub-groups, neither time perception nor frontal theta differed in accordance with BD sub-type, mood, or antipsychotic medication use. Conclusions : his work suggests that BD sub-type, mood status or antipsychotic medication use does not alter timing profile or frontal theta activity. Together with previous work, these findings point to timing impairments in BD patients across a wide range of modalities and durations indicating that an altered ability to assess the passage of time may be a fundamental cognitive abnormality in BD.
Collapse
Affiliation(s)
- Victόria A. Müller Ewald
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - Nicholas T. Trapp
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - McCall E. Sarrett
- Department of Psychological and Brain sciences, Villanova University, Villanova, Pennsylvania, United States of America
| | - Benjamin D. Pace
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
| | - Linder Wendt
- Institute for Clinical and Translational Science, The University of Iowa, Iowa City, Iowa, United States of America
| | - Jenny G. Richards
- Department of Radiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Ilisa K. Gala
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
| | - Jacob N. Miller
- St. Luke’s Hospital, Cedar Rapids, Iowa, United States of America
| | - Jan R. Wessel
- Department of Psychological & Brain sciences, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - Vincent A. Magnotta
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Radiology, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - John A. Wemmie
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurosurgery, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - Aaron D. Boes
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - Krystal L. Parker
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience institute, The University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
33
|
Li X, Gao Y, Liu Y, Wang Y, Wu Q. Clinical Markers of Physical Violence in Patients with Bipolar Disorder in Manic States. Risk Manag Healthc Policy 2023; 16:991-1000. [PMID: 37250432 PMCID: PMC10225141 DOI: 10.2147/rmhp.s403170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose Identifying patients with bipolar disorder (BD) in manic states (BD-M) who are at a high risk of physical violence is a matter of clinical concern. This retrospective institution-based study aimed to identify simple, rapid, and inexpensive clinical markers of physical violence in patients with BD-M. Patients and Methods The anonymized sociodemographic variables (sex, age, years of education, marital status) and clinical ones (weight, height, body mass index, blood pressure, the score of BRMS, number of BD episodes, psychotic symptoms, history of violence, biochemical parameters, and blood routine parameters) of 316 BD-M participants were collected, and the risk of physical violence was identified using the Brøset Violence Checklist (BVC). Difference tests, correlation analyses, and multivariate linear regression analysis were performed to identify clinical markers for the risk of physical violence. Results The participants were categorized into groups at low (49, 15.51%), medium (129, 40.82%), and high (138, 43.67%) risk of physical violence. The number of BD episodes, serum uric acid (UA), free thyroxine (FT4) levels, history of violence, and monocyte-to-lymphocyte ratio (MLR) differed significantly between groups (all P<0.05). The number of BD episodes (r=0.152), FT3 (r=0.131) and FT4 (r=0.132) levels, history of violence (r=0.206), and MLR (r=-0.132) were significantly correlated with the risk of physical violence (all P<0.05). The existence of history of violence, number of BD episodes, UA, FT4, and MLR were identified as clinical markers of the risk of physical violence in patients with BD-M (all P<0.05). Conclusion These identified markers are readily available at initial presentation and may help in the timely assessment and treatment of patients with BD-M.
Collapse
Affiliation(s)
- Xuelong Li
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, People’s Republic of China
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Anhui Mental Health Center, Hefei, People’s Republic of China
| | - Yakun Gao
- Affiliated Hospital of Weifang Medical College, Weifang, People’s Republic of China
| | - Yiyi Liu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, People’s Republic of China
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Anhui Mental Health Center, Hefei, People’s Republic of China
| | - Ying Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, People’s Republic of China
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Anhui Mental Health Center, Hefei, People’s Republic of China
| | - Qing Wu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, People’s Republic of China
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Anhui Mental Health Center, Hefei, People’s Republic of China
- Hefei Fourth People’s Hospital, Hefei, People’s Republic of China
| |
Collapse
|
34
|
Scaini G, Cordeiro R, Lima CC, Fries G, Zunta-Soares G, Soares JC, de Quevedo J. Mitochondrial Health Index Correlates with Plasma Circulating Cell-Free Mitochondrial DNA in Bipolar Disorder. RESEARCH SQUARE 2023:rs.3.rs-2821492. [PMID: 37162936 PMCID: PMC10168451 DOI: 10.21203/rs.3.rs-2821492/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background: Although mitochondria dysfunction is known to play an essential role in the pathophysiology of bipolar disorder (BD), there is a glaring gap in our understanding of how mitochondrial dysfunction can modulate clinical phenotypes. This study aimed to evaluate the composite mitochondrial health index (MHI) in BD subjects and non-psychiatry controls (Non-psychiatry controls). We will also explore whether lower MIH will be related to higher cell-free mtDNA (ccf-mtDNA) levels and poor clinical outcomes. Methods: Fourteen BD-I patients and 16 age- and sex-matched non-psychiatry controls were enrolled for this study. Peripheral blood mononuclear cells (PBMCs) were used to measure the enzymatic activities of citrate synthase and complexes I, II, and IV and mtDNA copy number. ccf-mtDNA was evaluated by qPCR in plasma. Mitochondrial quality control (MQC) proteins were evaluated by western blotting. Results: One-Way ANCOVA after controlling for age, sex, body mass index (BMI), and smoking status showed that patients with BD present a decrease in the MHI compared to non-psychiatry controls, and higher ccf-mtDNA levels, which was negatively correlated with MHI. Because the MQC network is essential to maintain mitochondrial health, we also evaluated the relationship between MQC-related proteins with MHI and ccf-mtDNA. Our results showed that MHI negatively correlated with Fis-1 and positively with Opa-1 and LC3. Moreover, we found a negative correlation between ccf-mtDNA, Opa-1, and LC3 and a positive correlation between cff-mtDNA and Fis-1. Finally, we found that subjects with longer illness duration, higher depressive symptom scores, and worse functional status had lower MHI and higher ccf-mtDNA. Conclusion: In summary, the present findings corroborate previous studies and provide strong support for the hypothesis that mitochondrial regulation and function are integral parts of the pathogenesis of BD.
Collapse
Affiliation(s)
- Giselli Scaini
- Faillace Department of Psychiatry and Behavioral Sciences
| | | | | | - Gabriel Fries
- University of Texas Health Science Center at Houston
| | | | - Jair C Soares
- The University of Texas Health Science Center at Houston
| | | |
Collapse
|
35
|
Campos-Ugaz WA, Palacios Garay JP, Rivera-Lozada O, Alarcón Diaz MA, Fuster-Guillén D, Tejada Arana AA. An Overview of Bipolar Disorder Diagnosis Using Machine Learning Approaches: Clinical Opportunities and Challenges. IRANIAN JOURNAL OF PSYCHIATRY 2023; 18:237-247. [PMID: 37383968 PMCID: PMC10293694 DOI: 10.18502/ijps.v18i2.12372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 08/15/2023]
Abstract
Objective: Automatic diagnosis of psychiatric disorders such as bipolar disorder (BD) through machine learning techniques has attracted substantial attention from psychiatric and artificial intelligence communities. These approaches mostly rely on various biomarkers extracted from electroencephalogram (EEG) or magnetic resonance imaging (MRI)/functional MRI (fMRI) data. In this paper, we provide an updated overview of existing machine learning-based methods for bipolar disorder (BD) diagnosis using MRI and EEG data. Method : This study is a short non-systematic review with the aim of describing the current situation in automatic diagnosis of BD using machine learning methods. Therefore, an appropriate literature search was conducted via relevant keywords for original EEG/MRI studies on distinguishing BD from other conditions, particularly from healthy peers, in PubMed, Web of Science, and Google Scholar databases. Results: We reviewed 26 studies, including 10 EEG studies and 16 MRI studies (including structural and functional MRI), that used traditional machine learning methods and deep learning algorithms to automatically detect BD. The reported accuracies for EEG studies is about 90%, while the reported accuracies for MRI studies remains below the minimum level for clinical relevance, i.e. about 80% of the classification outcome for traditional machine learning methods. However, deep learning techniques have generally achieved accuracies higher than 95%. Conclusion: Research utilizing machine learning applied to EEG signals and brain images has provided proof of concept for how this innovative technique can help psychiatrists distinguish BD patients from healthy people. However, the results have been somewhat contradictory and we must keep away from excessive optimistic interpretations of the findings. Much progress is still needed to reach the level of clinical practice in this field.
Collapse
|
36
|
Novaes de Oliveira Roldan AC, Fernandes Júnior LCC, de Oliveira CEC, Nunes SOV. Impact of ZNF804A rs1344706 or CACNA1C rs1006737 polymorphisms on cognition in patients with severe mental disorders: A systematic review and meta-analysis. World J Biol Psychiatry 2023; 24:195-208. [PMID: 35786202 DOI: 10.1080/15622975.2022.2097308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES This systematic review and meta-analysis focussed on insights into the relationship between CACNA1C-rs1006737 and ZNF804A-rs1344706 polymorphisms and cognitive performance in schizophrenia (SCZ) spectrum and bipolar disorder (BD) and provide some contributions for clinical practice. METHODS We searched the websites databases (PubMED, PsycINFO, Web of Science, EMBASE and Cochrane Library) using eligibility and exclusion criteria to capture all potential studies, based on PICO model and according to the PRISMA. RESULTS Eight articles were included in this systematic review (five referring to CACNA1C-rs1006737 and three related to ZNF804A-rs1344706 polymorphisms), with a total of 5759 participants (1751 SCZ patients, 348 BD patients, 3626 controls and 34 first-degree relatives). The results demonstrated that the pooled effect of CACNA1C-rs1006737 (risk difference RD = 0.08; 95% CI 0.02-0.15) was associated with altered cognitive function in patients with severe mental disorders, but not ZNF804A-rs1344706 polymorphism (RD = 0.19; 95% CI 0.09-0.48. CONCLUSION The present meta-analysis provides evidence regarding slight association between CACNA1C-rs1006737 polymorphisms and cognitive performance in severe mental disorders, indicating that cognitive impairment in severe mental disorders associated with the CACNA1C rs1006737 risk variants could only be expressed when interacting with environmental exposures. This study is registered with PROSPERO, number CRD42021246726.
Collapse
|
37
|
Barksdale BR, Fonzo GA. Repetitive Transcranial Magnetic Stimulation in Bipolar Depression: Current Evidence and Future Perspectives. Psychiatr Ann 2023. [DOI: 10.3928/00485713-20230119-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
38
|
Chen H, Wang L, Li H, Song H, Zhang X, Wang D. Altered intrinsic brain activity and cognitive impairment in euthymic, unmedicated individuals with bipolar disorder. Asian J Psychiatr 2023; 80:103386. [PMID: 36495730 DOI: 10.1016/j.ajp.2022.103386] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/07/2022] [Accepted: 10/08/2022] [Indexed: 12/12/2022]
Abstract
Cognitive impairment in euthymic bipolar disorder (BD) contributes to poor functional outcomes. Resting-state magnetic resonance imaging (MRI)may help us understand the neurobiology of cognitive impairment in BD. Here, forty unmedicated euthymic BD patients and thirty-nine healthy controls were recruited, undergoing MRI scans and neuropsychological measures. The amplitude of low-frequency fluctuation (ALFF) and ALFF-based functional connectivity (FC) analysis was employed to explore the potential alterations of neural activity. Voxel-wised correlation was calculated between clinical and cognitive variables and abnormal brain activity. Compared with healthy controls, euthymic BD patients showed worse cognitive performance in Trail Making Test, Digit Span Test, and Stroop Color-Word Test (SCWT). The euthymic BD group had significantly lower ALFF in the left medial frontal gyrus, right middle frontal gyrus, right postcentral gyrus, and left superior frontal gyrus. Furthermore, we found decreased ALFF values in the right middle frontal gyrus that was negatively correlated with cognitive inhibition, (r = -0.43, P = 0.015). ALFF-based FC analysis showed that BD group showed significantly decreased FC between the right middle frontal gyrus (seed) and left middle temporal gyrus and left medial frontal gyrus, (Two-tailed, PFWE < 0.05, TFCE corrected). The findings demonstrated that individuals with BD during the euthymic phase exhibited decreased ALFF and hypoconnectivity of key brain areas within the frontoparietal network. These altered spontaneous brain activity in euthymic BD patients may be involved in the pathophysiology mechanism of cognitive deficits.
Collapse
Affiliation(s)
- Hao Chen
- Department of Radiology, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Longxi Wang
- Department of laboratory, Rongfu Military Hospital of Jining city, Jining, China
| | - Hong Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huihui Song
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, the Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiaobin Zhang
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, the Affiliated Guangji Hospital of Soochow University, Suzhou, China.
| | - Dong Wang
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, the Affiliated Guangji Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Due to bipolar disorder clinical heterogeneity, a plethora of studies have provided new genetic, epigenetic, molecular, and cellular findings associated with its pathophysiology. RECENT FINDINGS Genome-wide association studies and epigenetic evidence points to genotype-phenotype interactions associated with inflammation, oxidative stress, abnormalities in signaling pathways, hypothalamic-pituitary-adrenal axis, and circadian rhythm linked to mitochondrial dysfunction in bipolar disorder. Although the literature is constantly increasing, most of the genetic variants proposed as biomarkers remain to be validated by independent groups and use bigger samples and longitudinal approaches to enhance their power and predictive ability. SUMMARY Regardless of which of the mechanisms described here plays a primary or secondary role in the pathophysiology of bipolar disorder, all of these interact to worsen clinical outcomes for patients. Identifying new biomarkers for early detection, prognosis, and response to treatment might provide novel targets to prevent progression and promote general well being.
Collapse
|
40
|
Bio-behavioural changes in treatment-resistant socially isolated FSL rats show variable or improved response to combined fluoxetine-olanzapine versus olanzapine treatment. IBRO Neurosci Rep 2022; 13:284-298. [PMID: 36204253 PMCID: PMC9529672 DOI: 10.1016/j.ibneur.2022.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/14/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
|
41
|
Congio AC, Urbano MR, Soares MRZ, Nunes SOV. Cognitive impairment, childhood trauma, sedentary behaviour, and elevated C-reactive protein levels in major affective disorders. J Psychiatr Res 2022; 155:1-9. [PMID: 35969959 DOI: 10.1016/j.jpsychires.2022.07.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 10/31/2022]
Abstract
Elevated C-reactive protein (CRP) levels were associated with cognitive decline, sedentary behaviour, and childhood trauma in patients with major affective disorders. This study aims to examine the association of peripheral CRP levels, cognitive function, childhood trauma, sedentary behaviour, and quality of life in individuals with major affective disorders, including bipolar disorder (BD), major depressive disorder (MDD), and individuals without mood disorders (controls). We included outpatients with BD (n = 42), MDD (n = 27), and healthy controls (n = 40). All participants were assessed by a questionnaire, structured clinical interview, and the following scales: international physical activity questionnaire, childhood trauma questionnaire, 17-item Hamilton Depression Rating Scale (HDRS17), and World Health Organization Quality of Life instrument, brief version (WHOQOL-BREF). Other measures were included: hs-CRP levels, anthropometric measures, and cognitive tests (Trail-making test part A and part B, Stroop test, phonemic verbal fluency test, and semantic verbal fluency test). Our results indicated that BD outpatients were less significantly physically active on leisure domain than controls. Levels of hs-CRP ≥ 5 mg/L were significantly linked with a history of childhood sexual abuse and childhood physical abuse, as well as worse neurocognitive performance in major depressive disorders, mainly in BD. There was a significant negative correlation between Trail-making part B score and WHOQOL-BREF total score. The findings support the hypothesis that levels of hs-CRP ≥ 5 mg/L may be a possible predictor of cognitive dysfunction, childhood sexual abuse and sedentary behaviour in major affective disorders.
Collapse
Affiliation(s)
- Ana Carolina Congio
- Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil.
| | - Mariana Ragassi Urbano
- Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil; Department of Statistics, Center of Exact Sciences, State University of Londrina, (UEL), Londrina, Paraná, Brazil
| | - Maria Rita Zoega Soares
- Postgraduate Program in Behavior Analysis, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Sandra Odebrecht Vargas Nunes
- Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil; Department of Clinical Medicine, Psychiatry Unit, Health Sciences Center, State University of Londrina, (UEL), Londrina, Paraná, Brazil
| |
Collapse
|
42
|
Lorkiewicz P, Waszkiewicz N. Is SARS-CoV-2 a Risk Factor of Bipolar Disorder?-A Narrative Review. J Clin Med 2022; 11:6060. [PMID: 36294388 PMCID: PMC9604904 DOI: 10.3390/jcm11206060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
For 2.5 years we have been facing the coronavirus disease (COVID-19) and its health, social and economic effects. One of its known consequences is the development of neuropsychiatric diseases such as anxiety and depression. However, reports of manic episodes related to COVID-19 have emerged. Mania is an integral part of the debilitating illness-bipolar disorder (BD). Due to its devastating effects, it is therefore important to establish whether SARS-CoV-2 infection is a causative agent of this severe mental disorder. In this narrative review, we discuss the similarities between the disorders caused by SARS-CoV-2 and those found in patients with BD, and we also try to answer the question of whether SARS-CoV-2 infection may be a risk factor for the development of this affective disorder. Our observation shows that disorders in COVID-19 showing the greatest similarity to those in BD are cytokine disorders, tryptophan metabolism, sleep disorders and structural changes in the central nervous system (CNS). These changes, especially intensified in severe infections, may be a trigger for the development of BD in particularly vulnerable people, e.g., with family history, or cause an acute episode in patients with a pre-existing BD.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Wołodyjowskiego 2, 15-272 Białystok, Poland
| | | |
Collapse
|
43
|
Valvassori SS, Aguiar-Geraldo JM, Possamai-Della T, da-Rosa DD, Peper-Nascimento J, Cararo JH, Quevedo J. Depressive-like behavior accompanies neuroinflammation in an animal model of bipolar disorder symptoms induced by ouabain. Pharmacol Biochem Behav 2022; 219:173434. [PMID: 35901967 DOI: 10.1016/j.pbb.2022.173434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION A previous study from our Laboratory showed no alteration in inflammatory parameters seven days after ouabain (OUA) administration, a Na+K+ATPase inhibitor, which was previously considered only a mania model. However, the administration of OUA in rats was recently validated as a model of bipolar disorder (BD) symptoms, demonstrating that 14 days after single intracerebroventricular (ICV) administration, OUA also induces depressive-like behavior. Therefore, it is important to investigate the long-term effect of OUA on inflammatory parameters since this mechanism seems to play a key role in BD physiopathology. METHODS Adult male Wistar rats received a single ICV administration of OUA or artificial cerebrospinal fluid (aCSF). From the fourth day after the ICV infusion, the rats received saline or Lithium (Li) for 14 days. The open-field test was performed on the 7th day after OUA. On the 14th day, locomotion was re-evaluated, and the forced swimming test (FST) was used to evaluate depressive-like behavior. Inflammatory parameters were assessed in the frontal cortex and hippocampus. RESULTS OUA increased the locomotion of rats after seven days, considered a mania-like behavior. In the FST, OUA increased the time of immobility on the 14th day, considered a depressive-like behavior. Li reversed the mania-like behavior and partially reversed the depressive-like behavior. Furthermore, OUA increased the levels of interleukin (IL)-1β, IL-6, IL-10, TNF-α, and CINC-1 in the frontal cortex and hippocampus. Li treatment reverses all these inflammatory alterations. CONCLUSION This study suggests that the long-term Na+K+ATPase inhibition effects induce depressive-like behavior, which was accompanied by inflammation in the BD symptoms model.
Collapse
Affiliation(s)
- Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Dayane D da-Rosa
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jefté Peper-Nascimento
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - José H Cararo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
44
|
Truong TT, Bortolasci CC, Kidnapillai S, Spolding B, Panizzutti B, Liu ZS, Watmuff B, Kim JH, Dean OM, Richardson M, Berk M, Walder K. Common effects of bipolar disorder medications on expression quantitative trait loci genes. J Psychiatr Res 2022; 150:105-112. [PMID: 35366598 DOI: 10.1016/j.jpsychires.2022.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
The molecular mechanism(s) underpinning the clinical efficacy of the current drugs for bipolar disorder (BD) are largely unknown. This study evaluated the transcriptional perturbations potentially playing roles in the therapeutic efficacy of four commonly prescribed psychotropic drugs used to treat BD. NT2-N cells were treated with lamotrigine, lithium, quetiapine, valproate or vehicle control for 24 h. Genome-wide mRNA expression was quantified by RNA-sequencing. Incorporating drug-induced gene expression profiles with BD-associated transcriptional changes from post-mortem brains, we identified potential therapeutic-relevant genes associated with both drug treatments and BD pathophysiology and focused on expression quantitative trait loci (eQTL) genes with genome-wide association with BD. Each eQTL gene was ranked based on its potential role in the therapeutic effect across multiple drugs. The expression of highest-ranked eQTL genes were measured by RT-qPCR to confirm their transcriptional changes observed in RNA-seq. We found 775 genes for which at least 2 drugs reversed expression levels relative to the differential expression in post-mortem brains. Pathway analysis identified enriched biological processes highlighting mitochondrial and endoplasmic reticulum function. Differential expression of SRPK2 and CHDH was confirmed by RT-qPCR following multiple-dose treatments. We pinpointed potential genes involved in the beneficial effects of drugs used for BD and their main associated biological pathways. CHDH, which encodes a mitochondrial protein, had a significant dose-responsive downregulation following treatment with increasing doses of quetiapine and lamotrigine, which in combination with the enriched mitochondrial pathways suggests potential therapeutic roles and demand more studies on mitochondrial involvement in BD to identify novel treatment targets.
Collapse
Affiliation(s)
- Trang Tt Truong
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia.
| | - Chiara C Bortolasci
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Srisaiyini Kidnapillai
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Briana Spolding
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Bruna Panizzutti
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Zoe Sj Liu
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Brad Watmuff
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Jee Hyun Kim
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Olivia M Dean
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Mark Richardson
- Bioinformatics Core Research Facility (BCRF), Deakin University, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Ken Walder
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| |
Collapse
|
45
|
Neural Networks to Recognize Patterns in Topographic Images of Cortical Electrical Activity of Patients with Neurological Diseases. Brain Topogr 2022; 35:464-480. [PMID: 35596851 DOI: 10.1007/s10548-022-00901-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 04/25/2022] [Indexed: 11/02/2022]
Abstract
Software such as EEGLab has enabled the treatment and visualization of the tracing and cortical topography of the electroencephalography (EEG) signals. In particular, the topography of the cortical electrical activity is represented by colors, which make it possible to identify functional differences between cortical areas and to associate them with various diseases. The use of cortical topography with EEG origin in the investigation of diseases is often not used due to the representation of colors making it difficult to classify the disease. Thus, the analyses have been carried out, mainly, based on the EEG tracings. Therefore, a computer system that recognizes disease patterns through cortical topography can be a solution to the diagnostic aid. In view of this, this study compared five models of Convolutional Neural Networks (CNNs), namely: Inception v3, SqueezeNet, LeNet, VGG-16 and VGG-19, in order to know the patterns in cortical topography images obtained with EEG, in Parkinson's disease, Depression and Bipolar Disorder. SqueezeNet performed better in the 3 diseases analyzed, with Parkinson's disease being better evaluated for Accuracy (88.89%), Precison (86.36%), Recall (91.94%) and F1 Score (89.06%), the other CNNs had less performance. In the analysis of the values of the Area under ROC Curve (AUC), SqueezeNet reached (93.90%) for Parkinson's disease, (75.70%) for Depression and (72.10%) for Bipolar Disorder. We understand that there is the possibility of classifying neurological diseases from cortical topographies with the use of CNNs and, thus, creating a computational basis for the implementation of software for screening and possible diagnostic assistance.
Collapse
|
46
|
Rodrigues JE, Martinho A, Santos V, Santa C, Madeira N, Martins MJ, Pato CN, Macedo A, Manadas B. Systematic Review and Meta-Analysis on MS-Based Proteomics Applied to Human Peripheral Fluids to Assess Potential Biomarkers of Bipolar Disorder. Int J Mol Sci 2022; 23:5460. [PMID: 35628270 PMCID: PMC9141521 DOI: 10.3390/ijms23105460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
Bipolar disorder (BD) is a clinically heterogeneous condition, presenting a complex underlying etiopathogenesis that is not sufficiently characterized. Without molecular biomarkers being used in the clinical environment, several large screen proteomics studies have been conducted to provide valuable molecular information. Mass spectrometry (MS)-based techniques can be a powerful tool for the identification of disease biomarkers, improving prediction and diagnosis ability. Here, we evaluate the efficacy of MS proteomics applied to human peripheral fluids to assess BD biomarkers and identify relevant networks of biological pathways. Following PRISMA guidelines, we searched for studies using MS proteomics to identify proteomic differences between BD patients and healthy controls (PROSPERO database: CRD42021264955). Fourteen articles fulfilled the inclusion criteria, allowing the identification of 266 differentially expressed proteins. Gene ontology analysis identified complement and coagulation cascades, lipid and cholesterol metabolism, and focal adhesion as the main enriched biological pathways. A meta-analysis was performed for apolipoproteins (A-I, C-III, and E); however, no significant differences were found. Although the proven ability of MS proteomics to characterize BD, there are several confounding factors contributing to the heterogeneity of the findings. In the future, we encourage the scientific community to use broader samples and validation cohorts, integrating omics with bioinformatics tools towards providing a comprehensive understanding of proteome alterations, seeking biomarkers of BD, and contributing to individualized prognosis and stratification strategies, besides aiding in the differential diagnosis.
Collapse
Affiliation(s)
- Joao E. Rodrigues
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Ana Martinho
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Vítor Santos
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Catia Santa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Nuno Madeira
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria J. Martins
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
- Medical Services, University of Coimbra Medical Services, 3004-517 Coimbra, Portugal
| | - Carlos N. Pato
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Antonio Macedo
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
- III Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| |
Collapse
|
47
|
Duarte-Silva E, Oriá AC, Mendonça IP, de Melo MG, Paiva IHR, Maes M, Joca SRL, Peixoto CA. TINY IN SIZE, BIG IN IMPACT: EXTRACELLULAR VESICLES AS MODULATORS OF MOOD, ANXIETY AND NEURODEVELOPMENTAL DISORDERS. Neurosci Biobehav Rev 2022; 135:104582. [PMID: 35182538 DOI: 10.1016/j.neubiorev.2022.104582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 01/17/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022]
Abstract
Extracellular Vesicles (EVs) are tiny vesicles used by cells as means of cellular communication, through which the function and state of a given cell can be changed. A body of evidence has suggested that EVs could be culprits in the development and progression of various types of diseases, including neurodegenerative diseases such as Multiple Sclerosis (MS) and Alzheimer's Disease (AD). Unsurprisingly, EVs have also been implicate in mood, anxiety and neurodevelopmental disorders, such as Major Depressive Disorder (MDD), anxiety disorder and Autism-Spectrum Disorder (ASD), respectively. Here, we review the state-of-art regarding the roles of EVs in the aforementioned diseases and focus on the mechanisms by which they can cause and worsen disease. Harnessing the knowledge of EVs is not only important to deliver different cargos to cells in a specific manner to treat these diseases, but also to establish reliable disease biomarkers, which will aid in the early disease diagnosis and treatment, increasing the chance of successful treatment.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Recife, PE, Brazil; Department of Neurology, Medical Faculty, University Hospital Düsseldorf, 40255 Düsseldorf, Germany.
| | | | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Michel Gomes de Melo
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Igor Henrique R Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; IMPACT Strategic Research Center, Deakin University, Geelong, Australia
| | - Sâmia R L Joca
- School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, Brazil; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM, CNPq), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
48
|
Gonçalves MCB, Andrejew R, Gubert C. The Purinergic System as a Target for the Development of Treatments for Bipolar Disorder. CNS Drugs 2022; 36:787-801. [PMID: 35829960 PMCID: PMC9345801 DOI: 10.1007/s40263-022-00934-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 11/27/2022]
Abstract
The neurobiological and neurochemical mechanisms underlying the pathophysiology of bipolar disorder are complex and not yet fully understood. From circadian disruption to neuroinflammation, many pathways and signaling molecules are important contributors to bipolar disorder development, some specific to a disease subtype or a cycling episode. Pharmacological agents for bipolar disorder have shown only partial efficacy, including mood stabilizers and antipsychotics. The purinergic hypothesis for bipolar disorder emerges in this scenario as a promising target for further research and drug development, given its role in neurotransmission and neuroinflammation that results in behavioral and mood regulation. Here, we review the basic concepts of purinergic signaling in the central nervous system and its contribution to bipolar disorder pathophysiology. Allopurinol and novel P2X7 receptor antagonists are promising candidates for treating bipolar disorder. We further explore currently available pharmacotherapies and the emerging new purinergic targets for drug development in bipolar disorder.
Collapse
Affiliation(s)
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3032, Australia.
| |
Collapse
|
49
|
Paul P, Nadella RK, Sen S, Ithal D, Mahadevan J, Reddy Y C J, Jain S, Purushottam M, Viswanath B. Association study of BDNF Val66Met gene polymorphism with bipolar disorder and lithium treatment response in Indian population. J Psychopharmacol 2021; 35:1510-1516. [PMID: 34311608 DOI: 10.1177/02698811211032609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The association of the Val66Met (rs6265) polymorphism in the brain-derived neurotrophic factor (BDNF) gene with bipolar disorder (BD) and response to lithium treatment has been suggested, though inconsistently. The considerable diversity of allele frequency across different populations contributes to this. There is no data from South Asia till date. Hence, we examined the association of this polymorphism in BD cases from India, and its association with lithium treatment response. METHODS BD patients (N = 301) were recruited from the clinical services of National Institute of Mental Health and Neurosciences (NIMHANS), India. Lithium treatment response for 190 BD subjects was assessed using Alda scale by NIMH life charts. Patients with total score ⩾7 were defined as lithium responders (N = 115) and patients with score <7 were defined as lithium non-responders (N = 75). Healthy controls (N = 484) with no lifetime history of neuropsychiatric illness or a family history of mental illness were recruited as control set. Genotyping was performed by TaqMan genotyping assay. RESULTS Genotype and allele frequency of BDNF Val66Met SNP was significantly different (χ2 = 7.78, p = 0.02) in cases compared to controls, and the Val(G) allele was more frequent (χ2 = 7.08, p = 0.008) in BD patients. However, no significant difference is noted in genotype or allele frequencies of this polymorphism between the lithium responders and non-responders. CONCLUSIONS The Val(G) allele of BDNF Val66Met polymorphism is associated with risk of BD in this sample, but it is not related to response to lithium.
Collapse
Affiliation(s)
- Pradip Paul
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Ravi Kumar Nadella
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Somdatta Sen
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Dhruva Ithal
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Jayant Mahadevan
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Janardhan Reddy Y C
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Sanjeev Jain
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Meera Purushottam
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Biju Viswanath
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
50
|
Benevenuto D, Saxena K, Fries GR, Valvassori SS, Kahlon R, Saxena J, Kurian S, Zeni CP, Kazimi IF, Scaini G, Soares JC, Quevedo J. Alterations in plasma kynurenine pathway metabolites in children and adolescents with bipolar disorder and unaffected offspring of bipolar parents: A preliminary study. Bipolar Disord 2021; 23:689-696. [PMID: 33098737 DOI: 10.1111/bdi.13027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND There has been growing scientific evidence in recent years that bipolar disorder (BD) is associated with alterations in the kynurenine (KYN) pathway. However, many of these studies have been limited by their focus on adults. Thus, this preliminary study investigated differences in the peripheral levels of KYN metabolites in children and adolescents with BD, unaffected offspring of parents with BD, and healthy controls (HCs). METHODS Plasma samples were collected from 49 youths with BD, 19 bipolar offspring, and 31 HCs. Tryptophan (TRP), KYN, and kynurenic acid (KYNA) were separated using electrospray ionization. RESULTS One-Way ANCOVA after controlling for age, gender, race, BMI-for-age, and smoking status showed that BD had lower levels of KYN, while unaffected high-risk offspring subjects had lower levels of TRP, KYN, and KYNA when compared to HCs. Moreover, we found that KYN, KYN/TRP, and KYNA/KYN levels predicted the severity of depressive symptoms, while the YMRS score was not associated with any metabolite. CONCLUSIONS In summary, this preliminary study has shown that KYN metabolites are decreased in both affected and unaffected subjects, strengthening the idea that the KYN pathway might underlie the familial risk of BD shown by high-risk offspring individuals. However, longitudinal studies are needed to examine whether the alterations observed in this study represent early markers of risk for later developing BD.
Collapse
Affiliation(s)
- Deborah Benevenuto
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Kirti Saxena
- Department of Psychiatry, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Gabriel R Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Ramandeep Kahlon
- Department of Psychiatry, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Johanna Saxena
- Department of Psychiatry, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Sherin Kurian
- Department of Psychiatry, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Cristian P Zeni
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Iram F Kazimi
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|