1
|
Xu Y, Zhou Q, Wang X, Meng X, Zhang Z, Zhang X, Zhang X, Niu S, Chen G, Liu L, Shen T. Metabolome and transcriptomics analyses reveal quality differences between Camellia tachangensis F. C. Zhang and C. sinensis (L.) O. Kunzte. PLoS One 2024; 19:e0314595. [PMID: 39637125 PMCID: PMC11620563 DOI: 10.1371/journal.pone.0314595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Tea ranks among the top three most beloved non-alcoholic beverages worldwide and boasts significant economic and health benefits. In addition to Camellia sinensis (L.) O. Kuntze, and other Camellia plants in China are consumed by residents as tea drinks, which also have important economic value. The present study introduces one of the wild tea species, namely, Camellia tachangensis F. C. Zhang. We analyzed changes in metabolite abundance and gene expression patterns of C. tachangensis and C. sinensis using metabonomics and transcriptomics. We found 1056 metabolites, including 256 differential metabolites (67 upregulated and 189 downregulated). Additionally, transcriptome analysis revealed 8049 differentially expressed genes, with 4418 upregulated and 3631 downregulated genes. C. sinensis boasts a notable abundance of Amino acids, which can be attributed to its specific genetic makeup. In Theanine and Caffeine metabolic pathways, the levels of the majority of amino acids and caffeine tend to decrease. In Flavonoid biosynthesis, the levels of the Flavanone Fustin and Epicatechin are higher in C. tachangensis, while Epigallocatechin and Gallocatechin levels are higher in C. sinensis. This indicates that the metabolic components of C. sinensis and C. tachangensis are not identical, which may result in a unique flavor.
Collapse
Affiliation(s)
- Yunfei Xu
- Guizhou Key Laboratory of Advanced Computing, Guizhou Normal University, Guiyang, China
- School of Cyber Science and Technology, Guizhou Normal University, Guiyang, China
| | - Qihang Zhou
- School of Mathematical Sciences, Guizhou Normal University, Guiyang, China
| | - Xinglin Wang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Xingpan Meng
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Zhengdong Zhang
- College of Computer Science, Guiyang University, Guiyang, China
| | - Xu Zhang
- Guizhou Caohai Wetland Ecosystem National Observation and Research Station, Guizhou Academy of Forestry Sciences, Guiyang, China
| | - Ximin Zhang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Suzhen Niu
- Institute of Agricultural and biological engineering, Guizhou University, Guiyang, China
| | - Guiping Chen
- School of International Education, Guizhou Normal University, Guiyang, China
| | - Lunxian Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Tie Shen
- Guizhou Key Laboratory of Advanced Computing, Guizhou Normal University, Guiyang, China
- School of Cyber Science and Technology, Guizhou Normal University, Guiyang, China
- School of Mathematical Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| |
Collapse
|
2
|
Fernandes C, Sousa-Baptista J, Lenha-Silva AF, Calheiros D, Correia E, Figueirinha A, Salgueiro L, Gonçalves T. Azorean Black Tea ( Camellia sinensis) Antidermatophytic and Fungicidal Properties. Molecules 2023; 28:7775. [PMID: 38067505 PMCID: PMC10707949 DOI: 10.3390/molecules28237775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The treatment of dermatophytoses, the most common human fungal infections, requires new alternatives. The aim of this study was to determine the antidermatophytic activity of the aqueous Azorean Black Tea extract (ABT), together with an approach to the mechanisms of action. The phytochemical analysis of ABT extract was performed by HPLC. The dermatophytes susceptibility was assessed using a broth microdilution assay; potential synergies with terbinafine and griseofulvin were evaluated by the checkerboard assay. The mechanism of action was appraised by the quantification of the fungal cell wall chitin and β-1,3-glucan, and by membrane ergosterol. The presence of ultrastructural modifications was studied by Transmission Electron Microscopy (TEM). The ABT extract contained organic and phenolic acids, flavonoids, theaflavins and alkaloids. It showed an antidermatophytic effect, with MIC values of 250 µg/mL for Trichophyton mentagrophytes, 125 µg/mL for Trichophyton rubrum and 500 µg/mL for Microsporum canis; at these concentrations, the extract was fungicidal. An additive effect of ABT in association to terbinafine on these three dermatophytes was observed. The ABT extract caused a significant reduction in β-1,3-glucan content, indicating the synthesis of this cell wall component as a possible target. The present study identifies the antidermatophytic activity of the ABT and highlights its potential to improve the effectiveness of conventional topical treatment currently used for the management of skin or mucosal fungal infections.
Collapse
Affiliation(s)
- Chantal Fernandes
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (C.F.); (J.S.-B.); (A.F.L.-S.); (D.C.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Sousa-Baptista
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (C.F.); (J.S.-B.); (A.F.L.-S.); (D.C.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- FMUC—Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Ana Filipa Lenha-Silva
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (C.F.); (J.S.-B.); (A.F.L.-S.); (D.C.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Daniela Calheiros
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (C.F.); (J.S.-B.); (A.F.L.-S.); (D.C.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- FMUC—Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Edmilson Correia
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (C.F.); (J.S.-B.); (A.F.L.-S.); (D.C.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (A.F.); (L.S.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (A.F.); (L.S.)
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Teresa Gonçalves
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (C.F.); (J.S.-B.); (A.F.L.-S.); (D.C.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- FMUC—Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| |
Collapse
|
3
|
Wang W, Le T, Wang W, Yu L, Yang L, Jiang H. Effects of Key Components on the Antioxidant Activity of Black Tea. Foods 2023; 12:3134. [PMID: 37628133 PMCID: PMC10453510 DOI: 10.3390/foods12163134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Many components (such as tea polyphenols, catechins, theaflavins, theasinensins, thearubigins, flavonoids, gallic acid, etc.) in black tea have antioxidant activities. However, it is not clear which components have a greater influence on the antioxidant activity of black tea. In this study, the antioxidant activity and contents of tea polyphenols, catechins, theaflavins, thearubigins, theabrownins, TSA, total flavonoids, amino acids, caffeine, and total soluble sugar were analyzed in 51 black teas. Principal component analysis (PCA), orthogonal partial least-squares discrimination analysis (OPLS-DA), and the correlation analysis method were used for data analysis. The results showed that catechins in tea polyphenols were the most important components that determine the antioxidant activity of black tea. Among them, epicatechin gallate (ECG), epi-gallocatechin gallate (EGCG), epicatechin (EC), and epi-gallocatechin (EGC) were significantly positively correlated with the antioxidant activity of black tea, and theabrownin was negatively correlated with the antioxidant activity of black tea. Furthermore, this study analyzed the correlation between the changes in catechin and its oxidized polymers with antioxidant activity during black tea fermentation; it verified that catechins were significantly positively correlated with the antioxidant activity of black tea, and theabrownin showed a negative correlation. And the antioxidant activity of catechins and their oxidation products in vitro and their correlation in black tea processing were used as validation. This study provides a comparison method for comparing the antioxidant activity of black tea.
Collapse
Affiliation(s)
| | | | | | | | | | - Heyuan Jiang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (W.W.); (T.L.); (W.W.); (L.Y.); (L.Y.)
| |
Collapse
|
4
|
Chen F, Chen YP, Wu H, Li Y, Zhang S, Ke J, Yao JY. Characterization of tea (Camellia sinensis L.) flower extract and insights into its antifungal susceptibilities of Aspergillus flavus. BMC Complement Med Ther 2023; 23:286. [PMID: 37580785 PMCID: PMC10424394 DOI: 10.1186/s12906-023-04122-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Tea (Camellia sinensis L.) flowers will compete with tea leaves in nutrition and are abandoned as an undesirable by-product. In this study, the biological efficacy of tea flowers was investigated. Further exploration of its antifungal activity was explained. METHODS Tea flowers harvested from China were characterized in term of component, antioxidant ability, tyrosinase inhibition, and antifungal ability. Chemical compounds of tea flowers were analyzed by LC-MS. Disinfectant compounds were identified in tea flowers, and 2-ketobutyric acid exhibited antifungal activity against Aspergillus flavusCCTCC AF 2023038. The antifungal mechanism of 2-ketobutyric acid was further investigated by RNA-seq. RESULTS Water-soluble tea flower extracts (TFEs) exhibited free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS) as well as a high ferric-reducing ability. However, no inhibition of tyrosinase activity was observed. In the antifungal test, 6.4 mg/mL TFE reached 71.5% antifungal rate and the electrical conductivity of the culture broth increased with increasing concentration of TFE, implying that it damaged the fungal cell membrane by the TFE. Several disinfectants were identified in TFE by LC-MS, and 2-ketobutyric acid was also confirmed to be capable of fungal inhibition. Propidium iodide (PI) staining indicated that 2-ketobutyric acid caused damage to the cell membrane. RNA-seq analysis revealed that 3,808 differentially expressed genes (DEGs) were found in A. flavus CCTCC AF 2023038 treated by 2-ketobutyric acid, and more than 1,000 DEGs involved in the integral and intrinsic component of membrane were affected. Moreover, 2-ketobutyric acid downregulated aflatoxin biosynthesis genes and decreased the aflatoxin production. CONCLUSIONS Overall, TFE exhibited excellent antioxidant ability and fungal inhibition against A. flavus CCTCC AF 2023038 due to its abundant disinfectant compounds. As a recognized food additive, 2-ketobutyric acid is safe to use in the food industry and can be utilized as the basis for the research and development of strong fungicides.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, 361023, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China
| | - Yu-Pei Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, 361023, China.
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China.
- School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| | - Hongtan Wu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, 361023, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China
| | - Ya Li
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, 361023, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China
| | - Shudi Zhang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, 361023, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China
| | - Jincheng Ke
- Department of Dermatology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, 361000, China
| | - Jeng-Yuan Yao
- Department of Basic Medicine, Xiamen Medical College, Xiamen, Fujian, 361023, China
| |
Collapse
|
5
|
Tea (Camellia sinensis): A Review of Nutritional Composition, Potential Applications, and Omics Research. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125874] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tea (Camelliasinensis) is the world’s most widely consumed non-alcoholic beverage with essential economic and health benefits since it is an excellent source of polyphenols, catechins, amino acids, flavonoids, carotenoids, vitamins, and polysaccharides. The aim of this review is to summarize the main secondary metabolites in tea plants, and the content and distribution of these compounds in six different types of tea and different organs of tea plant were further investigated. The application of these secondary metabolites on food processing, cosmetics industry, and pharmaceutical industry was reviewed in this study. With the rapid advancements in biotechnology and sequencing technology, omics analyses, including genome, transcriptome, and metabolome, were widely used to detect the main secondary metabolites and their molecular regulatory mechanisms in tea plants. Numerous functional genes and regulatory factors have been discovered, studied, and applied to improve tea plants. Research advances, including secondary metabolites, applications, omics research, and functional gene mining, are comprehensively reviewed here. Further exploration and application trends are briefly described. This review provides a reference for basic and applied research on tea plants.
Collapse
|
6
|
NASCIMENTO RC, SÃO JOSÉ JFBD. Green tea extract: a proposal for fresh vegetable sanitization. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.63421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Masood S, Rehman AU, Ihsan MA, Shahzad K, Sabir M, Alam S, Ahmed W, Shah ZH, Alghabari F, Mehmood A, Chung G. Antioxidant potential and α-glucosidase inhibitory activity of onion (Allium cepa L.) peel and bulb extracts. BRAZ J BIOL 2021; 83:00264. [PMID: 34669793 DOI: 10.1590/1519-6984.247168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/01/2021] [Indexed: 11/22/2022] Open
Abstract
Allium cepa L. is a commonly consumed vegetable that belongs to the Amaryllidaceae family and contains nutrients and antioxidants in ample amounts. In spite of the valuable food applications of onion bulb, its peel and outer fleshy layers are generally regarded as waste and exploration of their nutritional and therapeutic potential is still in progress with a very slow progression rate. The present study was designed with the purpose of doing a comparative analysis of the antioxidant potential of two parts of Allium cepa, i.g., bulb (edible part) and outer fleshy layers and dry peels (inedible part). Moreover, the inhibitory effect of the onion bulb and peel extracts on rat intestinal α-glucosidase and pancreatic α-amylase of porcine was also evaluated. The antioxidant potential of onion peel and bulb extracts were evaluated using 2,2-diphenyl- 1-picryl hydrazyl (DPPH), ferric-reducing antioxidant power assay (FRAP), 2,2'-azino-bis- 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging assay, H2O2 radical scavenging activity and Fe2+ chelating activity. Total flavonoids and phenolic content of ethanolic extract of onion peel were significantly greater as compared to that of onion bulb. Ethanolic extract of onion peel also presented better antioxidant and free-radical scavenging activity as compared to the ethanolic extract of bulb, while the aqueous extract of bulb presented weakest antioxidative potential. Onion peel extract's α-glucosidase inhibition potential was also correlated with their phenolic and flavonoid contents. The current findings presented onion peel as a possible source of antioxidative agents and phenolic compounds that might be beneficial against development of various common chronic diseases that might have an association with oxidative stress. Besides, outer dry layers and fleshy peels of onion exhibited higher phenolic content and antioxidant activities, compared to the inner bulb. The information obtained by the present study can be useful in promoting the use of vegetable parts other than the edible mesocarp for several future food applications, rather than these being wasted.
Collapse
Affiliation(s)
- S Masood
- University of Lahore, Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences - UIDNS, Lahore, Pakistan
| | - A Ur Rehman
- Natural Resources Institute (Luke), Horticulture Technologies, Production Systems Unit, Piikkiö, Finland.,University of Helsinki, Faculty of Agriculture and Forestry, Department of Agricultural Sciences, Helsinki, Finland
| | - M A Ihsan
- University of Padova, Department of Agronomy, Animals, Food, Natural Resources and Environment - DAFNAE, Padova, Italy
| | - K Shahzad
- The University of Haripur, Department of Plant Breeding and Genetics, Haripur, Pakistan
| | - M Sabir
- The University of Haripur, Department of Microbiology, Haripur, Pakistan
| | - S Alam
- The University of Haripur, Department of Microbiology, Haripur, Pakistan
| | - W Ahmed
- The University of Haripur, Department of Plant Breeding and Genetics, Haripur, Pakistan
| | - Z H Shah
- Pir Mehr Ali Shah Arid Agriculture University, Department of Plant Breeding and Genetics, Rawalpindi, Pakistan
| | - F Alghabari
- King Abdulaziz University, Department of Arid Land Agriculture, Jeddah, Saudi Arabia
| | - A Mehmood
- The University of Haripur, Department of Soil & Climate Sciences, Haripur, Pakistan
| | - G Chung
- Chonnam National University, Department of Biotechnology, Yeosu, Chonnam, South Korea
| |
Collapse
|
8
|
Hsu H, Sheth CC, Veses V. Herbal Extracts with Antifungal Activity against Candida albicans: A Systematic Review. Mini Rev Med Chem 2021; 21:90-117. [PMID: 32600229 DOI: 10.2174/1389557520666200628032116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/22/2022]
Abstract
In the era of antimicrobial resistance, fungal pathogens are not an exception. Several strategies, including antimicrobial stewardship programs and high throughput screening of new drugs, are being implemented. Several recent studies have demonstrated the effectiveness of plant compounds with antifungal activity. In this systematic review, we examine the use of natural compounds as a possible avenue to fight fungal infections produced by Candida albicans, the most common human fungal pathogen. Electronic literature searches were conducted through PubMed/MEDLINE, Cochrane, and Science Direct limited to the 5 years. A total of 131 articles were included, with 186 plants extracts evaluated. Although the majority of the natural extracts exhibited antifungal activities against C. albicans (both in vivo and in vitro), the strongest antifungal activity was obtained from Lawsonia inermis, Pelargonium graveolens, Camellia sinensis, Mentha piperita, and Citrus latifolia. The main components with proven antifungal activities were phenolic compounds such as gallic acid, thymol, and flavonoids (especially catechin), polyphenols such as tannins, terpenoids and saponins. The incorporation of nanotechnology greatly enhances the antifungal properties of these natural compounds. Further research is needed to fully characterize the composition of all herbal extracts with antifungal activity as well as the mechanisms of action of the active compounds.
Collapse
Affiliation(s)
- Hsuan Hsu
- Department of Dentistry, Faculty of Health Sciences, Universidad Cardenal Herrera, CEU Universities, Moncada 46113, Valencia, Spain
| | - Chirag C Sheth
- Department of Medicine, Faculty of Health Sciences, Universidad Cardenal Herrera, CEU Universities, Moncada 46113, Valencia, Spain
| | - Veronica Veses
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera, CEU Universities, Moncada 46113, Valencia, Spain
| |
Collapse
|
9
|
Profiling of In Vitro Bioaccessibility and Intestinal Uptake of Flavonoids after Consumption of Commonly Available Green Tea Types. Molecules 2021; 26:molecules26061518. [PMID: 33802142 PMCID: PMC7999519 DOI: 10.3390/molecules26061518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to profile the bioaccessibility and intestinal absorption of epicatechins and flavonols in different forms of green tea and its formulation: loose leaf tea, powdered tea, 35% catechins containing GTE, and GTE formulated with green tea-derived polysaccharide and flavonols (CATEPLUS™). The bioaccessibillity and intestinal absorption of epicatechins and flavonols was investigated by using an in vitro digestion model system with Caco-2 cells. The bioaccessibility of total epicatechins in loose leaf tea, powdered tea, GTE, and CATEPLUS™ was 1.27%, 2.30%, 22.05%, and 18.72%, respectively, showing that GTE and CATEPLUS™ had significantly higher bioaccessibility than powdered tea and loose leaf tea. None of the flavonols were detected in powdered tea and loose leaf tea, but the bioaccessibility of the total flavonols in GTE and CATEPLUS™ was 85.74% and 66.98%, respectively. The highest intestinal absorption of epicatechins was found in CATEPLUS™ (171.39 ± 5.39 ng/mg protein) followed by GTE (57.38 ± 9.31), powdered tea (3.60 ± 0.67), and loose leaf tea (2.94 ± 1.03). The results from the study suggest that formulating green tea extracts rich in catechins with second components obtained from green tea processing could enhance the bioavailability of epicatechins.
Collapse
|
10
|
Gharibpour F, Shirban F, Bagherniya M, Nosouhian M, Sathyapalan T, Sahebkar A. The Effects of Nutraceuticals and Herbal Medicine on Candida albicans in Oral Candidiasis: A Comprehensive Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:225-248. [PMID: 33861447 DOI: 10.1007/978-3-030-64872-5_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Candida albicans is part of the healthy flora in the oral cavity. It can also cause opportunistic infection, which can be deleterious. The most typical type of chronic oral candidiasis is denture stomatitis, and C. albicans is identified as the most crucial organism in this situation. Due to the development of the resistant form of candida, using conventional drugs can sometimes be ineffective. Herbs and naturally imitative bioactive compounds could become a new source for antimycotic therapy. Several review studies suggest that herbal medicine and natural bioactive compounds have antibacterial, antiviral and antifungal effects. Thus, it is hypothesized that these natural products might have beneficial effects on pathogenic oral fungal flora such as C. albicans. Although the effects of herbs have been investigated as antifungal agents in several studies, to the best of our knowledge, the effects of these natural products on C. albicans have not yet been reviewed. Thus, the aim of this study was to review the anti-candida activity (especially C. albicans in oral candidiasis) of herbal medicines and natural bioactive compounds. It is concluded that, in general, medicinal plants and nutraceuticals such as garlic, green tea, propolis, curcumin, licorice root, cinnamon, resveratrol, ginger, and berberine are useful in the treatment of C. albicans in oral candidiasis and could be considered as a safe, accessible, and inexpensive management option in an attempt to prevent and treat oral diseases. However, most of the evidence is based on the in vitro and animal studies, so more clinical trials are needed.
Collapse
Affiliation(s)
- Fateme Gharibpour
- Post graduate, Dental students, Research Committee, Department of Orthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farinaz Shirban
- Dental Research Center, Department of Orthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Nosouhian
- Post graduate, Dental students, Research Committee, Department of Orthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
11
|
Kouhihabibidehkordi G, Kheiri S, Karimi I, Taheri F, Bijad E, Bahadoram M, Alibabaie Z, Asgharian S, Zamani H, Rafieian-Kopaei M. Effect of White Tea ( Camellia sinensis) Extract on Skin Wound Healing Process in Rats. World J Plast Surg 2021; 10:85-95. [PMID: 33833959 PMCID: PMC8016378 DOI: 10.29252/wjps.10.1.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND White tea (Camellia sinensis) has anti-inflammatory and antioxidant properties and a protective effect against wrinkles, sunburn and UV damages on the skin. Thus, we aimed to evaluate the effect of white tea extract on the healing process of skin wounds in rats. METHODS This study was done in the Research Center of Shahrekord University of Medical Sciences, Shahrekord, Iran in 2019. Excisional skin wounds were created on five groups of healthy male Wistar rats (200-250 g, n=21) including control group, Eucerin-treated group, white tea 5% ointment (Eucerin) treated group, gel-treated group, white tea 5% gel treated group. Treatment was begun on day 1 and repeated every day at the same time until day 15. Pathologic samples were taken on days 4, 7 and 15 for histopathological examinations. Kruskal-Wallis test was used to analyze data by SPSS. Statistical significance was defined as P<0.05. RESULTS Wound closure rate of control group was more than other groups on day 4 (P<0.05). On day 7, reepithelisation and granulation tissue of control group were more than white tea 5% ointment-treated and its inflammation was less than others (P<0.05). Neo-vascularization of white tea 5% ointment-treated group was more than control group on days 4 and 15 (P<0.05). On day 4, intact mast cells of control group were more than white tea treated groups (P<0.05). Degranulated mast cells of white tea 5% gel treated group was significantly (P<0.05) more than control group on days 4 and 15. CONCLUSION Five percent white tea extract could not help the skin wound healing process.
Collapse
Affiliation(s)
- Golnoush Kouhihabibidehkordi
- Medical Plants Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Soleiman Kheiri
- Department of Biostatistics and Epidemiology, Faculty of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Iraj Karimi
- Department of Pathology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Fatemeh Taheri
- Department of Pathology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Bahadoram
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Alibabaie
- Medical Plants Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shirin Asgharian
- Medical Plants Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hajar Zamani
- Medical Plants Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
12
|
Rehder AP, Silva PB, Xavier AMF, Barrozo MAS. Optimization of microwave-assisted extraction of bioactive compounds from a tea blend. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00750-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Effects of Infusion and Storage on Antioxidant Activity and Total Phenolic Content of Black Tea. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082685] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study determined antioxidant activity in terms of the 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging ability and total phenolic content of black tea under different infusion and storage conditions. High performance liquid chromatography analysis identified caffeine, (−)-epigallocatechin, (−)-epicatechin-3-gallate, (−)-epigallocatechin-3-gallate and (−)-gallocatechin-3-gallate in the tea sample. The water–tea leaves weight ratio did not affect the DPPH scavenging ability. However, infusion temperature affected the DPPH scavenging activity and the total phenolic content. In the present study, the 50% inhibitory concentrations (IC50) for DPPH of black tea infused at 60 to 100 °C ranged from 100.0 ± 13.7 to 28.4 ± 4.8 μg/mL. The total phenolic content of black tea steeped at 60 to 100 °C ranged from 50.4 ± 5.2 to 178.6 ± 16.4 mg gallic acid equivalent/g dry leaf. Black tea exhibited increased antioxidant activity when the infusion temperature was increased. Regarding short-term storage, the DPPH scavenging ability and total phenolic content of black tea did not significantly change within 15 days. This result was consistent for storage temperatures of 4, 9, and 25 °C.
Collapse
|
14
|
CASTAÑEDA-SAUCEDO MC, RAMÍREZ-ANAYA JDP, TAPIA-CAMPOS E, DIAZ-OCHOA EG. Comparison of total phenol content and antioxidant activity of herbal infusions with added Stevia reabaudiana Bertoni. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.29718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Ernesto TAPIA-CAMPOS
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, México
| | | |
Collapse
|
15
|
|
16
|
Sanlier N, Atik İ, Atik A. A minireview of effects of white tea consumption on diseases. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Bennemann GD, Botelho RV, Torres YR, Camargo LA, Khalil NM, Oldoni TLC, Silva DHD. Compostos bioativos e atividade antirradicalar em farinhas de bagaço de uvas de diferentes cultivares desidratadas em liofilizador e em estufa. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2018. [DOI: 10.1590/1981-6723.20517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumo Este estudo objetivou caracterizar compostos bioativos e atividade antirradicalar em farinhas de bagaços de uvas das cultivares Cabernet Sauvignon, Merlot, Sauvignon Blanc e Sangiovese (Vitis vinifera), desidratados em estufa de circulação de ar a 45 °C ou liofilizador a vácuo. Foram analisados compostos fenólicos totais e individuais, antocianinas monoméricas e atividade antirradicalar pelos métodos ABTS e HOCl. A perda total de antocianinas monoméricas foi maior para as cultivares Cabernet Sauvignon e Sangiovese, pelo método de desidratação em estufa. Todas as cultivares liofilizadas preservaram índices estatisticamente superiores de compostos fenólicos totais, com superioridade para a cultivar Sauvignon Blanc. Na análise individual destes compostos, as amostras liofilizadas tiveram maiores teores médios de todos os flavonoides (epicatequina, catequina, quercetina, ácido vanílico, rutina), enquanto que os ácidos gálico, cafeico e ferrúlico, aparentemente, não foram influenciados pelo método de secagem. Todas as amostras desidratadas em estufa tiveram menor capacidade de inibição dos radicais livres em relação às amostras liofilizadas, por ambos os métodos de IC50. O método ABTS apresentou os melhores resultados para as amostras liofilizadas, ou seja, quantidades menores das farinhas foram capazes de inibir em pelo menos 50% a atividade dos radicais livres ABTS e HOCl, com destaque para a cultivar Merlot.
Collapse
|
18
|
Rani R, Arora S, Kaur J, Manhas RK. Phenolic compounds as antioxidants and chemopreventive drugs from Streptomyces cellulosae strain TES17 isolated from rhizosphere of Camellia sinensis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:82. [PMID: 29523107 PMCID: PMC5845325 DOI: 10.1186/s12906-018-2154-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/02/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Oxidative stress in an intracellular environment created by the accumulation of reactive oxygen species results in oxidative damage to biomolecules which ultimately become a hallmark for severe diseases like cancer, aging, diabetes, and cardiovascular and neurodegenerative diseases. METHODS Various in vitro assays were employed to assess the antioxidant potential of strain, DNA protective activity was demonstrated using DNA nicking assay and cytotoxicity of the extract was evaluated using MTT assay. Further identification of the compounds was done using UPLC analysis. RESULTS The extract of Streptomyces cellulosae strain TES17 demonstrated significant antioxidant activity with percentage inhibition of 78.47 ± 0.23, 91.08 ± 0.98 and 82.08 ± 0.93 for DPPH, ABTS and superoxide radical assays at 5 mg/mL, respectively. Total antioxidant and reducing power were found to be 76.93 ± 0.76 and 231.96 ± 0.51 mg AAE/100 mg of dry extract, respectively. Moreover, the extract was shown to inhibit lipid peroxidation upto 67.18 ± 1.9% at 5 mg/mL. TPC and TFC measured in the extract was 55 mg GAE/100 mg and 11.17 ± 4.05 mg rutin/100 mg, respectively. The protective nature of the TES17 extract to oxidative stress induced damaged DNA was shown by percentage of supercoiled DNA i.e. Form I was increased from 26.38 to 38.20% at concentrations ranging from 2 μg to 10 μg. TES17 extract also showed the cytotoxic activity against lung cancer cell line with 74.7 ± 1.33% inhibition whereas, limited toxicity was observed against normal cell line with percentage viability of 87.71 ± 6.66 at same concentration (30 μg/mL) tested. The antioxidant capacity of extract was well correlated with its TPC and TFC and this in turn was in keeping with the UPLC analysis which also revealed the presence of phenolic compounds that were responsible for the antioxidant and cytotoxic potential of S. cellulosae strain TES17. CONCLUSIONS The present study describes that S. cellulosae strain TES17 isolated from the rhizosphere of Camellia sinensis (tea) plant; produces potent compounds with antioxidant activity, further might be developed into therapeutic drugs to combat oxidative stress.
Collapse
Affiliation(s)
- Riveka Rani
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Jeevanjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Rajesh Kumari Manhas
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| |
Collapse
|
19
|
Oliveira VM, Khalil NM, Carraro E. Black and white teas as potential agents to combine with amphotericin B and protect red blood cells from amphotericin B-mediated toxicity. BRAZ J BIOL 2018; 78:673-678. [DOI: 10.1590/1519-6984.171693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 07/12/2017] [Indexed: 05/29/2023] Open
Abstract
Abstract Amphotericin B is a fungicidal substance that is treatment of choice for most systemic fungal infections affecting immunocompromised patients. However, severe side effects have limited the utility of this drug. The aim of this study was to evaluate the antifungal effect of the combination of amphotericin B with black tea or white tea and protective of citotoxic effect. The present study shows that white and black teas have additive effects with amphotericin B against some species Candida. In addition, the combination of white and black tea with amphotericin B may reduce the toxicity of amphotericin B to red blood cells. Our results suggest that white and black tea is a potential agent to combine with amphotericin for antifungal efficacy and to reduce the amphotericin dose to lessen side effects.
Collapse
Affiliation(s)
| | | | - E. Carraro
- Universidade Estadual do Centro-Oeste, Brazil
| |
Collapse
|
20
|
Dias IJ, Trajano ERIS, Castro RD, Ferreira GLS, Medeiros HCM, Gomes DQC. Antifungal activity of linalool in cases of Candida spp. isolated from individuals with oral candidiasis. BRAZ J BIOL 2017; 78:368-374. [PMID: 28977047 DOI: 10.1590/1519-6984.171054] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023] Open
Abstract
This study analyzed the antifungal activity of phytoconstituents from linalool on Candida spp. strains, in vitro, isolated from patients with clinical diagnoses of oral candidiasis associated with the use of a dental prosthesis. Biological samples were collected from 12 patients using complete dentures or removable partial dentures and who presented mucous with diffuse erythematous or stippled features, indicating a clinical diagnosis of candidiasis. To identify fungal colonies of the genus Candida, samples were plated onto CHROMagar Candida®. The antifungal activity of linalool, a monoterpene unsaturated constituent of basil oil, was performed using the broth microdilution technique. Then, the minimum inhibitory concentration (MIC), the two subsequent stronger concentrations and the positive controls were subcultured on Sabouraud Dextrose Agar plates to determine the minimum fungicidal concentration (MFC). The experiments were performed in triplicate and nystatin was used as a positive control in all tests. Diagnoses of oral candidiasis were verified in eight patients (66.6%) and the most prevalent fungal species was Candida albicans (37.5%), followed by Candida krusei (25.0%); and Candida tropicalis (4.2%). The best antifungal activity of linalool was observed on Candida tropicalis (MIC = 500 mg/mL), followed by Candida albicans (MIC = 1.000 mg/mL), and Candida krusei (MIC = 2.000 mg/mL).Under the study conditions and based on the results obtained, it can be concluded that the Candida strains tested were susceptible to linalool.
Collapse
Affiliation(s)
- I J Dias
- Departamento de Odontologia, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
| | - E R I S Trajano
- Departamento de Odontologia, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
| | - R D Castro
- Departamento de Odontologia, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - G L S Ferreira
- Departamento de Odontologia, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - H C M Medeiros
- Departamento de Odontologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - D Q C Gomes
- Departamento de Odontologia, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
| |
Collapse
|
21
|
López-Gil S, Nuño-Lámbarri N, Chávez-Tapia N, Uribe M, Barbero-Becerra VJ. Liver toxicity mechanisms of herbs commonly used in Latin America. Drug Metab Rev 2017; 49:338-356. [PMID: 28571502 DOI: 10.1080/03602532.2017.1335750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mexico owns approximately 4500 medicinal plants species, a great diversity that position it at the second place after China. According to the Mexican health department, 90% of common population consumes them to treat various diseases. Additionally, herbal remedies in Latin America (LA) are considered a common practice, but the frequency of use and the liver damage related to its consumption is still unknown. Despite the high prevalence and indiscriminate herbal consumption, the exact mechanism of hepatotoxicity and adverse effects is not fully clarified and is still questioned. Some herb products associated with herb induced liver injury (HILI) are characterized by presenting a different chemical composition that may vary from batch to batch, also the biological activity of many medicinal plants and other natural products are directly related to their most active component and its concentration. There are two main biological components that are associated with liver damage, alkaloids, and flavonoids, which are frequent constituents of commonly used herbs. The interaction with the different cytochrome P-450 isoforms, inflammatory, and oxidative activities seem to be the main damage pathway involved in the liver. It is important to know the herbal adverse effects and mechanisms involved; therefore, this article is focused on the beneficial and deleterious effects as well as the possible toxicity mechanisms and interactions of the herbs that are frequently used in LA, since the herb-host interaction may not always be the expected or desired depending on the clinical context in which it is administered.
Collapse
Affiliation(s)
- Sofía López-Gil
- a Translational Research Unit , Medica Sur Clinic & Foundation , Mexico City , Mexico.,b Universidad Popular Autónoma del Estado de Puebla , Puebla , Mexico
| | - Natalia Nuño-Lámbarri
- a Translational Research Unit , Medica Sur Clinic & Foundation , Mexico City , Mexico
| | - Norberto Chávez-Tapia
- a Translational Research Unit , Medica Sur Clinic & Foundation , Mexico City , Mexico.,c Obesity and Digestive Diseases Unit , Medica Sur Clinic & Foundation , Mexico City , Mexico
| | - Misael Uribe
- c Obesity and Digestive Diseases Unit , Medica Sur Clinic & Foundation , Mexico City , Mexico
| | | |
Collapse
|
22
|
Marques HP, Barbosa S, Nogueira DA, Santos MH, Santos BR, Santos-Filho PR. Proteic and phenolics compounds contents in Bacupari callus cultured with glutamine and nitrogen sources. BRAZ J BIOL 2017; 78:41-46. [DOI: 10.1590/1519-6984.03416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/02/2016] [Indexed: 12/30/2022] Open
Abstract
Abstract In this study was evaluated the influence of glutamine supplementation on the endogenous content of amino acids, proteins, total phenolics, flavonoids and proanthocyanidins in Bacupari callus. The explants were inoculated in MS medium, MS with half concentration of the nitrogen salts (MS½) and nitrogen-free MS, supplemented with glutamine (5, 10, 30 and 60mM) named as Gln5, Gln10, Gln30 and Gln60. Amino acids and proteins were analyzed after 20, 80 and 140 days and the secondary metabolites on the 140th day. There was no difference in the amino acids on the 20th day. On the 80th day the treatments MS and MS½ presented the lowest levels. On the 140th day MS and MS½ presented the lowest amino acid concentration and Gln10 the highest. Concerning proteins, there was difference only on the 140th day, being the highest concentrations observed in Gln5, and the lowest in MS½ treatment. Total phenolics content was higher in the treatment Gln60 and lowest in MS. Treatments Gln5, Gln10, Gln30 and MS½ were statistically equal. For flavonoids, the highest values occurred in the treatments Gln30, Gln60 and MS½ and the lowest in Gln5, Gln10 and MS. Similarly, for the proanthocyanidins the highest concentrations were observed in treatment Gln60 and the lowest in Gln5 and MS. In conclusion, the treatment with 60mM of glutamine favors the protein accumulation and production of secondary metabolites in Bacupari callus.
Collapse
|
23
|
Griz SAS, Matos-Rocha TJ, Santos AF, Costa JG, Mousinho KC. Medicinal plants profile used by the 3rd District population of Maceió-AL. BRAZ J BIOL 2017; 77:794-802. [DOI: 10.1590/1519-6984.01116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022] Open
Abstract
Abstract Herein the use of medicinal plants by the population of the 3rd Sanitary District of Maceió-AL city is reported. Transversal description was conducted from February 2013 to January 2014, with a sample of 116 individuals of both Gender Genders aged over 18 years. The ethnobotanical information interviews ethnobotanical information were obtained through semi - structured questionnaire featuring the use of medicinal plants and social and economical data. Descriptive statistics was applied for quantitative variables as mean and standard deviation and proportions for qualitative variables in the frequency table format. The results showed that 85.34% of the interviewees used plants for medicinal purposes. As the majority of these were (73.28%) females in the age group between 30-60 years of old. Among a total of 45 identified plant species, the highest use frequency were for Boldus Peumus (bilberry), Melissa officinalis (lemon balm), and Mentha piperita (mint). The most widely used plant foliage part was (53.53%) prepared as an infusion (55.5%). The use of medicinal plants in Maceió cityis widespread, highlighting the importance of ethnobotanical knowledge for the study of medicinal plants.
Collapse
Affiliation(s)
| | - T. J. Matos-Rocha
- Centro Universitário Cesmac, Brazil; Universidade Estadual de Ciências da Saúde de Alagoas, Brazil
| | - A. F. Santos
- Centro Universitário Cesmac, Brazil; Universidade Estadual de Alagoas, Brazil
| | - J. G. Costa
- Empresa Brasileira de Pesquisa Agropecuária, Brazil
| | | |
Collapse
|
24
|
Camellia sinensis L. Extract and Its Potential Beneficial Effects in Antioxidant, Anti-Inflammatory, Anti-Hepatotoxic, and Anti-Tyrosinase Activities. Molecules 2017; 22:molecules22030401. [PMID: 28273866 PMCID: PMC6155403 DOI: 10.3390/molecules22030401] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/02/2022] Open
Abstract
The aims of this study were to investigate the potential benefits of antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase activities of a methanolic extract of fresh tea leaves (FTE) (Camellia sinensis L.). The antioxidant capacity was investigated using three different methods at different temperatures. The anti-inflammatory activity was studied in vitro by the inhibition of 5-lipoxygenase assay. The anti-hepatotoxic effect was investigated in CCl4-induced liver injury in rats. The anti-tyrosinase activities of the FTE and its principal phenolic compounds were investigated in l-3,4-dihydroxyphenylalanine (l-DOPA) oxidation by a mushroom tyrosinase. A molecular docking study was conducted to determine how the FTE’s principal catechins interact with the tyrosinase. The FTE exhibited the best shelf life at low temperatures and demonstrated concentration-dependent antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase effects compared to positive references. Treatment of rats with the FTE at 2000 mg/kg/day for 28 consecutive days reversed CCl4-induced oxidative damage in hepatic tissues by lowering the levels of alanine aminotransferase by 69% and malondialdehyde by 90%. Our findings suggest that the FTE has the capacity to scavenge free radicals and can protect against oxidative stress induced by CCl4 intoxication. The docking results were consistent with our in vitro data, indicating the anti-tyrosinase potency of the principal catechins.
Collapse
|