1
|
Santos BM, de Souza JPA, Goulart LRDP, Petrine JCP, Alves FHF, Del Bianco-Borges B. Impacts of Anabolic-androgenic steroid supplementation on female health and offspring: Mechanisms, side effects, and medical perspectives. Saudi Pharm J 2024; 32:102205. [PMID: 39697477 PMCID: PMC11653648 DOI: 10.1016/j.jsps.2024.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
The increasing prevalence of Anabolic-androgenic steroids (AAS) among women, driven by the pursuit of improved body aesthetics, characterized by higher lean mass and reduced adipose tissue, raises significant health concerns, particularly due to the limited knowledge regarding their effects on the female organism. Prolonged use and/or high doses of AAS are linked to various harmful side effects, including mood changes, psychiatric disorders, voice deepening, clitoromegaly, menstrual irregularities, and cardiovascular complications, prompting medical societies to discourage their widespread use due to insufficient evidence supporting their safety and efficacy. Studies in female rodents have shown that AAS can lead to increased aggression, inflammation, reduced neuronal density, and negative impacts on the myocardium and blood vessels. Additionally, maternal administration of androgens during pregnancy can adversely affect offspring's reproductive, neuronal, and metabolic health, resulting in long-term impairments. The complexity of the mechanisms underlying AAS effects, and their potential genotoxicity remains poorly understood. This review aims to elucidate the various ways in which AAS can impact female physiology and that of their offspring, highlight commonly used anabolic substances, and discuss the positions of medical societies regarding AAS use.
Collapse
Affiliation(s)
- Beatriz Menegate Santos
- Postgraduate Program in Health Science, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| | - Jessica Peres Alves de Souza
- Postgraduate Program in Health Science, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| | - Luísa Rodrigues de Paula Goulart
- Medicine Department, Health Science Faculty, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| | - Jéssica Castro Pereira Petrine
- Postgraduate Program in Health Science, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| | - Fernando Henrique Ferrari Alves
- Institute of Science, Technology and Innovation – Federal University of Lavras, Jardim Califórnia Garden 37950-000, São Sebastião do Paraíso, Minas Gerais, Brazil
| | - Bruno Del Bianco-Borges
- Postgraduate Program in Health Science, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
- Medicine Department, Health Science Faculty, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| |
Collapse
|
2
|
da Silva Bellini Ramos AB, Torres T, Dos Reis LFC, Lambert GC, Colombo FA, Marques MJ, Reimão JQ. Assessment of nebivolol efficacy in experimental models of toxoplasmosis: insights into parasite burden reduction and neuronal protection. Parasitol Res 2024; 123:303. [PMID: 39160298 DOI: 10.1007/s00436-024-08318-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
This study investigates the efficacy of nebivolol (NBV) in experimental models of toxoplasmosis, focusing on parasite burden reduction and neuronal protection. In the acute model of experimental toxoplasmosis, Swiss mice infected with RH strain tachyzoites received oral NBV chlorhydrate doses of 2 mg/kg/day and 4 mg/kg/day for 8 days. Treatment with NBV significantly reduced parasite burden compared to vehicle and standard drug (PYR) groups. In the chronic model of experimental toxoplasmosis, C57/BL6 mice infected with the ME49 strain received NBV chlorhydrate 41 days post-infection and were evaluated after 10 days of treatment. NBV chlorhydrate effectively reduced cyst number and area, as well as bradyzoite burden compared to controls. Histological analysis demonstrated that NBV chlorhydrate preserved neuronal count, with the 4 mg/kg/day dose yielding counts similar to non-infected mice. Statistical analysis confirmed significant differences compared to control groups. Furthermore, immunohistochemical analysis revealed a significant reduction in iNOS labeling in the brains of mice treated with NBV chlorhydrate, indicating a decrease in nitric oxide production compared to control groups. These findings suggest NBV's potential as a promising candidate for toxoplasmosis treatment, highlighting its ability to reduce parasite burden and protect neuronal integrity. Further research is warranted to elucidate NBV's mechanisms of action and its clinical application in managing toxoplasmosis.
Collapse
Affiliation(s)
| | - Tayline Torres
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Faculdade de Medicina de Jundiaí, Jundiaí, Brazil
| | - Luis Felipe Cunha Dos Reis
- Departamento de Biologia Estrutural, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Gabriel Carvalho Lambert
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Fábio Antônio Colombo
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Marcos José Marques
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Juliana Quero Reimão
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Faculdade de Medicina de Jundiaí, Jundiaí, Brazil.
| |
Collapse
|
3
|
Zelleroth S, Stam F, Nylander E, Kjellgren E, Gising J, Larhed M, Grönbladh A, Hallberg M. The decanoate esters of nandrolone, testosterone, and trenbolone induce steroid specific memory impairment and somatic effects in the male rat. Horm Behav 2024; 161:105501. [PMID: 38368844 DOI: 10.1016/j.yhbeh.2024.105501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Long-term use of anabolic androgenic steroids (AAS) in supratherapeutic doses is associated with severe adverse effects, including physical, mental, and behavioral alterations. When used for recreational purposes several AAS are often combined, and in scientific studies of the physiological impact of AAS either a single compound or a cocktail of several steroids is often used. Because of this, steroid-specific effects have been difficult to define and are not fully elucidated. The present study used male Wistar rats to evaluate potential somatic and behavioral effects of three different AAS; the decanoate esters of nandrolone, testosterone, and trenbolone. The rats were exposed to 15 mg/kg of nandrolone decanoate, testosterone decanoate, or trenbolone decanoate every third day for 24 days. Body weight gain and organ weights (thymus, liver, kidney, testis, and heart) were measured together with the corticosterone plasma levels. Behavioral effects were studied in the novel object recognition-test (NOR-test) and the multivariate concentric square field-test (MCSF-test). The results conclude that nandrolone decanoate, but neither testosterone decanoate nor trenbolone decanoate, caused impaired recognition memory in the NOR-test, indicating an altered cognitive function. The behavioral profile and stress hormone level of the rats were not affected by the AAS treatments. Furthermore, the study revealed diverse AAS-induced somatic effects i.e., reduced body weight development and changes in organ weights. Of the three AAS included in the study, nandrolone decanoate was identified to cause the most prominent impact on the male rat, as it affected body weight development, the weights of multiple organs, and caused an impaired memory function.
Collapse
Affiliation(s)
- Sofia Zelleroth
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Frida Stam
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Erik Nylander
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Ellinor Kjellgren
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden
| | - Johan Gising
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, SE-751 23, Uppsala University, Sweden.
| | - Mats Larhed
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, SE-751 23, Uppsala University, Sweden.
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| |
Collapse
|
4
|
Corsini W, Esteves A, Junior WCR, de Almeida Hermes T, Damião B, Rodrigues MR. Association between neuronal degeneration and supraphysiological doses of two types of anabolic steroids in rat brain. Steroids 2022; 188:109121. [PMID: 36208700 DOI: 10.1016/j.steroids.2022.109121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/24/2022] [Accepted: 09/30/2022] [Indexed: 11/15/2022]
Abstract
The anabolic androgenic steroids (AAS) are natural compounds that are precursors or derivatives of testosterone and, as a consequence of indiscriminate use, cause irreversible neuronal effects. For this study, 70 brain samples were used from male Wistar rats, separated into 14 groups, divided into: control, sedentary, and exercise groups; in the concentrations: 5 mg, 10 mg, and 15 mg. Two different AAS were used: Testosterone Cypionate (TC) and Nandrolone Decanoate (ND). The encephali followed all the conventional histological procedures, for further analysis of the estimates of neuron bodies of the Locus coeruleus; also being carried out the techniques of the Tunnel Assay and Von Kossa staining. The results obtained show significant values different from the control group: Testosterone Cypionate (TCS): 5 mg (25,00 ± 4,47); 10 mg (23,67 ± 4,45) and 15 mg (21,93 ± 5,65), as well as for Nandrolone Decanoate (ND) in the doses: 5 mg (23,40 ± 3,81); 10 mg (22,80 ± 3,80) and 15 mg (22,80 ± 4,54) being the values of the control group (CGS) 34,27 ± 6,06. For the groups that exercised, the values were: TCT 5 mg 20,87 ± 3,23; TCT 10 mg 21,93 ± 4,91 and TCT 15 mg 21,47 ± 4,36 while, the Nandrolone Decanoate (ND) groups, in the different doses were: NDT 5 mg 21,53 ± 4,34; NDT 10 mg 23,53 ± 1,68 and NDT 15 mg 23,40 ± 2,20, also expressing significant values different from the control group. When comparing the sedentary control group with the animals that exercised, a statistically significant difference was observed being: CGS 34,27 ± 6,06; TCT 5 mg; 20,87 ± 3,23; NDT 5 mg 21,53 ± 4,34; TCT 10 mg 21,93 ± 4,91; NDT 10 mg 23,53 ± 1,68; TCT 15 mg 21,47 ± 4,36 and NDT 15 mg 23,40 ± 2,20. The results of this study, point out that both steroids drastically reduce neuronal density in the Locus coeruleus area inferring that, the possible cause of neuronal death is necrosis, caused by intracellular calcium imbalance.
Collapse
Affiliation(s)
- Wagner Corsini
- Master in the Program of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil.
| | - Alessandra Esteves
- Institute of Biomedical Sciences, Department of Anatomy, Federal University of Alfenas, Alfenas, Brazil
| | - Wagner Costa Rossi Junior
- Institute of Biomedical Sciences, Department of Anatomy, Federal University of Alfenas, Alfenas, Brazil
| | - Túlio de Almeida Hermes
- Institute of Biomedical Sciences, Department of Anatomy, Federal University of Alfenas, Alfenas, Brazil
| | | | - Maria Rita Rodrigues
- Faculty of Pharmaceutical Science, Federal University of Alfenas, Alfenas, Brazil
| |
Collapse
|
5
|
Widjaja G, Younus LA, Abdelbasset WK, Ibragimov DD, Yumashev AV, Shalaby MN, Mustafa YF, Fardeeva I. Chemical and physical features of biological fluids in treatment of hydatid disease. BRAZ J BIOL 2022; 84:e257021. [PMID: 35703637 DOI: 10.1590/1519-6984.25702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of this paper is to better understand the dynamics of crystallogenic and starting activity in biological fluids of patients throughout surgery and the late postoperative phase in alveococcosis. Samples of saliva from 22 individuals with alveococcosis were included in the research. Biological fluid samples were taken at the time of admission and before the patient was discharged. Following that, slides were made utilizing the teziocrystalloscopy method, which incorporates the investigation of the crystal forming activity of mixed saliva with its starting characteristics using a 0.9 percent sodium chloride solution as the foundation ingredient. Using our own set of criteria, we evaluated the outcomes of crystalloscopic and tezigraphic experiments. Specrophotometric examination of tezigraphic and crystalloscopic facies was done using a PowerWave XS microplate spectrophotometer at wavelengths of 400, 350, and 300 nm to augment the results from ocular morphometry of dried saliva micro slides. Surgical therapy results in a partial normalization of physical and chemical parameters, as well as the composition of the patient's biological fluids after the patient is discharged from the hospital.
Collapse
Affiliation(s)
- G Widjaja
- Postgraduate Study, Universitas Krisnadwipayana, Jatiwaringin, Indonesia
- Faculty of Public Health, Universitas Indonesia, Depok, Indonesia
| | - L A Younus
- Department of Clinical Laboratory Sciences, Faculty of Pharmacy, Jabir Ibn Hayyan Medical University, Al Najaf Al Ashraf, Iraq
| | - W K Abdelbasset
- Prince Sattam Bin Abdulaziz University, College of Applied Medical Sciences, Department of Health and Rehabilitation Sciences, Al Kharj, Saudi Arabia
- Cairo University, Kasr Al-Aini Hospital, Department of Physical Therapy, Giza, Egypt
| | - D D Ibragimov
- Department of Oral and Maxillofacial Surgery, Samarkand State Medical Institute, Samarkand, Uzbekistan
| | - A V Yumashev
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - M N Shalaby
- Suez Canal University, Biological Sciences and Sports Health Department, Faculty of Physical Education, Ismailia, Egypt
| | - Y F Mustafa
- University of Mosul, College of Pharmacy, Department of Pharmaceutical Chemistry, Mosul, Iraq
| | | |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to examine the recent evidence regarding the effects of exogenous androgens on the brain. Understanding these effects is of high importance, as the consequences of androgens on the reproductive and endocrine system are well documented, while fewer studies have focused on the neural and cerebral consequences of androgen use. RECENT FINDINGS Supraphysiological doses of androgens have been shown to contribute to neurodegeneration, decreased brain-derived neurotrophic factor, increased inflammation and decreased neuronal density in animal studies, which may correspond to changes in mood, cognition and aggression. Findings from human studies suggest that similar behavioural and cognitive deficits may occur as a result of prolonged use of androgens. Additional evidence suggests that androgen use, particularly in high doses, may contribute to brain ageing and cerebrovascular problems. SUMMARY Findings from recent human and animal studies indicate that androgen use likely contributes to brain alterations, which may cause the frequently observed deficits in cognitive and emotional functioning. Although exogenous testosterone in appropriate doses for therapeutic purposes likely have some neurobiological benefits for certain populations, supraphysiological doses may cause multiple mental and physical health problems, indicating a need for additional large-scale studies in humans.
Collapse
Affiliation(s)
- Morgan Scarth
- Anabolic Androgenic Steroid Research Group, Section for Clinical Addiction Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|