1
|
Hashemi TS, Soltani J, Samsampour D, Seyahooei MA, Ghasemi M. Spatiotemporal diversity of bacterial endophyte microbiome of mandarin (Citrus reticulata) in the northern Persian Gulf and its HCN production and N 2 fixation. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01213-9. [PMID: 39499397 DOI: 10.1007/s12223-024-01213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024]
Abstract
Endophytes are symbionts that live in healthy plants and potentially improve the health of plant holobionts. Here, we investigated the bacterial endophyte community of Citrus reticulata grown in the northern Persian Gulf. Bacteria were isolated seasonally from healthy trees (root, stem, bark, trunk, leaf, and crown tissues) in four regions of Hormozgan province (i.e., Ahmadi, Siyahoo, Sikhoran, Roudan), a subtropical hot region in Iran. A total of 742 strains from 17 taxa, 3 phyla, and 5 orders were found, most of which belonged to Actinobacteria (Actinobacteriales) as the dominant group, followed by Firmicutes (Bacillales), Proteobacteria (Sphingomonadales, Rhizobiales), and Cyanobacteria (Synechoccales). The genera included Altererythrobacter, Arthrobacter, Bacillus, Cellulosimicrobium, Curtobacterium, Kocuria, Kytococcus, Methylopila, Mycobacterium, Nocardioides, Okiabacterium, Paracraurococcus, and Psychrobacillus. The most frequently occurring species included Psychrobacillus psychrodurans, Kytococcus schroetri, and Bacillus cereus. In addition, the overall colonization frequency and variability of endophytes were higher on the trunks. The leaves showed the lowest species variability in all sampling periods. The frequency of endophyte colonization was also higher in summer. The Shannon-Wiener (H') and Simpson indices varied with all factors, i.e., region, season, and tissue type, with the maximum in Roudan. Furthermore, 52.9% of the strains were capable of nitrogen fixation, and 70% produced antagonistic hydrogen cyanide (HCN). Thus, C. reticulata harbors a variety of bioactive bacterial endophytes that could be beneficial for host fitness in such harsh environments.
Collapse
Affiliation(s)
- Tahereh Sadat Hashemi
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran
| | - Jalal Soltani
- Phytopathology Section, Plant Protection Department, Bu-Ali Sina University, Agriculture Faculty, Hamedan, Iran.
| | - Davood Samsampour
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran.
| | - Majeed Askari Seyahooei
- Plant Protection Research Department, Agricultural Research Education and Extension Organization (AREEO), Hormozgan Agricultural and Natural Resources Research and Education Center, Bandar Abbas, Iran
| | - Mostafa Ghasemi
- Horticulture Crops Research Department, Qazvin Agricultural and Natural Resources Research and Education Center, AREEO, Qazvin, Iran
| |
Collapse
|
2
|
Goforth M, Cooper MA, Oliver AS, Pinzon J, Skots M, Obergh V, Suslow TV, Flores GE, Huynh S, Parker CT, Mackelprang R, Cooper KK. Bacterial community shifts of commercial apples, oranges, and peaches at different harvest points across multiple growing seasons. PLoS One 2024; 19:e0297453. [PMID: 38625898 PMCID: PMC11020611 DOI: 10.1371/journal.pone.0297453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/04/2024] [Indexed: 04/18/2024] Open
Abstract
Assessing the microbes present on tree fruit carpospheres as the fruit enters postharvest processing could have useful applications, as these microbes could have a major influence on spoilage, food safety, verification of packing process controls, or other aspects of processing. The goal of this study was to establish a baseline profile of bacterial communities associated with apple (pome fruit), peach (stone fruit), and Navel orange (citrus fruit) at harvest. We found that commercial peaches had the greatest bacterial richness followed by oranges then apples. Time of harvest significantly changed bacterial diversity in oranges and peaches, but not apples. Shifts in diversity varied by fruit type, where 70% of the variability in beta diversity on the apple carposphere was driven by the gain and loss of species (i.e., nestedness). The peach and orange carposphere bacterial community shifts were driven by nearly an even split between turnover (species replacement) and nestedness. We identified a small core microbiome for apples across and between growing seasons that included only Methylobacteriaceae and Sphingomonadaceae among the samples, while peaches had a larger core microbiome composed of five bacterial families: Bacillaceae, Geodermtophilaceae, Nocardioidaceae, Micrococcaeceae, and Trueperaceae. There was a relatively diverse core microbiome for oranges that shared all the families present on apples and peaches, except for Trueperaceae, but also included an additional nine bacterial families not shared including Oxalobacteraceae, Cytophagaceae, and Comamonadaceae. Overall, our findings illustrate the important temporal dynamics of bacterial communities found on major commercial tree fruit, but also the core bacterial families that constantly remain with both implications being important entering postharvest packing and processing.
Collapse
Affiliation(s)
- Madison Goforth
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Margarethe A. Cooper
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Andrew S. Oliver
- USDA-ARS Western Human Nutrition Research Center, Davis, California, United States of America
| | - Janneth Pinzon
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
| | - Mariya Skots
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
| | - Victoria Obergh
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Trevor V. Suslow
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
| | - Gilberto E. Flores
- Department of Biology, California State University, Northridge, Northridge, California, United States of America
| | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, USDA, Albany, California, United States of America
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, USDA, Albany, California, United States of America
| | - Rachel Mackelprang
- Department of Biology, California State University, Northridge, Northridge, California, United States of America
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
3
|
Feitosa-Junior OR, Lubbe A, Kosina SM, Martins-Junior J, Barbosa D, Baccari C, Zaini PA, Bowen BP, Northen TR, Lindow SE, da Silva AM. The Exometabolome of Xylella fastidiosa in Contact with Paraburkholderia phytofirmans Supernatant Reveals Changes in Nicotinamide, Amino Acids, Biotin, and Plant Hormones. Metabolites 2024; 14:82. [PMID: 38392974 PMCID: PMC10890622 DOI: 10.3390/metabo14020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
Microbial competition within plant tissues affects invading pathogens' fitness. Metabolomics is a great tool for studying their biochemical interactions by identifying accumulated metabolites. Xylella fastidiosa, a Gram-negative bacterium causing Pierce's disease (PD) in grapevines, secretes various virulence factors including cell wall-degrading enzymes, adhesion proteins, and quorum-sensing molecules. These factors, along with outer membrane vesicles, contribute to its pathogenicity. Previous studies demonstrated that co-inoculating X. fastidiosa with the Paraburkholderia phytofirmans strain PsJN suppressed PD symptoms. Here, we further investigated the interaction between the phytopathogen and the endophyte by analyzing the exometabolome of wild-type X. fastidiosa and a diffusible signaling factor (DSF) mutant lacking quorum sensing, cultivated with 20% P. phytofirmans spent media. Liquid chromatography-mass spectrometry (LC-MS) and the Method for Metabolite Annotation and Gene Integration (MAGI) were used to detect and map metabolites to genomes, revealing a total of 121 metabolites, of which 25 were further investigated. These metabolites potentially relate to host adaptation, virulence, and pathogenicity. Notably, this study presents the first comprehensive profile of X. fastidiosa in the presence of a P. phytofirmans spent media. The results highlight that P. phytofirmans and the absence of functional quorum sensing affect the ratios of glutamine to glutamate (Gln:Glu) in X. fastidiosa. Additionally, two compounds with plant metabolism and growth properties, 2-aminoisobutyric acid and gibberellic acid, were downregulated when X. fastidiosa interacted with P. phytofirmans. These findings suggest that P. phytofirmans-mediated disease suppression involves modulation of the exometabolome of X. fastidiosa, impacting plant immunity.
Collapse
Affiliation(s)
- Oseias R Feitosa-Junior
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Andrea Lubbe
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Suzanne M Kosina
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joaquim Martins-Junior
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| | - Deibs Barbosa
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| | - Clelia Baccari
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Benjamin P Bowen
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Trent R Northen
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Aline M da Silva
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| |
Collapse
|
4
|
van Neerbos FAC, Dewitte P, Wäckers F, Wenseleers T, Jacquemyn H, Lievens B. Bacterial volatiles elicit differential olfactory responses in insect species from the same and different trophic levels. INSECT SCIENCE 2023; 30:1464-1480. [PMID: 36644938 DOI: 10.1111/1744-7917.13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Insect communities consist of species from several trophic levels that have to forage for suitable resources among and within larger patches of nonresources. To locate their resources, insects use diverse stimuli, including olfactory, visual, acoustic, tactile and gustatory cues. While most research has focused on cues derived from plants and other insects, there is mounting evidence that insects also respond to volatile organic compounds (VOCs) emitted by microorganisms. However, to date little is known about how the olfactory response of insects within and across different trophic levels is affected by bacterial VOCs. In this study, we used Y-tube bioassays and chemical analysis of VOCs to assess how VOCs emitted by bacteria affect the olfactory response of insects of the same and different trophic levels. Experiments were performed using two aphid species (Amphorophora idaei Börner and Myzus persicae var. nicotianae Blackman), three primary parasitoid species (Aphidius colemani Viereck, A. ervi Haliday, and A. matricariae Viereck), and two hyperparasitoid species (Asaphes suspensus Nees and Dendrocerus aphidum Rondani). Olfactory responses were evaluated for three bacterial strains (Bacillus pumilus ST18.16/133, Curtobacterium sp. ST18.16/085, and Staphylococcus saprophyticus ST18.16/160) that were isolated from the habitat of the insects. Results revealed that insects from all trophic levels responded to bacterial volatiles, but olfactory responses varied between and within trophic levels. All bacteria produced the same set of volatile compounds, but often in different relative concentrations. For 11 of these volatiles we found contrasting correlations between their concentration and the behavior of the primary parasitoids and hyperparasitoids. Furthermore, olfactometer experiments on three of these compounds confirmed the contrasting olfactory responses of primary parasitoids and hyperparasitoids. The potential of these findings for the development of novel semiochemical-based strategies to improve biological aphid control has been discussed.
Collapse
Affiliation(s)
- Francine Antoinette Cornelus van Neerbos
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Peter Dewitte
- Laboratory of Socioecology and Social Evolution, Biology Department, KU Leuven, Leuven, Belgium
| | - Felix Wäckers
- Biobest, Westerlo, Belgium
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, Biology Department, KU Leuven, Leuven, Belgium
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Anguita-Maeso M, Navas-Cortés JA, Landa BB. Insights into the Methodological, Biotic and Abiotic Factors Influencing the Characterization of Xylem-Inhabiting Microbial Communities of Olive Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:912. [PMID: 36840260 PMCID: PMC9967459 DOI: 10.3390/plants12040912] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Vascular pathogens are the causal agents of some of the most devastating plant diseases in the world, which can cause, under specific conditions, the destruction of entire crops. These plant pathogens activate a range of physiological and immune reactions in the host plant following infection, which may trigger the proliferation of a specific microbiome to combat them by, among others, inhibiting their growth and/or competing for space. Nowadays, it has been demonstrated that the plant microbiome can be modified by transplanting specific members of the microbiome, with exciting results for the control of plant diseases. However, its practical application in agriculture for the control of vascular plant pathogens is hampered by the limited knowledge of the plant endosphere, and, in particular, of the xylem niche. In this review, we present a comprehensive overview of how research on the plant microbiome has evolved during the last decades to unravel the factors and complex interactions that affect the associated microbial communities and their surrounding environment, focusing on the microbial communities inhabiting the xylem vessels of olive trees (Olea europaea subsp. europaea), the most ancient and important woody crop in the Mediterranean Basin. For that purpose, we have highlighted the role of xylem composition and its associated microorganisms in plants by describing the methodological approaches explored to study xylem microbiota, starting from the methods used to extract xylem microbial communities to their assessment by culture-dependent and next-generation sequencing approaches. Additionally, we have categorized some of the key biotic and abiotic factors, such as the host plant niche and genotype, the environment and the infection with vascular pathogens, that can be potential determinants to critically affect olive physiology and health status in a holobiont context (host and its associated organisms). Finally, we have outlined future directions and challenges for xylem microbiome studies based on the recent advances in molecular biology, focusing on metagenomics and culturomics, and bioinformatics network analysis. A better understanding of the xylem olive microbiome will contribute to facilitate the exploration and selection of specific keystone microorganisms that can live in close association with olives under a range of environmental/agronomic conditions. These microorganisms could be ideal targets for the design of microbial consortia that can be applied by endotherapy treatments to prevent or control diseases caused by vascular pathogens or modify the physiology and growth of olive trees.
Collapse
|
6
|
Vicente TFL, Félix C, Félix R, Valentão P, Lemos MFL. Seaweed as a Natural Source against Phytopathogenic Bacteria. Mar Drugs 2022; 21:23. [PMID: 36662196 PMCID: PMC9867177 DOI: 10.3390/md21010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Plant bacterial pathogens can be devastating and compromise entire crops of fruit and vegetables worldwide. The consequences of bacterial plant infections represent not only relevant economical losses, but also the reduction of food availability. Synthetic bactericides have been the most used tool to control bacterial diseases, representing an expensive investment for the producers, since cyclic applications are usually necessary, and are a potential threat to the environment. The development of greener methodologies is of paramount importance, and some options are already available in the market, usually related to genetic manipulation or plant community modulation, as in the case of biocontrol. Seaweeds are one of the richest sources of bioactive compounds, already being used in different industries such as cosmetics, food, medicine, pharmaceutical investigation, and agriculture, among others. They also arise as an eco-friendly alternative to synthetic bactericides. Several studies have already demonstrated their inhibitory activity over relevant bacterial phytopathogens, some of these compounds are known for their eliciting ability to trigger priming defense mechanisms. The present work aims to gather the available information regarding seaweed extracts/compounds with antibacterial activity and eliciting potential to control bacterial phytopathogens, highlighting the extracts from brown algae with protective properties against microbial attack.
Collapse
Affiliation(s)
- Tânia F. L. Vicente
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Carina Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Rafael Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marco F. L. Lemos
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| |
Collapse
|
7
|
Anguita-Maeso M, Ares-Yebra A, Haro C, Román-Écija M, Olivares-García C, Costa J, Marco-Noales E, Ferrer A, Navas-Cortés JA, Landa BB. Xylella fastidiosa Infection Reshapes Microbial Composition and Network Associations in the Xylem of Almond Trees. Front Microbiol 2022; 13:866085. [PMID: 35910659 PMCID: PMC9330911 DOI: 10.3389/fmicb.2022.866085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Xylella fastidiosa represents a major threat to important crops worldwide including almond, citrus, grapevine, and olives. Nowadays, there are no efficient control measures for X. fastidiosa, and the use of preventive measures and host resistance represent the most practical disease management strategies. Research on vessel-associated microorganisms is gaining special interest as an innate natural defense of plants to cope against infection by xylem-inhabiting pathogens. The objective of this research has been to characterize, by next-generation sequencing (NGS) analysis, the microbial communities residing in the xylem sap of almond trees affected by almond leaf scorch disease (ALSD) in a recent X. fastidiosa outbreak occurring in Alicante province, Spain. We also determined community composition changes and network associations occurring between xylem-inhabiting microbial communities and X. fastidiosa. For that, a total of 91 trees with or without ALSD symptoms were selected from a total of eight representative orchards located in five municipalities within the X. fastidiosa-demarcated area. X. fastidiosa infection in each tree was verified by quantitative polymerase chain reaction (qPCR) analysis, with 54% of the trees being tested X. fastidiosa-positive. Globally, Xylella (27.4%), Sphingomonas (13.9%), and Hymenobacter (12.7%) were the most abundant bacterial genera, whereas Diplodia (30.18%), a member of the family Didymellaceae (10.7%), and Aureobasidium (9.9%) were the most predominant fungal taxa. Furthermore, principal coordinate analysis (PCoA) of Bray–Curtis and weighted UniFrac distances differentiated almond xylem bacterial communities mainly according to X. fastidiosa infection, in contrast to fungal community structure that was not closely related to the presence of the pathogen. Similar results were obtained when X. fastidiosa reads were removed from the bacterial data set although the effect was less pronounced. Co-occurrence network analysis revealed negative associations among four amplicon sequence variants (ASVs) assigned to X. fastidiosa with different bacterial ASVs belonging to 1174-901-12, Abditibacterium, Sphingomonas, Methylobacterium–Methylorubrum, Modestobacter, Xylophilus, and a non-identified member of the family Solirubrobacteraceae. Determination of the close-fitting associations between xylem-inhabiting microorganisms and X. fastidiosa may help to reveal specific microbial players associated with the suppression of ALSD under high X. fastidiosa inoculum pressure. These identified microorganisms would be good candidates to be tested in planta, to produce almond plants more resilient to X. fastidiosa infection when inoculated by endotherapy, contributing to suppress ALSD.
Collapse
Affiliation(s)
- Manuel Anguita-Maeso
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
- *Correspondence: Manuel Anguita-Maeso,
| | - Aitana Ares-Yebra
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
- Laboratory for Phytopathology, Instituto Pedro Nunes, Coimbra, Portugal
| | - Carmen Haro
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
| | - Miguel Román-Écija
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
| | - Concepción Olivares-García
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
| | - Joana Costa
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
- Laboratory for Phytopathology, Instituto Pedro Nunes, Coimbra, Portugal
| | - Ester Marco-Noales
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Amparo Ferrer
- Servicio de Sanidad Vegetal, Generalitat Valenciana, Valencia, Spain
| | - Juan A. Navas-Cortés
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
| | - Blanca B. Landa
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
- Blanca B. Landa,
| |
Collapse
|
8
|
Lacava PT, Bogas AC, Cruz FDPN. Plant Growth Promotion and Biocontrol by Endophytic and Rhizospheric Microorganisms From the Tropics: A Review and Perspectives. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.796113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Currently, the tropics harbor a wide variety of crops to feed the global population. Rapid population expansion and the consequent major demand for food and agriculture-based products generate initiatives for tropical forest deforestation, which contributes to land degradation and the loss of macro and micronative biodiversity of ecosystems. Likewise, the entire dependence on fertilizers and pesticides also contributes to negative impacts on environmental and human health. To guarantee current and future food safety, as well as natural resource preservation, systems for sustainable crops in the tropics have attracted substantial attention worldwide. Therefore, the use of beneficial plant-associated microorganisms is a promising sustainable way to solve issues concerning modern agriculture and the environment. Efficient strains of bacteria and fungi are a rich source of natural products that might improve crop yield in numerous biological ways, such as nitrogen fixation, hormone production, mobilization of insoluble nutrients, and mechanisms related to plant biotic and abiotic stress alleviation. Additionally, these microorganisms also exhibit great potential for the biocontrol of phytopathogens and pest insects. This review addresses research regarding endophytic and rhizospheric microorganisms associated with tropical plants as a sustainable alternative to control diseases and enhance food production to minimize ecological damage in tropical ecosystems.
Collapse
|
9
|
Zhang H, Serwah Boateng NA, Ngolong Ngea GL, Shi Y, Lin H, Yang Q, Wang K, Zhang X, Zhao L, Droby S. Unravelling the fruit microbiome: The key for developing effective biological control strategies for postharvest diseases. Compr Rev Food Sci Food Saf 2021; 20:4906-4930. [PMID: 34190408 DOI: 10.1111/1541-4337.12783] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
Fruit-based diets are recognized for their benefits to human health. The safety of fruit is a global concern for scientists. Fruit microbiome represents the whole microorganisms that are associated with a fruit. These microbes are either found on the surfaces (epiphytes) or in the tissues of the fruit (endophytes). The recent knowledge gained from these microbial communities is considered relevant to the field of biological control in prevention of postharvest fruit pathology. In this study, the importance of the microbiome of certain fruits and how it holds promise for solving the problems inherent in biocontrol and postharvest crop protection are summarized. Research needs on the fruit microbiome are highlighted. Data from DNA sequencing and "meta-omics" technologies very recently applied to the study of microbial communities of fruits in the postharvest context are also discussed. Various fruit parameters, management practices, and environmental conditions are the main determinants of the microbiome. Microbial communities can be classified according to their structure and function in fruit tissues. A critical mechanism of microbial biological control agents is to reshape and interact with the microbiome of the fruit. The ability to control the microbiome of any fruit is a great potential in postharvest management of fruits. Research on the fruit microbiome offers important opportunities to develop postharvest biocontrol strategies and products, as well as the health profile of the fruit.
Collapse
Affiliation(s)
- Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Guillaume Legrand Ngolong Ngea
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Institute of Fisheries Sciences, University of Douala, Douala, Cameroon
| | - Yu Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lina Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Samir Droby
- Department of Postharvest Science, ARO, the Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
10
|
Pirttilä AM, Mohammad Parast Tabas H, Baruah N, Koskimäki JJ. Biofertilizers and Biocontrol Agents for Agriculture: How to Identify and Develop New Potent Microbial Strains and Traits. Microorganisms 2021; 9:817. [PMID: 33924411 PMCID: PMC8069042 DOI: 10.3390/microorganisms9040817] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/02/2022] Open
Abstract
Microbiological tools, biofertilizers, and biocontrol agents, which are bacteria and fungi capable of providing beneficial outcomes in crop plant growth and health, have been developed for several decades. Currently we have a selection of strains available as products for agriculture, predominantly based on plant-growth-promoting rhizobacteria (PGPR), soil, epiphytic, and mycorrhizal fungi, each having specific challenges in their production and use, with the main one being inconsistency of field performance. With the growing global concern about pollution, greenhouse gas accumulation, and increased need for plant-based foods, the demand for biofertilizers and biocontrol agents is expected to grow. What are the prospects of finding solutions to the challenges on existing tools? The inconsistent field performance could be overcome by using combinations of several different types of microbial strains, consisting various members of the full plant microbiome. However, a thorough understanding of each microbiological tool, microbial communities, and their mechanisms of action must precede the product development. In this review, we offer a brief overview of the available tools and consider various techniques and approaches that can produce information on new beneficial traits in biofertilizer and biocontrol strains. We also discuss innovative ideas on how and where to identify efficient new members for the biofertilizer and biocontrol strain family.
Collapse
Affiliation(s)
- Anna Maria Pirttilä
- Ecology and Genetics, University of Oulu, FIN-90014 Oulu, Finland; (H.M.P.T.); (N.B.); (J.J.K.)
| | | | | | | |
Collapse
|
11
|
Anguita-Maeso M, Trapero-Casas JL, Olivares-García C, Ruano-Rosa D, Palomo-Ríos E, Jiménez-Díaz RM, Navas-Cortés JA, Landa BB. Verticillium dahliae Inoculation and in vitro Propagation Modify the Xylem Microbiome and Disease Reaction to Verticillium Wilt in a Wild Olive Genotype. FRONTIERS IN PLANT SCIENCE 2021; 12:632689. [PMID: 33747012 PMCID: PMC7966730 DOI: 10.3389/fpls.2021.632689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/01/2021] [Indexed: 05/13/2023]
Abstract
Host resistance is the most practical, long-term, and economically efficient disease control measure for Verticillium wilt in olive caused by the xylem-invading fungus Verticillium dahliae (Vd), and it is at the core of the integrated disease management. Plant's microbiome at the site of infection may have an influence on the host reaction to pathogens; however, the role of xylem microbial communities in the olive resistance to Vd has been overlooked and remains unexplored to date. This research was focused on elucidating whether in vitro olive propagation may alter the diversity and composition of the xylem-inhabiting microbiome and if those changes may modify the resistance response that a wild olive clone shows to the highly virulent defoliating (D) pathotype of Vd. Results indicated that although there were differences in microbial communities among the different propagation methodologies, most substantial changes occurred when plants were inoculated with Vd, regardless of whether the infection process took place, with a significant increase in the diversity of bacterial communities when the pathogen was present in the soil. Furthermore, it was noticeable that olive plants multiplied under in vitro conditions developed a susceptible reaction to D Vd, characterized by severe wilting symptoms and 100% vascular infection. Moreover, those in vitro propagated plants showed an altered xylem microbiome with a decrease in total OTU numbers as compared to that of plants multiplied under non-aseptic conditions. Overall, 10 keystone bacterial genera were detected in olive xylem regardless of infection by Vd and the propagation procedure of plants (in vitro vs nursery), with Cutibacterium (36.85%), Pseudomonas (20.93%), Anoxybacillus (6.28%), Staphylococcus (4.95%), Methylobacterium-Methylorubrum (3.91%), and Bradyrhizobium (3.54%) being the most abundant. Pseudomonas spp. appeared as the most predominant bacterial group in micropropagated plants and Anoxybacillus appeared as a keystone bacterium in Vd-inoculated plants irrespective of their propagation process. Our results are the first to show a breakdown of resistance to Vd in a wild olive that potentially may be related to a modification of its xylem microbiome and will help to expand our knowledge of the role of indigenous xylem microbiome on host resistance, which can be of use to fight against main vascular diseases of olive.
Collapse
Affiliation(s)
- Manuel Anguita-Maeso
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
| | - José Luis Trapero-Casas
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
| | - Concepción Olivares-García
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
| | - David Ruano-Rosa
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
| | - Elena Palomo-Ríos
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-UMA-Consejo Superior de Investigaciones Científicas), Department of Botany and Plant Physiology, University of Malaga, Málaga, Spain
| | - Rafael M. Jiménez-Díaz
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
- Agronomy Department, University of Córdoba, Córdoba, Spain
| | - Juan A. Navas-Cortés
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
| | - Blanca B. Landa
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
- *Correspondence: Blanca B. Landa,
| |
Collapse
|
12
|
Kumar A, Zhimo Y, Biasi A, Salim S, Feygenberg O, Wisniewski M, Droby S. Endophytic Microbiome in the Carposphere and Its Importance in Fruit Physiology and Pathology. POSTHARVEST PATHOLOGY 2021. [DOI: 10.1007/978-3-030-56530-5_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Giampetruzzi A, Baptista P, Morelli M, Cameirão C, Lino Neto T, Costa D, D’Attoma G, Abou Kubaa R, Altamura G, Saponari M, Pereira JA, Saldarelli P. Differences in the Endophytic Microbiome of Olive Cultivars Infected by Xylella fastidiosa across Seasons. Pathogens 2020; 9:pathogens9090723. [PMID: 32887278 PMCID: PMC7558191 DOI: 10.3390/pathogens9090723] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
The dynamics of Xylella fastidiosa infections in the context of the endophytic microbiome was studied in field-grown plants of the susceptible and resistant olive cultivars Kalamata and FS17. Whole metagenome shotgun sequencing (WMSS) coupled with 16S/ITS rRNA gene sequencing was carried out on the same trees at two different stages of the infections: In Spring 2017 when plants were almost symptomless and in Autumn 2018 when the trees of the susceptible cultivar clearly showed desiccations. The progression of the infections detected in both cultivars clearly unraveled that Xylella tends to occupy the whole ecological niche and suppresses the diversity of the endophytic microbiome. However, this trend was mitigated in the resistant cultivar FS17, harboring lower population sizes and therefore lower Xylella average abundance ratio over total bacteria, and a higher α-diversity. Host cultivar had a negligible effect on the community composition and no clear associations of a single taxon or microbial consortia with the resistance cultivar were found with both sequencing approaches, suggesting that the mechanisms of resistance likely reside on factors that are independent of the microbiome structure. Overall, Proteobacteria, Actinobacteria, Firmicutes, and Bacteriodetes dominated the bacterial microbiome while Ascomycota and Basidiomycota those of Fungi.
Collapse
Affiliation(s)
- Annalisa Giampetruzzi
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari, 70126 Bari, Italy;
| | - Paula Baptista
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.B.); (C.C.); (J.A.P.)
| | - Massimiliano Morelli
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Cristina Cameirão
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.B.); (C.C.); (J.A.P.)
| | - Teresa Lino Neto
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (T.L.N.); (D.C.)
| | - Daniela Costa
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (T.L.N.); (D.C.)
| | - Giusy D’Attoma
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Raied Abou Kubaa
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Giuseppe Altamura
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Maria Saponari
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.B.); (C.C.); (J.A.P.)
| | - Pasquale Saldarelli
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
- Correspondence: ; Tel.: +39-0805443065
| |
Collapse
|
14
|
Vergine M, Nicolì F, Sabella E, Aprile A, De Bellis L, Luvisi A. Secondary Metabolites in Xylella fastidiosa-Plant Interaction. Pathogens 2020; 9:pathogens9090675. [PMID: 32825425 PMCID: PMC7559865 DOI: 10.3390/pathogens9090675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
During their evolutionary history, plants have evolved the ability to synthesize and accumulate small molecules known as secondary metabolites. These compounds are not essential in the primary cell functions but play a significant role in the plants’ adaptation to environmental changes and in overcoming stress. Their high concentrations may contribute to the resistance of the plants to the bacterium Xylella fastidiosa, which has recently re-emerged as a plant pathogen of global importance. Although it is established in several areas globally and is considered one of the most dangerous plant pathogens, no cure has been developed due to the lack of effective bactericides and the difficulties in accessing the xylem vessels where the pathogen grows and produces cell aggregates and biofilm. This review highlights the role of secondary metabolites in the defense of the main economic hosts of X. fastidiosa and identifies how knowledge about biosynthetic pathways could improve our understanding of disease resistance. In addition, current developments in non-invasive techniques and strategies of combining molecular and physiological techniques are examined, in an attempt to identify new metabolic engineering options for plant defense.
Collapse
|
15
|
Impact of plant genotype and plant habitat in shaping bacterial pathobiome: a comparative study in olive tree. Sci Rep 2020; 10:3475. [PMID: 32103149 PMCID: PMC7044170 DOI: 10.1038/s41598-020-60596-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/31/2020] [Indexed: 12/02/2022] Open
Abstract
Plant-inhabiting microorganisms interact directly with each other affecting disease progression. However, the role of host plant and plant habitat in shaping pathobiome composition and their implication for host susceptibility/resistance to a particular disease are currently unknown. For the elucidation of these questions, both epiphytic and endophytic bacterial communities, present in asymptomatic and symptomatic twigs from olive cultivars displaying different susceptibilities to olive knot (OK) disease, were investigated using culturing methods. OK disease was the main driver of the bacterial community, causing changes on their diversity, abundance and composition. OK disease effect was most notorious on OK-susceptible cultivar and when considering the endophytic communities. Plant habitat (epiphytes vs. endophytes) also contributed to the bacterial community assembling, in particular on symptomatic twigs (knots) of OK-susceptible cultivar. In contrast, host cultivar had little effect on the bacterial community composition, but OK-symptomatic twigs (knots) revealed to be more affected by this driver. Overall, the pathobiome seems to result from an intricate interaction between the pathogen, the resident bacteria, and the plant host. Specific bacterial genera were associated to the presence or absence of OK disease in each cultivar. Their ability to trigger and/or suppress disease should be studied in the future.
Collapse
|
16
|
Anguita-Maeso M, Olivares-García C, Haro C, Imperial J, Navas-Cortés JA, Landa BB. Culture-Dependent and Culture-Independent Characterization of the Olive Xylem Microbiota: Effect of Sap Extraction Methods. FRONTIERS IN PLANT SCIENCE 2020; 10:1708. [PMID: 32038682 PMCID: PMC6988092 DOI: 10.3389/fpls.2019.01708] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/04/2019] [Indexed: 05/03/2023]
Abstract
Microbial endophytes are well known to protect host plants against pathogens, thus representing a promising strategy for the control of xylem-colonizing pathogens. To date, the vast majority of microbial communities inhabiting the olive xylem are unknown; therefore, this work pursues the characterization of the xylem-limited microbiome and determines whether the culture isolation medium, olive genotype, and the plant material used to analyze it can have an effect on the bacterial populations retrieved. Macerated xylem tissue and xylem sap extracted with the Scholander chamber from olive branches obtained from two cultivated and a wild olive genotypes were analyzed using culture-dependent and -independent approaches. In the culture-dependent approach using four solid culture media, a total of 261 bacterial isolates were identified after performing Sanger sequencing of 16S rRNA. Culturable bacteria clustered into 34 genera, with some effect of culture media for bacterial isolation. The cultivated bacteria belonged to four phyla and the most abundant genera included Frigoribacterium (18.8%), Methylobacterium (16.4%), and Sphingomonas (14.6%). On the other hand, in the culture-independent approach conducted using Illumina MiSeq 16S rRNA amplicon sequencing [next-generation sequencing (NGS)] of the xylem extracts, we identified a total of 48 operational taxonomic units (OTUs) belonging to five phyla, being Sphingomonas (30.1%), Hymenobacter (24.1%) and Methylobacterium (22.4%) the most representative genera (>76% of reads). In addition, the results indicated significant differences in the bacterial communities detected in the xylem sap depending on the genotype of the olive tree studied and, to a minor extent, on the type of sap extraction method used. Among the total genera identified using NGS, 14 (41.2%) were recovered in the culture collection, whereas 20 (58.8%) in the culture collection were not captured by the NGS approach. Some of the xylem-inhabiting bacteria isolated are known biocontrol agents of plant pathogens, whereas for others little information is known and are first reported for olive. Consequently, the potential role of these bacteria in conferring olive tree protection against xylem pathogens should be explored in future research.
Collapse
Affiliation(s)
- Manuel Anguita-Maeso
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | | | - Carmen Haro
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | - Juan Imperial
- Institute of Agricultural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Juan A. Navas-Cortés
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | - Blanca B. Landa
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| |
Collapse
|
17
|
The Xylella fastidiosa-Resistant Olive Cultivar "Leccino" Has Stable Endophytic Microbiota during the Olive Quick Decline Syndrome (OQDS). Pathogens 2019; 9:pathogens9010035. [PMID: 31906093 PMCID: PMC7168594 DOI: 10.3390/pathogens9010035] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022] Open
Abstract
Xylella fastidiosa is a highly virulent pathogen that causes Olive Quick Decline Syndrome (OQDS), which is currently devastating olive plantations in the Salento region (Apulia, Southern Italy). We explored the microbiome associated with X. fastidiosa-infected (Xf-infected) and -uninfected (Xf-uninfected) olive trees in Salento, to assess the level of dysbiosis and to get first insights into the potential role of microbial endophytes in protecting the host from the disease. The resistant cultivar “Leccino” was compared to the susceptible cultivar “Cellina di Nardò”, in order to identify microbial taxa and parameters potentially involved in resistance mechanisms. Metabarcoding of 16S rRNA genes and fungal ITS2 was used to characterize both total and endophytic microbiota in olive branches and leaves. “Cellina di Nardò” showed a drastic dysbiosis after X. fastidiosa infection, while “Leccino” (both infected and uninfected) maintained a similar microbiota. The genus Pseudomonas dominated all “Leccino” and Xf-uninfected “Cellina di Nardò” trees, whereas Ammoniphilus prevailed in Xf-infected “Cellina di Nardò”. Diversity of microbiota in Xf-uninfected “Leccino” was higher than in Xf-uninfected “Cellina di Nardò”. Several bacterial taxa specifically associated with “Leccino” showed potential interactions with X. fastidiosa. The maintenance of a healthy microbiota with higher diversity and the presence of cultivar-specific microbes might support the resistance of “Leccino” to X. fastidiosa. Such beneficial bacteria might be isolated in the future for biological treatment of the OQDS.
Collapse
|
18
|
Bleve G, Gallo A, Altomare C, Vurro M, Maiorano G, Cardinali A, D'Antuono I, Marchi G, Mita G. In vitro activity of antimicrobial compounds against Xylella fastidiosa, the causal agent of the olive quick decline syndrome in Apulia (Italy). FEMS Microbiol Lett 2019; 365:4780293. [PMID: 29390137 DOI: 10.1093/femsle/fnx281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/25/2017] [Indexed: 12/30/2022] Open
Abstract
Olive quick decline syndrome (OQDS) causes severe damages to the olive trees in Salento (Apulia, Italy) and poses a severe threat for the agriculture of Mediterranean countries. DNA-based typing methods have pointed out that OQDS is caused by a single outbreak strain of Xylella fastidiosa subsp. pauca referred to as CoDiRO or ST53. Since no effective control measures are currently available, the objective of this study was to evaluate in vitro antimicrobial activities of different classes of compounds against Salento-1 isolated by an OQDS affected plant and classified as ST53. A bioassay based on agar disk diffusion method revealed that 17 out of the 32 tested antibiotics did not affect bacterial growth at a dose of 5 μg disk-1. When we assayed micro-, ultra- and nano-filtered fractions of olive mill wastewaters, we found that the micro-filtered fraction resulted to be the most effective against the bacterium. Moreover, some phenolics (4-methylcathecol, cathecol, veratric acid, caffeic acid, oleuropein) were active in their pure form. Noteworthy, also some fungal extracts and fungal toxins showed inhibitory effects on bacterial growth. Some of these compounds can be further explored as potential candidate in future applications for curative/preventive treating OQDS-affected or at-risk olive plants.
Collapse
Affiliation(s)
- Gianluca Bleve
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 73100 Lecce, Italy
| | - Antonia Gallo
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 73100 Lecce, Italy
| | - Claudio Altomare
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 70126 Bari, Italy
| | - Maurizio Vurro
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 70126 Bari, Italy
| | - Gabriele Maiorano
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 73100 Lecce, Italy
| | - Angela Cardinali
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 70126 Bari, Italy
| | - Isabella D'Antuono
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 70126 Bari, Italy
| | - Guido Marchi
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Sezione di Patologia Vegetale ed Entomologia, Università degli Studi, Piazzale delle Cascine 28, 50144 Firenze, Italy
| | - Giovanni Mita
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 73100 Lecce, Italy
| |
Collapse
|
19
|
Baccari C, Antonova E, Lindow S. Biological Control of Pierce's Disease of Grape by an Endophytic Bacterium. PHYTOPATHOLOGY 2019; 109:248-256. [PMID: 30540526 DOI: 10.1094/phyto-07-18-0245-fi] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Effective preventive measures and therapies are lacking for control of Pierce's disease of grape caused by the xylem-colonizing bacterium Xylella fastidiosa responsible for serious losses in grape production. In this study we explored the potential for endophytic bacteria to alter the disease process. While most endophytic bacteria found within grape did not grow or multiply when inoculated into mature grape vines, Paraburkholderia phytofirmans strain PsJN achieved population sizes as large as 106 cells/g and moved 1 m or more within 4 weeks after inoculation into vines. While X. fastidiosa achieved large population sizes and moved extensively in grape when inoculated alone, few viable cells were recovered from plants in which it was co-inoculated with strain PsJN and the incidence of leaves exhibiting scorching symptoms typical of Pierce's disease was consistently greatly reduced from that in control plants. Suppression of disease symptoms occurred not only when strain PsJN was co-inoculated with the pathogen by puncturing stems in the same site in plants, but also when inoculated at the same time but at different sites in the plant. Large population sizes of strain PsJN could be established in both leaf lamina and petioles by topical application of cell suspensions in 0.2% of an organo-silicon surfactant conferring low surface tension, and such treatments were as effective as direct puncture inoculations of this biocontrol strain in reducing disease severity. While inoculation of strain PsJN into plants by either method at the same time as or even 4 weeks after that of the pathogen resulted in large reductions in disease severity, much less disease control was conferred by inoculation of PsJN 4 weeks prior to that of the pathogen. The expression of grapevine PR1 and ETR1 within 3 weeks of inoculation was substantially higher in plants inoculated with both X. fastidiosa and strain PsJN compared with that in plants inoculated only with the pathogen or strain PsJN, suggesting that this biological control agent reduces disease by priming expression of innate disease resistance pathways in plants that otherwise would have exhibited minimal responses to the pathogen. Strain PsJN thus appears highly efficacious for the control of Pierce's disease when used as an eradicant treatment that can be easily made even by spray application.
Collapse
Affiliation(s)
- Clelia Baccari
- Department of Plant and Microbial Biology, University of California, Berkeley 94720
| | - Elena Antonova
- Department of Plant and Microbial Biology, University of California, Berkeley 94720
| | - Steven Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley 94720
| |
Collapse
|
20
|
Bucci EM. Xylella fastidiosa , a new plant pathogen that threatens global farming: Ecology, molecular biology, search for remedies. Biochem Biophys Res Commun 2018; 502:173-182. [DOI: 10.1016/j.bbrc.2018.05.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 11/30/2022]
|
21
|
Griffin EA, Carson WP. Tree Endophytes: Cryptic Drivers of Tropical Forest Diversity. ENDOPHYTES OF FOREST TREES 2018. [DOI: 10.1007/978-3-319-89833-9_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Hernández AG, de Moura GD, Binati RL, Nascimento FXI, Londoño DM, Mamede ACP, da Silva EP, de Armas RD, Giachini AJ, Rossi MJ, Soares CRFS. Selection and characterization of coal mine autochthonous rhizobia for the inoculation of herbaceous legumes. Arch Microbiol 2017; 199:991-1001. [DOI: 10.1007/s00203-017-1373-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022]
|