1
|
Hasegawa Y, Segawa T, Chida A, Yoshida E, Kinno H, Chiba H, Oda T, Takahashi Y, Nata K, Ishigaki Y. A novel frameshift variant of GATA3 (p.Ala17ProfsTer178) responsible for HDR syndrome in a Japanese family. Endocr J 2024; 71:1077-1086. [PMID: 39198190 PMCID: PMC11778358 DOI: 10.1507/endocrj.ej24-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/04/2024] [Indexed: 09/01/2024] Open
Abstract
HDR syndrome is an autosomal dominant disorder characterized by hypoparathyroidism (H), deafness (D), and renal dysplasia (R) caused by genetic variants of the GATA3 gene. We present the case of a 38-year-old Japanese man with HDR syndrome who exhibited hypoparathyroidism, sensorineural deafness, renal dysfunction, severe symptomatic hypocalcemia with Chvostek's and Trousseau's signs, and QT prolongation on electrocardiography. He had a family history of deafness and hypocalcemia. Genetic testing revealed a novel GATA3 gene variant at exon 2 (c.48delC), which induces a frameshift resulting in termination at codon 178, causing HDR syndrome. We summarized 45 Japanese cases of HDR syndrome with regard to the mode of onset (familial or sporadic) and the age at diagnosis. In addition, we summarized all previous cases of HDR syndrome with GATA3 gene variants. Mapping of previously reported genetic variants in HDR syndrome revealed that most missense variants were observed at exons 4 and 5 regions in the GATA3 gene. These two regions contain zinc finger domains, demonstrating their functional importance in GATA3 transcription. This review of literature provides a useful reference for diagnosing HDR syndrome and predicting the related future manifestations.
Collapse
Affiliation(s)
- Yutaka Hasegawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate 028-3695, Japan
| | - Toshie Segawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate 028-3695, Japan
| | - Ai Chida
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate 028-3695, Japan
| | - Eriko Yoshida
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate 028-3695, Japan
| | - Hirofumi Kinno
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate 028-3695, Japan
| | - Hiraku Chiba
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate 028-3695, Japan
| | - Tomoyasu Oda
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate 028-3695, Japan
| | - Yoshihiko Takahashi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate 028-3695, Japan
| | - Koji Nata
- Division of Medical Biochemistry, School of Pharmacy, Iwate Medical University, Iwate 028-3694, Japan
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate 028-3695, Japan
| |
Collapse
|
2
|
Rive Le Gouard N, Lafond-Rive V, Jonard L, Loundon N, Achard S, Heidet L, Mosnier I, Lyonnet S, Brioude F, Serey Gaut M, Marlin S. HDR syndrome: Large cohort and systematic review. Clin Genet 2024; 106:564-573. [PMID: 38940299 DOI: 10.1111/cge.14583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
HDR syndrome is a rare disease characterized by hypoparathyroidism, deafness, and renal dysplasia. An autosomal dominant disease caused by heterozygous pathogenic GATA3 variants, the penetrance of each associated condition is variable. Literature reviews have provided some answers, but many questions remain, in particular what the relationship is between genotype and phenotype. The current study examines 28 patients with HDR syndrome combined with an exhaustive review of the literature. Some conditions such as hearing loss are almost always present, while others described as rare initially, do not seem to be so rare after all (genital malformations and basal ganglia calcifications). By modeling pathogenic GATA3 variants found in HDR syndrome, we found that missense variations appear to always be located in the same area (close to the two Zinc Finger domain). We describe new pathogenic GATA3 variants, of which some seem to always be associated with certain conditions. Many audiograms were studied to establish a typical audiometric profile associated with a phenotype in HDR. As mentioned in the literature, hearing function should always be assessed as early as possible and follow up of patients with HDR syndrome should include monitoring of parathyroid function and vesicoureteral reflux in order to prevent complications.
Collapse
Affiliation(s)
- Nicolas Rive Le Gouard
- Centre de Référence «Surdités Génétiques», Fédération de Médecine Génomique; Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
- UF de Génomique Chromosomique, Département de Génétique médicale, Hôpital Armand Trousseau, AP-HP Sorbonne Université, Paris, France
- Laboratory of Embryology and Genetics of Malformations, Imagine Institute, INSERM UMR 1163, Université de Paris Cité, Paris, France
| | | | - Laurence Jonard
- Centre de Référence «Surdités Génétiques», Fédération de Médecine Génomique; Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
| | - Natalie Loundon
- Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- Service d'ORL Pédiatrique et de Chirurgie Cervico-Faciale, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
| | - Sophie Achard
- Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- Service d'ORL Pédiatrique et de Chirurgie Cervico-Faciale, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
| | - Laurence Heidet
- Service de Néphrologie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
| | - Isabelle Mosnier
- Unité Fonctionnelle implants auditifs, Centre Référent Implant Cochléaire Adulte Ile de France, Centre Constitutif Maladies rares, Surdités génétiques de l'adulte, Hôpital Pitié-Salpetrière, AP-HP, Sorbonne Université, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Malformations, Imagine Institute, INSERM UMR 1163, Université de Paris Cité, Paris, France
| | - Frederic Brioude
- Explorations Fonctionnelles Endocriniennes-Biologie Moléculaire, Hôpital des Enfants Armand Trousseau, AP-HP, Sorbonne Université, Paris, France
| | - Margaux Serey Gaut
- Centre de Référence «Surdités Génétiques», Fédération de Médecine Génomique; Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
- Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Sandrine Marlin
- Centre de Référence «Surdités Génétiques», Fédération de Médecine Génomique; Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
- Laboratory of Embryology and Genetics of Malformations, Imagine Institute, INSERM UMR 1163, Université de Paris Cité, Paris, France
- Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| |
Collapse
|
3
|
Wen J, Song J, Bai Y, Liu Y, Cai X, Mei L, Ma L, He C, Feng Y. A Model of Waardenburg Syndrome Using Patient-Derived iPSCs With a SOX10 Mutation Displays Compromised Maturation and Function of the Neural Crest That Involves Inner Ear Development. Front Cell Dev Biol 2021; 9:720858. [PMID: 34426786 PMCID: PMC8379019 DOI: 10.3389/fcell.2021.720858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022] Open
Abstract
Waardenburg syndrome (WS) is an autosomal dominant inherited disorder that is characterized by sensorineural hearing loss and abnormal pigmentation. SOX10 is one of its main pathogenicity genes. The generation of patient-specific induced pluripotent stem cells (iPSCs) is an efficient means to investigate the mechanisms of inherited human disease. In our work, we set up an iPSC line derived from a WS patient with SOX10 mutation and differentiated into neural crest cells (NCCs), a key cell type involved in inner ear development. Compared with control-derived iPSCs, the SOX10 mutant iPSCs showed significantly decreased efficiency of development and differentiation potential at the stage of NCCs. After that, we carried out high-throughput RNA-seq and evaluated the transcriptional misregulation at every stage. Transcriptome analysis of differentiated NCCs showed widespread gene expression alterations, and the differentially expressed genes (DEGs) were enriched in gene ontology terms of neuron migration, skeletal system development, and multicellular organism development, indicating that SOX10 has a pivotal part in the differentiation of NCCs. It's worth noting that, a significant enrichment among the nominal DEGs for genes implicated in inner ear development was found, as well as several genes connected to the inner ear morphogenesis. Based on the protein-protein interaction network, we chose four candidate genes that could be regulated by SOX10 in inner ear development, namely, BMP2, LGR5, GBX2, and GATA3. In conclusion, SOX10 deficiency in this WS subject had a significant impact on the gene expression patterns throughout NCC development in the iPSC model. The DEGs most significantly enriched in inner ear development and morphogenesis may assist in identifying the underlying basis for the inner ear malformation in subjects with WS.
Collapse
Affiliation(s)
- Jie Wen
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Song
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yijiang Bai
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yalan Liu
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinzhang Cai
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lingyun Mei
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Ma
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Chufeng He
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Feng
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
4
|
Bardhan T, Jeng J, Waldmann M, Ceriani F, Johnson SL, Olt J, Rüttiger L, Marcotti W, Holley MC. Gata3 is required for the functional maturation of inner hair cells and their innervation in the mouse cochlea. J Physiol 2019; 597:3389-3406. [PMID: 31069810 PMCID: PMC6636704 DOI: 10.1113/jp277997] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/07/2019] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS The physiological maturation of auditory hair cells and their innervation requires precise temporal and spatial control of cell differentiation. The transcription factor gata3 is essential for the earliest stages of auditory system development and for survival and synaptogenesis in auditory sensory afferent neurons. We show that during postnatal development in the mouse inner ear gata3 is required for the biophysical maturation, growth and innervation of inner hair cells; in contrast, it is required only for the survival of outer hair cells. Loss of gata3 in inner hair cells causes progressive hearing loss and accounts for at least some of the deafness associated with the human hypoparathyroidism, deafness and renal anomaly (HDR) syndrome. The results show that gata3 is critical for later stages of mammalian auditory system development where it plays distinct, complementary roles in the coordinated maturation of sensory hair cells and their innervation. ABSTRACT The zinc finger transcription factor gata3 regulates inner ear development from the formation of the embryonic otic placode. Throughout development, gata3 is expressed dynamically in all the major cochlear cell types. Its role in afferent formation is well established but its possible involvement in hair cell maturation remains unknown. Here, we find that in heterozygous gata3 null mice (gata3+/- ) outer hair cells (OHCs) differentiate normally but their numbers are significantly lower. In contrast, inner hair cells (IHCs) survive normally but they fail to acquire adult basolateral membrane currents, retain pre-hearing current and efferent innervation profiles and have fewer ribbon synapses. Targeted deletion of gata3 driven by otoferlin-cre recombinase (gata3fl/fl otof-cre+/- ) in IHCs does not affect OHCs or the number of IHC afferent synapses but it leads to a failure in IHC maturation comparable to that observed in gata3+/- mice. Auditory brainstem responses in gata3fl/fl otof-cre+/- mice reveal progressive hearing loss that becomes profound by 6-7 months, whilst distortion product otoacoustic emissions are no different to control animals up to this age. Our results, alongside existing data, indicate that gata3 has specific, complementary functions in different cell types during inner ear development and that its continued expression in the sensory epithelium orchestrates critical aspects of physiological development and neural connectivity. Furthermore, our work indicates that hearing loss in human hypoparathyroidism, deafness and renal anomaly (HDR) syndrome arises from functional deficits in IHCs as well as loss of function from OHCs and both afferent and efferent neurons.
Collapse
MESH Headings
- Animals
- Cell Differentiation/physiology
- Cochlea/metabolism
- Cochlea/physiology
- GATA3 Transcription Factor/metabolism
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/physiology
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/physiology
- Hair Cells, Vestibular/metabolism
- Hair Cells, Vestibular/physiology
- Hearing/physiology
- Hearing Loss/metabolism
- Hearing Loss/physiopathology
- Membrane Proteins/metabolism
- Mice, Knockout
- Mice, Transgenic
- Sensory Receptor Cells/metabolism
- Sensory Receptor Cells/physiology
- Synapses/metabolism
Collapse
Affiliation(s)
- Tanaya Bardhan
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Jing‐Yi Jeng
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Marco Waldmann
- Department of OtolaryngologyTübingen Hearing Research CenterSection of Physiological Acoustics and CommunicationUniversity of Tübingen72076TübingenGermany
| | - Federico Ceriani
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | | | - Jennifer Olt
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Lukas Rüttiger
- Department of OtolaryngologyTübingen Hearing Research CenterSection of Physiological Acoustics and CommunicationUniversity of Tübingen72076TübingenGermany
| | - Walter Marcotti
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | | |
Collapse
|