1
|
Zhu C, Yan Y, Feng Y, Sun J, Mu M, Yang Z. Genome-Wide Analysis Reveals Key Genes and MicroRNAs Related to Pathogenic Mechanism in Wuchereria bancrofti. Pathogens 2024; 13:1088. [PMID: 39770348 PMCID: PMC11678661 DOI: 10.3390/pathogens13121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Wuchereria bancrofti is a parasite transmitted by mosquitoes and can cause a neglected tropical disease called Lymphatic filariasis. However, the genome of W. bancrofti was not well studied, making novel drug development difficult. This study aims to identify microRNA, annotate protein function, and explore the pathogenic mechanism of W. bancrofti by genome-wide analysis. Novel miRNAs were identified by analysis of expressed sequence tags (ESTs) from this parasite. Protein homology was obtained by a bidirectional best-hit strategy using BLAST. By an EST-based method, we identified 20 novel miRNAs in the genome. The AU content of these miRNAs ranged from 39.7% to 80.0%, with a mean of 52.9%. Among them, 14 miRNA homologs were present in mammal genomes, while six miRNA homologs were present in non-mammal genomes. By conducting a detailed sequence alignment using BLAST, we have successfully annotated the functions of 75 previously unannotated proteins, enhancing our understanding of the proteome and potentially revealing new targets for therapy. Homology distribution analysis indicated that a set of critical proteins were present in parasites and mosquitoes, but not present in mammals. By searching the literature, ten proteins were found to be involved in the pathogenic infection process of W. bancrofti. In addition, the miRNA-gene network analysis indicated that two pathogenic genes (CALR and HMGB2) are regulated by newly identified miRNAs. These genes were supposed to play key roles in the infection mechanism of W. bancrofti. In conclusion, our genome-wide analysis provided new clues for the prevention and treatment of W. bancrofti infection.
Collapse
Affiliation(s)
- Caoli Zhu
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yicheng Yan
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yaning Feng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiawei Sun
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Mingdao Mu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhiyuan Yang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
2
|
Global Molecular Response of Paracoccidioides brasiliensis to Zinc Deprivation: Analyses at Transcript, Protein and MicroRNA Levels. J Fungi (Basel) 2023; 9:jof9030281. [PMID: 36983449 PMCID: PMC10056003 DOI: 10.3390/jof9030281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Zinc is one of the main micronutrients for all organisms. One of the defense mechanisms used by the host includes the sequestration of metals used in fungal metabolism, such as iron and zinc. There are several mechanisms that maintain the balance in the intracellular zinc supply. MicroRNAs are effector molecules of responses between the pathogen and host, favoring or preventing infection in many microorganisms. Fungi of the Paracoccidioides genus are thermodimorphic and the etiological agents of paracoccidioidomycosis (PCM). In the current pandemic scenario world mycosis studies continue to be highly important since a significant number of patients with COVID-19 developed systemic mycoses, co-infections that complicated their clinical condition. The objective was to identify transcriptomic and proteomic adaptations in Paracoccidioides brasiliensis during zinc deprivation. Nineteen microRNAs were identified, three of which were differentially regulated. Target genes regulated by those microRNAs are elements of zinc homeostasis such as ZRT1, ZRT3 and COT1 transporters. Transcription factors that have zinc in their structure are also targets of those miRNAs. Transcriptional and proteomic data suggest that P. brasiliensis undergoes metabolic remodeling to survive zinc deprivation and that miRNAs may be part of the regulatory process.
Collapse
|
3
|
Ahsan MI, Chowdhury MSR, Das M, Akter S, Roy S, Sharma B, Akhand RN, Hasan M, Uddin MB, Ahmed SSU. In Silico Identification and Functional Characterization of Conserved miRNAs in the Genome of Cryptosporidium parvum. Bioinform Biol Insights 2021; 15:11779322211027665. [PMID: 34262265 PMCID: PMC8243136 DOI: 10.1177/11779322211027665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/04/2021] [Indexed: 12/27/2022] Open
Abstract
Cryptosporidium parvum, a predominant causal agent of a fatal zoonotic protozoan diarrhoeal disease called cryptosporidiosis, bears a worldwide public health concern for childhood mortality and poses a key threat to the dairy and water industries. MicroRNAs (miRNAs), small but powerful posttranscriptional gene silencing RNA molecules, regulate a variety of molecular, biological, and cellular processes in animals and plants. As to the present date, there is a paucity of information regarding miRNAs of C. parvum; hence, this study was used to identify miRNAs in the organism using a comprehensible expressed sequence tag-based homology search approach consisting of a series of computational screening process from the identification of putative miRNA candidates to the functional annotation of the important gene targets in C. parvum. The results revealed a conserved miRNA that targeted 487 genes in the model organism (Drosophila melanogaster) and 85 genes in C. parvum, of which 11 genes had direct involvements in several crucial virulence factors such as environmental oocyst protection, excystation, locomotion, adhesion, invasion, stress protection, intracellular growth, and survival. Besides, 20 genes showed their association with various major pathways dedicated for the ribosomal biosynthesis, DNA repair, transportation, protein production, gene expression, cell cycle, cell proliferation, development, immune response, differentiation, and nutrient metabolism of the organism in the host. Thus, this study provides a strong evidence of great impact of identified miRNA on the biology, virulence, and pathogenesis of C. parvum. Furthermore, the study suggests that the detected miRNA could be a potential epigenomic tool for controlling the protozoon through silencing those virulent and pathway-related target genes.
Collapse
Affiliation(s)
- Md. Irtija Ahsan
- Department of Epidemiology and Public
Health, Sylhet Agricultural University, Sylhet, Bangladesh
| | | | - Moumita Das
- Department of Epidemiology and Public
Health, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Sharmin Akter
- Department of Epidemiology and Public
Health, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Sawrab Roy
- Department of Microbiology and
Immunology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Binayok Sharma
- Department of Medicine, Sylhet
Agricultural University, Sylhet, Bangladesh
| | - Rubaiat Nazneen Akhand
- Department of Biochemistry and
Chemistry, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and
Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Bashir Uddin
- Department of Medicine, Sylhet
Agricultural University, Sylhet, Bangladesh
| | - Syed Sayeem Uddin Ahmed
- Department of Epidemiology and Public
Health, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
4
|
Puccia R. Current Status on Extracellular Vesicles from the Dimorphic Pathogenic Species of Paracoccidioides. Curr Top Microbiol Immunol 2021; 432:19-33. [DOI: 10.1007/978-3-030-83391-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
de Curcio JS, Oliveira LN, Batista MP, Novaes E, de Almeida Soares CM. MiRNAs regulate iron homeostasis in Paracoccidioides brasiliensis. Microbes Infect 2020; 23:104772. [PMID: 33157279 DOI: 10.1016/j.micinf.2020.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/17/2020] [Accepted: 10/27/2020] [Indexed: 11/19/2022]
Abstract
During pathogen interaction with the host, several mechanisms are used to favor or inhibit the infectious process; one is called nutritional immunity, characterized by restriction of micronutrients to pathogens. Several studies on fungi of the Paracoccidioides complex, have demonstrated that these pathogens remodel their metabolic pathways to overcome the hostile condition imposed by the host. However, molecular mechanisms that control the regulation of those metabolic changes are not fully understood. Therefore, this work characterizes the expression profile of miRNAs during iron deprivation and describes metabolic pathways putatively regulated by those molecules. Through analysis of RNAseq, 45 miRNAs were identified and eight presented alterations in the expression profile during iron deprivation. Among the differentially regulated miRNAs, five were more abundant in yeast cells during iron deprivation and interestingly, the analyses of genes potentially regulated by those five miRNAs, pointed to metabolic pathways as oxidative phosphorylation, altered in response to iron deprivation. In addition, miRNAs with more abundance in iron presence, have as target genes encoding transcriptional factors related to iron homeostasis and uptake. Therefore, we suggest that miRNAs produced by Paracoccidioides brasiliensis may contribute to the adaptive responses of this fungus in iron starvation environment.
Collapse
Affiliation(s)
- Juliana S de Curcio
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus II Samambaia, CEP: 74690-900, Goiânia, Goiás, Brazil
| | - Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus II Samambaia, CEP: 74690-900, Goiânia, Goiás, Brazil
| | - Mariana P Batista
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus II Samambaia, CEP: 74690-900, Goiânia, Goiás, Brazil
| | - Evandro Novaes
- Departamento de Biologia, Universidade Federal de Lavras, Minas Gerais, CEP: 37200-000, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus II Samambaia, CEP: 74690-900, Goiânia, Goiás, Brazil.
| |
Collapse
|
6
|
Peres da Silva R, Longo LGV, Cunha JPCD, Sobreira TJP, Rodrigues ML, Faoro H, Goldenberg S, Alves LR, Puccia R. Comparison of the RNA Content of Extracellular Vesicles Derived from Paracoccidioides brasiliensis and Paracoccidioides lutzii. Cells 2019; 8:cells8070765. [PMID: 31340551 PMCID: PMC6678485 DOI: 10.3390/cells8070765] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 12/12/2022] Open
Abstract
Paracoccidioides brasiliensis and P. lutzii cause human paracoccidioidomycosis. We have previously characterized the <200-nt RNA sub-populations contained in fungal extracellular vesicles (EVs) from P. brasiliensis Pb18 and other pathogenic fungi. We have presently used the RNA-seq strategy to compare the <200- and >200-nt RNA fractions contained in EVs isolated from culture supernatants of P. brasiliensis Pb18, Pb3, and P. lutzii Pb01. Shared mRNA sequences were related to protein modification, translation, and DNA metabolism/biogenesis, while those related to transport and oxidation-reduction were exclusive to Pb01. The presence of functional full-length mRNAs was validated by in vitro translation. Among small non-coding (nc)RNA, 15 were common to all samples; small nucleolar (sno)RNAs were enriched in P. brasiliensis EVs, whereas for P. lutzii there were similar proportions of snoRNA, rRNA, and tRNA. Putative exonic sRNAs were highly abundant in Pb18 EVs. We also found sRNA sequences bearing incomplete microRNA structures mapping to exons. RNA-seq data suggest that extracellular fractions containing Pb18 EVs can modulate the transcriptome of murine monocyte-derived dendritic cells in a transwell system. Considering that sRNA classes are involved in transcription/translation modulation, our general results may indicate that differences in virulence among fungal isolates can be related to their distinct EV-RNA content.
Collapse
Affiliation(s)
- Roberta Peres da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo 04023-062, Brazil
| | - Larissa G V Longo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo 04023-062, Brazil
| | - Julia P C da Cunha
- Laboratório Especial de Ciclo Celular-Center of Toxins, Immune Response and Cell Signaling-Center (CeTICS), Butantan Institute, São Paulo 05503-900, Brazil
| | - Tiago J P Sobreira
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Marcio L Rodrigues
- Instituto Carlos Chagas-FIOCRUZ PR, Curitiba 81350-010, Brazil
- Instituto de Microbiologia da Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Helisson Faoro
- Instituto Carlos Chagas-FIOCRUZ PR, Curitiba 81350-010, Brazil
| | | | | | - Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo 04023-062, Brazil.
| |
Collapse
|
7
|
Aciole Barbosa D, Menegidio FB, Alencar VC, Gonçalves RS, Silva JDFS, Vilas Boas RO, Faustino de Maria YNL, Jabes DL, Costa de Oliveira R, Nunes LR. ParaDB: A manually curated database containing genomic annotation for the human pathogenic fungi Paracoccidioides spp. PLoS Negl Trop Dis 2019; 13:e0007576. [PMID: 31306428 PMCID: PMC6658007 DOI: 10.1371/journal.pntd.0007576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/25/2019] [Accepted: 06/24/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The genus Paracoccidioides consists of thermodymorphic fungi responsible for Paracoccidioidomycosis (PCM), a systemic mycosis that has been registered to affect ~10 million people in Latin America. Biogeographical data subdivided the genus Paracoccidioides in five divergent subgroups, which have been recently classified as different species. Genomic sequencing of five Paracoccidioides isolates, representing each of these subgroups/species provided an important framework for the development of post-genomic studies with these fungi. However, functional annotations of these genomes have not been submitted to manual curation and, as a result, ~60-90% of the Paracoccidioides protein-coding genes (depending on isolate/annotation) are currently described as responsible for hypothetical proteins, without any further functional/structural description. PRINCIPAL FINDINGS The present work reviews the functional assignment of Paracoccidioides genes, reducing the number of hypothetical proteins to ~25-28%. These results were compiled in a relational database called ParaDB, dedicated to the main representatives of Paracoccidioides spp. ParaDB can be accessed through a friendly graphical interface, which offers search tools based on keywords or protein/DNA sequences. All data contained in ParaDB can be partially or completely downloaded through spreadsheet, multi-fasta and GFF3-formatted files, which can be subsequently used in a variety of downstream functional analyses. Moreover, the entire ParaDB environment has been configured in a Docker service, which has been submitted to the GitHub repository, ensuring long-term data availability to researchers. This service can be downloaded and used to perform fully functional local installations of the database in alternative computing ecosystems, allowing users to conduct their data mining and analyses in a personal and stable working environment. CONCLUSIONS These new annotations greatly reduce the number of genes identified solely as hypothetical proteins and are integrated into a dedicated database, providing resources to assist researchers in this field to conduct post-genomic studies with this group of human pathogenic fungi.
Collapse
Affiliation(s)
- David Aciole Barbosa
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, São Paulo, Brazil
| | - Fabiano Bezerra Menegidio
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, São Paulo, Brazil
| | - Valquíria Campos Alencar
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, São Paulo, Brazil
| | - Rafael S. Gonçalves
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, São Paulo, Brazil
| | | | - Renata Ozelami Vilas Boas
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, São Paulo, Brazil
| | | | - Daniela Leite Jabes
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, São Paulo, Brazil
| | - Regina Costa de Oliveira
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, São Paulo, Brazil
| | - Luiz R. Nunes
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), São Bernardo do Campo, São Paulo, Brazil
| |
Collapse
|