1
|
Jahangiri S, Abdan Z, Houshmand M, Souroush A, Aznab M. Association between single nucleotide polymorphisms of DNA repair genes (BRCA1, BRCA2, and PALB2) and breast cancer incidence in a subset of Iranian population. Hered Cancer Clin Pract 2025; 23:12. [PMID: 40158114 PMCID: PMC11954309 DOI: 10.1186/s13053-025-00311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common malignancy among Iranian females, accounting for 24.4% of all malignancies. Germ line mutations in DNA repair system-related genes are associated with an increased risk of BC. This study aims to evaluate the frequencies of single nucleotide polymorphisms (SNPs) in the BRCA1, BRCA2, and PALB2 genes in patients with BC from a subset of the Iranian population in the western part of Iran. METHODS Blood samples were collected from 335 patients with BC and 354 healthy matched volunteers. Genomic DNA was extracted using the salting-out method and, after quality control, was genotyped using the multiplex TaqMan allelic discrimination assay for three SNPs: rs80359550 (6174 delT) in the BRCA2 gene, rs180177102 in the PALB2 gene, and rs386833395 (185delAG) in the BRCA1 gene. Statistical analysis was performed to examine allele frequency, odds ratio, and relative risk (genetic association) in a retrospective case-control study. RESULTS The data showed no association between rs386833395 and BC risk in the studied population (odds ratio = 1), whereas rs80359550 and rs180177102 polymorphisms were strongly associated with BC risk in patients (odds ratio = 0.01 for both, with p-values of 0.011 and 0.021, respectively). CONCLUSIONS Our findings suggest no significant association between the rs386833395 polymorphism and BC risk in the Iranian Kurdish population, while rs80359550 and rs180177102 polymorphisms were strongly associated with BC. However, the study has several limitations, including its retrospective design, a relatively small sample size, and the potential lack of generalizability to other ethnic groups within Iran. Future studies involving larger cohorts and more diverse populations are needed to confirm these results.
Collapse
Grants
- 96259 Kermanshah University of Medical Sciences, Kermanshah, Iran
- 96259 Kermanshah University of Medical Sciences, Kermanshah, Iran
- 96259 Kermanshah University of Medical Sciences, Kermanshah, Iran
- 96259 Kermanshah University of Medical Sciences, Kermanshah, Iran
- 96259 Kermanshah University of Medical Sciences, Kermanshah, Iran
Collapse
Affiliation(s)
- Sepideh Jahangiri
- Clinical Research Development Center of Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Abdan
- Clinical Research Development Center of Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute of Genetics and Biotechnology, Tehran, Iran
| | - Ali Souroush
- Department of Medical Physics, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozaffar Aznab
- Clinical Research Development Center of Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Oncology- Hematology, Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Molteni E, Bono E, Gallì A, Elena C, Ferrari J, Fiorelli N, Pozzi S, Ferretti VV, Sarchi M, Rizzo E, Camilotto V, Boveri E, Cazzola M, Malcovati L. Prevalence and clinical expression of germ line predisposition to myeloid neoplasms in adults with marrow hypocellularity. Blood 2023; 142:643-657. [PMID: 37216690 PMCID: PMC10644067 DOI: 10.1182/blood.2022019304] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/27/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Systematic studies of germ line genetic predisposition to myeloid neoplasms in adult patients are still limited. In this work, we performed germ line and somatic targeted sequencing in a cohort of adult patients with hypoplastic bone marrow (BM) to study germ line predisposition variants and their clinical correlates. The study population included 402 consecutive adult patients investigated for unexplained cytopenia and reduced age-adjusted BM cellularity. Germ line mutation analysis was performed using a panel of 60 genes, and variants were interpreted per the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines; somatic mutation analysis was performed using a panel of 54 genes. Of the 402 patients, 27 (6.7%) carried germ line variants that caused a predisposition syndrome/disorder. The most frequent disorders were DDX41-associated predisposition, Fanconi anemia, GATA2-deficiency syndrome, severe congenital neutropenia, RASopathy, and Diamond-Blackfan anemia. Eighteen of 27 patients (67%) with causative germ line genotype were diagnosed with myeloid neoplasm, and the remaining with cytopenia of undetermined significance. Patients with a predisposition syndrome/disorder were younger than the remaining patients and had a higher risk of severe or multiple cytopenias and advanced myeloid malignancy. In patients with myeloid neoplasm, causative germ line mutations were associated with increased risk of progression into acute myeloid leukemia. Family or personal history of cancer did not show significant association with a predisposition syndrome/disorder. The findings of this study unveil the spectrum, clinical expressivity, and prevalence of germ line predisposition mutations in an unselected cohort of adult patients with cytopenia and hypoplastic BM.
Collapse
Affiliation(s)
- Elisabetta Molteni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Elisa Bono
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Anna Gallì
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Chiara Elena
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Jacqueline Ferrari
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Nicolas Fiorelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Sara Pozzi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Martina Sarchi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Virginia Camilotto
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Emanuela Boveri
- Department of Pathology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
3
|
Yoon JY, Roth JJ, Rushton CA, Morrissette JJD, Nathanson KL, Cohen RB, Rosenbaum JN. Homologous recombination pathway gene variants identified by tumor-only sequencing assays in lung carcinoma patients. Transl Lung Cancer Res 2023; 12:1236-1244. [PMID: 37425424 PMCID: PMC10326790 DOI: 10.21037/tlcr-22-749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/25/2023] [Indexed: 07/11/2023]
Abstract
Background The homologous recombination (HR) repair pathway plays a key role in double-stranded DNA break repair, and germline HR pathway gene variants are associated with increased risk of several cancers, including breast and ovarian cancer. HR deficiency is also a therapeutically targetable phenotype. Methods Somatic (tumour-only) sequencing was performed on 1,109 cases of lung tumors, and the pathological data were reviewed to filter for lung primary carcinomas. Cases were filtered for variants (disease-associated or of uncertain significance) in 14 HR pathway genes, including BRCA1, BRCA2, and ATM. The clinical, pathological and molecular data were reviewed. Results Sixty-one HR pathway gene variants in 56 patients with primary lung cancer were identified. Further filtering by variant allele fraction (VAF) of ≥30% identified 17 HR pathway gene variants in 17 patients. ATM gene variants were most the commonly identified (9/17), including two patients with c.7271T>G (p.V2424G), a variant in the germline that is associated with increased familial cancer risk. Four (4/17) patients had a family history of lung cancer, among which three patients had ATM gene variants suspected to be germline in origin. In three other patients with BRCA1/2 or PALB2 gene variants who had undergone germline testing, the variants were confirmed to be germline; lung cancer was the sentinel cancer in two of these patients with a BRCA1 or PALB2 variant. Conclusions Genomic variants in the HR repair pathway identified in tumor-only sequencing and occurring at higher VAFs (i.e., ≥30%) may suggest a germline origin. Correlating with personal and family history, a subset of these variants is also suggested to be associated with familial cancer risks. Patient age, smoking history and driver mutation status are expected to be a poor screening tool in identifying these patients. Finally, the relative enrichment for ATM variants in our cohort suggests a possible association between ATM mutation and lung cancer risk.
Collapse
Affiliation(s)
- Ju-Yoon Yoon
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Laboratory Medicine, St. Michael’s Hospital, Toronto, ON, Canada
| | - Jacquelyn J. Roth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
| | - Chase A. Rushton
- Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer J. D. Morrissette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine L. Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roger B. Cohen
- Division of Hematology Oncology, Department of Medicine, Perelman Center for Advanced Medicine, Philadelphia, PA, USA
| | - Jason N. Rosenbaum
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Shalabi SF, LaBarge MA. Cellular and molecular mechanisms of breast cancer susceptibility. Clin Sci (Lond) 2022; 136:1025-1043. [PMID: 35786748 DOI: 10.1042/cs20211158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
There is a plethora of recognized risk factors for breast cancer (BC) with poorly understood or speculative biological mechanisms. The lack of prevention options highlights the importance of understanding the mechanistic basis of cancer susceptibility and finding new targets for breast cancer prevention. Until now, we have understood risk and cancer susceptibility primarily through the application of epidemiology and assessing outcomes in large human cohorts. Relative risks are assigned to various human behaviors and conditions, but in general the associations are weak and there is little understanding of mechanism. Aging is by far the greatest risk factor for BC, and there are specific forms of inherited genetic risk that are well-understood to cause BC. We propose that bringing focus to the biology underlying these forms of risk will illuminate biological mechanisms of BC susceptibility.
Collapse
Affiliation(s)
- Sundus F Shalabi
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, U.S.A
- Medical Research Center, Al-Quds University, Jerusalem, Palestine
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, U.S.A
- Center for Cancer and Aging, Beckman Research Institute, City of Hope, Duarte, CA, U.S.A
- Center for Cancer Biomarkers Research (CCBIO), Bergen, Norway
| |
Collapse
|
5
|
Morrissey RL, Thompson AM, Lozano G. Is loss of p53 a driver of ductal carcinoma in situ progression? Br J Cancer 2022; 127:1744-1754. [PMID: 35764786 DOI: 10.1038/s41416-022-01885-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive carcinoma. Multiple studies have shown that DCIS lesions typically possess a driver mutation associated with cancer development. Mutation in the TP53 tumour suppressor gene is present in 15-30% of pure DCIS lesions and in ~30% of invasive breast cancers. Mutations in TP53 are significantly associated with high-grade DCIS, the most likely form of DCIS to progress to invasive carcinoma. In this review, we summarise published evidence on the prevalence of mutant TP53 in DCIS (including all DCIS subtypes), discuss the availability of mouse models for the study of DCIS and highlight the need for functional studies of the role of TP53 in the development of DCIS and progression from DCIS to invasive disease.
Collapse
Affiliation(s)
- Rhiannon L Morrissey
- Genetics and Epigenetics Program at The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alastair M Thompson
- Division of Surgical Oncology, Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Guillermina Lozano
- Genetics and Epigenetics Program at The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA. .,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Targeting DNA Damage Response and Immune Checkpoint for Anticancer Therapy. Int J Mol Sci 2022; 23:ijms23063238. [PMID: 35328658 PMCID: PMC8952261 DOI: 10.3390/ijms23063238] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Deficiency in DNA damage response (DDR) genes leads to impaired DNA repair functions that will induce genomic instability and facilitate cancer development. However, alterations of DDR genes can serve as biomarkers for the selection of suitable patients to receive specific therapeutics, such as immune checkpoint blockade (ICB) therapy. In addition, certain altered DDR genes can be ideal therapeutic targets through adapting the mechanism of synthetic lethality. Recent studies indicate that targeting DDR can improve cancer immunotherapy by modulating the immune response mediated by cGAS-STING-interferon signaling. Investigations of the interplay of DDR-targeting and ICB therapies provide more effective treatment options for cancer patients. This review introduces the mechanisms of DDR and discusses their crucial roles in cancer therapy based on the concepts of synthetic lethality and ICB. The contemporary clinical trials of DDR-targeting and ICB therapies in breast, colorectal, and pancreatic cancers are included.
Collapse
|
7
|
Blaschuk OW. Potential Therapeutic Applications of N-Cadherin Antagonists and Agonists. Front Cell Dev Biol 2022; 10:866200. [PMID: 35309924 PMCID: PMC8927039 DOI: 10.3389/fcell.2022.866200] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
This review focuses on the cell adhesion molecule (CAM), known as neural (N)-cadherin (CDH2). The molecular basis of N-cadherin-mediated intercellular adhesion is discussed, as well as the intracellular signaling pathways regulated by this CAM. N-cadherin antagonists and agonists are then described, and several potential therapeutic applications of these intercellular adhesion modulators are considered. The usefulness of N-cadherin antagonists in treating fibrotic diseases and cancer, as well as manipulating vascular function are emphasized. Biomaterials incorporating N-cadherin modulators for tissue regeneration are also presented. N-cadherin antagonists and agonists have potential for broad utility in the treatment of numerous maladies.
Collapse
|
8
|
Pizzato M, Carioli G, Bertuccio P, Malvezzi M, Levi F, Boffetta P, Negri E, La Vecchia C. Trends in male breast cancer mortality: a global overview. Eur J Cancer Prev 2021; 30:472-479. [PMID: 33470692 DOI: 10.1097/cej.0000000000000651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Recent trends in male breast cancer have been inadequately studied. We updated mortality trends in selected countries and regions worldwide using most recent available data and we predicted figures for 2020. METHODS We extracted official death certification data for male breast cancer and population estimates from the WHO and the Pan American Health Organization databases, from 2000 to 2017. We computed age-standardized (world population) death rates for selected countries and regions worldwide. We used joinpoint regression analysis to identify significant changes in trends and to predict death numbers and rates for 2020. RESULTS In 2015-2017, Central-Eastern Europe had a rate of 2.85/1 000 000, and Russia of 2.22, ranking among the highest. North-Western and Southern Europe, the European Union as a whole and the USA showed rates ranging between 1.5 and 2.0. Lower rates were observed in most Latin American countries, with values below 1.35/1 000 000, in Australia, 1.22, and Japan, 0.58. Between 2000-2004 and 2015-2017, age-adjusted death rates decreased between 10 and 40% in North-Western Europe, Russia, and the USA, and between 1.5 and 25% in the other areas under study, except Latin America (+0.8%). Except for Central-Eastern Europe, predicted rates for 2020 were favourable. CONCLUSION Advancements in management are likely the main drivers of the favourable trends in male breast cancer death rates over the last decades. Delayed diagnosis and limited access to effective care explain the higher mortality in some areas.
Collapse
Affiliation(s)
| | - Greta Carioli
- Department of Clinical Sciences and Community Health
| | - Paola Bertuccio
- Department of Biomedical and Clinical Sciences L. Sacco, Università degli Studi di Milano, Milan, Italy
| | | | - Fabio Levi
- Department of Epidemiology and Health Services Research, Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Eva Negri
- Department of Biomedical and Clinical Sciences L. Sacco, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
9
|
Shalabi SF, Miyano M, Sayaman RW, Lopez JC, Jokela TA, Todhunter ME, Hinz S, Garbe JC, Stampfer MR, Kessenbrock K, Seewaldt VE, LaBarge MA. Evidence for accelerated aging in mammary epithelia of women carrying germline BRCA1 or BRCA2 mutations. NATURE AGING 2021; 1:838-849. [PMID: 35187501 PMCID: PMC8849557 DOI: 10.1038/s43587-021-00104-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
During aging in the human mammary gland, luminal epithelial cells lose lineage fidelity by expressing markers normally expressed in myoepithelial cells. We hypothesize that loss of lineage fidelity is a general manifestation of epithelia that are susceptible to cancer initiation. In the present study, we show that histologically normal breast tissue from younger women who are susceptible to breast cancer, as a result of harboring a germline mutation in BRCA1, BRCA2 or PALB2 genes, exhibits hallmarks of accelerated aging. These include proportionately increased luminal epithelial cells that acquired myoepithelial markers, decreased proportions of myoepithelial cells and a basal differentiation bias or failure of differentiation of cKit+ progenitors. High-risk luminal and myoepithelial cells are transcriptionally enriched for genes of the opposite lineage, inflammatory- and cancer-related pathways. We have identified breast-aging hallmarks that reflect a convergent biology of cancer susceptibility, regardless of the specific underlying genetic or age-dependent risk or the associated breast cancer subtype.
Collapse
Affiliation(s)
- Sundus F Shalabi
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, USA
- Medical Research Center, Al-Quds University, Jerusalem, Palestine
| | - Masaru Miyano
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Rosalyn W Sayaman
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Cancer Metabolism Training Program, City of Hope, Duarte, CA, USA
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jennifer C Lopez
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Tiina A Jokela
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Michael E Todhunter
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Stefan Hinz
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - James C Garbe
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Martha R Stampfer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kai Kessenbrock
- Biological Chemistry Department, University of California, Irvine, CA, USA
| | - Victoria E Seewaldt
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA.
- Cancer Metabolism Training Program, City of Hope, Duarte, CA, USA.
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA.
- Center for Cancer and Aging, City of Hope, Duarte, CA, USA.
- Center for Cancer Biomarkers Research, University of Bergen, Bergen, Norway.
| |
Collapse
|
10
|
Leon P, Cancel-Tassin G, Bourdon V, Buecher B, Oudard S, Brureau L, Jouffe L, Blanchet P, Stoppa-Lyonnet D, Coulet F, Sobol H, Cussenot O. Bayesian predictive model to assess BRCA2 mutational status according to clinical history: Early onset, metastatic phenotype or family history of breast/ovary cancer. Prostate 2021; 81:318-325. [PMID: 33599307 DOI: 10.1002/pros.24109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mutations of the BRCA2 gene are the most frequent alterations found in germline DNA from men with prostate cancer (PrCa), but clinical parameters that could better orientate for BRCA2 mutation screening need to be established. METHODS Germline DNA from 325 PrCa patients (median age at diagnosis: 57 years old) was screened for BRCA2 mutation. The mutation frequency was compared between three subgroups: patients with an age at diagnosis at 55 years old and under (Group I); a personal or family history of breast, uterine or ovarian cancer (Group II); or a metastatic disease (Group III). Frequency of BRCA2 mutations was established for each combination of phenotypes, and compared between patients meeting or not the criteria for each subgroup using Fisher's exact test. Mutual information, direct effect, elasticity and contribution to the mutational status of each phenotype, taking into account overlap between subgroups, were also estimated using Bayesian algorithms. RESULTS The proportion of BRCA2 mutation was 5.9% in Group I, 10.9% in Group II and 6.9% in Group III. The frequency of BRCA2 mutation was significantly higher among patients of Group II (p = .006), and reached 15.6% among patients of this group who presented a metastatic disease. Mutual information, direct effect, elasticity and contribution to the mutational status were the highest for phenotype II. Fifteen (71.4%) of the 21 BRCA2 mutation carriers had an aggressive form of the disease. Four (19%) of them died from PrCa after a median follow-up duration of 64.5 months. CONCLUSIONS Our results showed that a higher frequency of BRCA2 mutation carriers is observed, not only among PrCa patients with young onset or a metastatic disease, but also with a personal or a familial history of breast cancer.
Collapse
Affiliation(s)
- Priscilla Leon
- Department of Urology, Clinique Pasteur, Royan, France
- GRC n°5 Predictive Onco-Urology, Tenon Hospital, AP-HP, Sorbonne University, Paris, France
| | - Geraldine Cancel-Tassin
- GRC n°5 Predictive Onco-Urology, Tenon Hospital, AP-HP, Sorbonne University, Paris, France
- CeRePP, Paris, France
| | - Violaine Bourdon
- Department of Prevention and Screening Genetic Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Bruno Buecher
- Department of Genetics, Institut Curie, Paris, France
| | - Stephane Oudard
- Department of Oncology Unit, Georges Pompidou European Hospital, APHP, Paris, France
| | - Laurent Brureau
- Department of Urology, Pointe-à-Pitre/Abymes University Hospital, Pointe a Pitre, Guadeloupe
- UMR_S 1085, EHESP, Research Institute in Health, Environment and Work (IRSET), Inserm, Pointe-à-Pitre, Guadeloupe
| | | | - Pascal Blanchet
- Department of Urology, Pointe-à-Pitre/Abymes University Hospital, Pointe a Pitre, Guadeloupe
- UMR_S 1085, EHESP, Research Institute in Health, Environment and Work (IRSET), Inserm, Pointe-à-Pitre, Guadeloupe
| | | | - Florence Coulet
- Department of Genetics, Oncogenetics Consulting, Oncogenetics Functional Unit, Groupe Hospitalier Pitié-Salpêtrière APHP, Paris, France
| | - Hagay Sobol
- Department of Prevention and Screening Genetic Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Olivier Cussenot
- GRC n°5 Predictive Onco-Urology, Tenon Hospital, AP-HP, Sorbonne University, Paris, France
- CeRePP, Paris, France
| |
Collapse
|
11
|
Deligiorgi MV, Panayiotidis MI, Trafalis DT. Repurposing denosumab in breast cancer beyond prevention of skeletal related events: Could nonclinical data be translated into clinical practice? Expert Rev Clin Pharmacol 2020; 13:1235-1252. [PMID: 33070648 DOI: 10.1080/17512433.2020.1839416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Denosumab is a human monoclonal antibody inhibiting the receptor activator of nuclear factor kappa-B ligand (RANKL). Initially approved as antiosteοporotic agent, denosumab is being currently pursued as a candidate for drug repurposing in oncology, especially breast cancer. AREAS COVERED The present review provides an overview of the therapeutic potential of denosumab in breast cancer beyond prevention of skeletal-related events (SREs), with focus on prevention of carcinogenesis in BRCA mutation carriers and on adjuvant treatment in early breast cancer patients. Study search was conducted on the following electronic databases: PubMed, Google scholar, Scopus.com, ClinicalTrials.gov, and European Union Clinical Trials Register from 2008 until June 2020. EXPERT OPINION Nonclinical data have established links between RANKL signaling and breast cancer initiation and progression, rationalizing exploring the potential bone-independent anticancer role of denosumab beyond SREs prevention. Preclinical and preliminary clinical data show that denosumab may inhibit carcinogenesis in BRCA mutation carriers. Denosumab adjuvant in early breast cancer has been shown, though inconsistently, to provide a disease-free survival benefit for a subgroup of patients. Despite promising results, the incorporation of denosumab in preventive and therapeutic protocols of breast cancer beyond prevention of SREs cannot be endorsed until further research consolidates its efficacy.
Collapse
Affiliation(s)
- Maria V Deligiorgi
- Department of Pharmacology, Clinical Pharmacology Unit, Faculty of Medicine, National and Kapodistrian University of Athens , Athens, Greece
| | - Mihalis I Panayiotidis
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics , Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Dimitrios T Trafalis
- Department of Pharmacology, Clinical Pharmacology Unit, Faculty of Medicine, National and Kapodistrian University of Athens , Athens, Greece
| |
Collapse
|
12
|
Trottier AM, Druhan LJ, Kraft IL, Lance A, Feurstein S, Helgeson M, Segal JP, Das S, Avalos BR, Godley LA. Heterozygous germ line CSF3R variants as risk alleles for development of hematologic malignancies. Blood Adv 2020; 4:5269-5284. [PMID: 33108454 PMCID: PMC7594406 DOI: 10.1182/bloodadvances.2020002013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Colony-stimulating factor 3 receptor (CSF3R) encodes the receptor for granulocyte colony-stimulating factor (G-CSF), a cytokine vital for granulocyte proliferation and differentiation. Acquired activating heterozygous variants in CSF3R are the main cause of chronic neutrophilic leukemia, a hyperproliferative disorder. In contrast, biallelic germ line hypomorphic variants in CSF3R are a rare cause of severe congenital neutropenia, a hypoproliferative condition. The impact of heterozygous germ line CSF3R variants, however, is unknown. We identified CSF3R as a new germ line hematologic malignancy predisposition gene through analysis of 832 next-generation sequencing tests conducted in 632 patients with hematologic malignancies. Among germ line CSF3R variants, 3 were abnormal in functional testing, indicating their deleterious nature. p.Trp547* was identified in 2 unrelated men with myelodysplastic syndromes diagnosed at 76 and 33 years of age, respectively. p.Trp547* is a loss-of-function nonsense variant in the extracellular domain that results in decreased CSF3R messenger RNA expression and abrogation of CSF3R surface expression and proliferative responses to G-CSF. p.Ala119Thr is a missense variant found in 2 patients with multiple myeloma and acute lymphoblastic leukemia, respectively. This variant is located between the extracellular immunoglobulin-like and cytokine receptor homology domains and results in decreased G-CSF sensitivity. p.Pro784Thr was identified in a 67-year-old man with multiple myeloma. p.Pro784Thr is a missense variant in the cytoplasmic domain that inhibits CSF3R internalization, producing a gain-of-function phenotype and G-CSF hypersensitivity. Our findings identify germ line heterozygous CSF3R variants as risk factors for development of myeloid and lymphoid malignancies.
Collapse
Affiliation(s)
- Amy M Trottier
- Section of Hematology/Oncology, Department of Medicine, and
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL
| | - Lawrence J Druhan
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC; and
| | - Ira L Kraft
- Section of Hematology/Oncology, Department of Medicine, and
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL
- Internal Medicine-Pediatrics Residency Program, Department of Medicine
| | - Amanda Lance
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC; and
| | - Simone Feurstein
- Section of Hematology/Oncology, Department of Medicine, and
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL
| | | | - Jeremy P Segal
- Department of Pathology, University of Chicago, Chicago, IL
| | - Soma Das
- Department of Human Genetics, and
| | - Belinda R Avalos
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC; and
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine, and
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL
- Department of Human Genetics, and
| |
Collapse
|
13
|
Charan M, Verma AK, Hussain S, Misri S, Mishra S, Majumder S, Ramaswamy B, Ahirwar D, Ganju RK. Molecular and Cellular Factors Associated with Racial Disparity in Breast Cancer. Int J Mol Sci 2020; 21:5936. [PMID: 32824813 PMCID: PMC7460595 DOI: 10.3390/ijms21165936] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Recent studies have demonstrated that racial differences can influence breast cancer incidence and survival rate. African American (AA) women are at two to three fold higher risk for breast cancer than other ethnic groups. AA women with aggressive breast cancers show worse prognoses and higher mortality rates relative to Caucasian (CA) women. Over the last few years, effective treatment strategies have reduced mortality from breast cancer. Unfortunately, the breast cancer mortality rate among AA women remains higher compared to their CA counterparts. The focus of this review is to underscore the racial differences and differential regulation/expression of genetic signatures in CA and AA women with breast cancer. Moreover, immune cell infiltration significantly affects the clinical outcome of breast cancer. Here, we have reviewed recent findings on immune cell recruitment in the tumor microenvironment (TME) and documented its association with breast cancer racial disparity. In addition, we have extensively discussed the role of cytokines, chemokines, and other cell signaling molecules among AA and CA breast cancer patients. Furthermore, we have also reviewed the distinct genetic and epigenetic changes in AA and CA patients. Overall, this review article encompasses various molecular and cellular factors associated with breast cancer disparity that affects mortality and clinical outcome.
Collapse
Affiliation(s)
- Manish Charan
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
| | - Ajeet K. Verma
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
| | - Shahid Hussain
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
| | - Swati Misri
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
| | - Sanjay Mishra
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
| | - Sarmila Majumder
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA; (S.M.); (B.R.)
| | - Bhuvaneswari Ramaswamy
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA; (S.M.); (B.R.)
| | - Dinesh Ahirwar
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
| | - Ramesh K. Ganju
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA; (S.M.); (B.R.)
| |
Collapse
|
14
|
Carusillo A, Mussolino C. DNA Damage: From Threat to Treatment. Cells 2020; 9:E1665. [PMID: 32664329 PMCID: PMC7408370 DOI: 10.3390/cells9071665] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
DNA is the source of genetic information, and preserving its integrity is essential in order to sustain life. The genome is continuously threatened by different types of DNA lesions, such as abasic sites, mismatches, interstrand crosslinks, or single-stranded and double-stranded breaks. As a consequence, cells have evolved specialized DNA damage response (DDR) mechanisms to sustain genome integrity. By orchestrating multilayer signaling cascades specific for the type of lesion that occurred, the DDR ensures that genetic information is preserved overtime. In the last decades, DNA repair mechanisms have been thoroughly investigated to untangle these complex networks of pathways and processes. As a result, key factors have been identified that control and coordinate DDR circuits in time and space. In the first part of this review, we describe the critical processes encompassing DNA damage sensing and resolution. In the second part, we illustrate the consequences of partial or complete failure of the DNA repair machinery. Lastly, we will report examples in which this knowledge has been instrumental to develop novel therapies based on genome editing technologies, such as CRISPR-Cas.
Collapse
Affiliation(s)
- Antonio Carusillo
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany;
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany;
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
15
|
da Costa E Silva Carvalho S, Cury NM, Brotto DB, de Araujo LF, Rosa RCA, Texeira LA, Plaça JR, Marques AA, Peronni KC, Ruy PDC, Molfetta GA, Moriguti JC, Carraro DM, Palmero EI, Ashton-Prolla P, de Faria Ferraz VE, Silva WA. Germline variants in DNA repair genes associated with hereditary breast and ovarian cancer syndrome: analysis of a 21 gene panel in the Brazilian population. BMC Med Genomics 2020; 13:21. [PMID: 32039725 PMCID: PMC7011249 DOI: 10.1186/s12920-019-0652-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Hereditary Breast and Ovarian Cancer Syndrome (HBOC) occurs in families with a history of breast/ovarian cancer, presenting an autosomal dominant inheritance pattern. BRCA1 and BRCA2 are high penetrance genes associated with an increased risk of up to 20-fold for breast and ovarian cancer. However, only 20-30% of HBOC cases present pathogenic variants in those genes, and other DNA repair genes have emerged as increasing the risk for HBOC. In Brazil, variants in ATM, ATR, CHEK2, MLH1, MSH2, MSH6, POLQ, PTEN, and TP53 genes have been reported in up to 7.35% of the studied cases. Here we screened and characterized variants in 21 DNA repair genes in HBOC patients. METHODS We systematically analyzed 708 amplicons encompassing the coding and flanking regions of 21 genes related to DNA repair pathways (ABRAXAS1, ATM, ATR, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, MLH1, MRE11, MSH2, MSH6, NBN, PALB2, PMS2, PTEN, RAD50, RAD51, TP53 and UIMC1). A total of 95 individuals with HBOC syndrome clinical suspicion in Southeast Brazil were sequenced, and 25 samples were evaluated for insertions/deletions in BRCA1/BRCA2 genes. Identified variants were assessed in terms of population allele frequency and their functional effects were predicted through in silico algorithms. RESULTS We identified 80 variants in 19 genes. About 23.4% of the patients presented pathogenic variants in BRCA1, BRCA2 and TP53, a frequency higher than that identified among previous studies in Brazil. We identified a novel variant in ATR, which was predicted as pathogenic by in silico tools. The association analysis revealed 13 missense variants in ABRAXAS1, BARD1, BRCA2, CHEK2, CDH1, MLH1, PALB2, and PMS2 genes, as significantly associated with increased risk to HBOC, and the patients carrying those variants did not present large insertions or deletions in BRCA1/BRCA2 genes. CONCLUSIONS This study embodies the third report of a multi-gene analysis in the Brazilian population, and addresses the first report of many germline variants associated with HBOC in Brazil. Although further functional analyses are necessary to better characterize the contribution of those variants to the phenotype, these findings would improve the risk estimation and clinical follow-up of patients with HBOC clinical suspicion.
Collapse
Affiliation(s)
- Simone da Costa E Silva Carvalho
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Center for Medical Genomics at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
- Regional Blood Center at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Nathalia Moreno Cury
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Regional Blood Center at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Danielle Barbosa Brotto
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Regional Blood Center at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiza Ferreira de Araujo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Regional Blood Center at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Reginaldo Cruz Alves Rosa
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Center for Medical Genomics at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lorena Alves Texeira
- Division of Internal Medicine and Geriatrics, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jessica Rodrigues Plaça
- Regional Blood Center at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Adriana Aparecida Marques
- Regional Blood Center at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Kamila Chagas Peronni
- Regional Blood Center at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Patricia de Cássia Ruy
- Center for Medical Genomics at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Greice Andreotti Molfetta
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Center for Medical Genomics at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Julio Cesar Moriguti
- Division of Internal Medicine and Geriatrics, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dirce Maria Carraro
- International Research, Center/CIPE, AC Camargo Cancer Center, Sao Paulo, SP, Brazil
| | - Edenir Inêz Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Patricia Ashton-Prolla
- Laboratório de Medicina Genômica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Victor Evangelista de Faria Ferraz
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Center for Medical Genomics at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Medical Genetics, University Hospital of the Ribeirão Preto Medical School, Ribeirão Preto, Brazil
| | - Wilson Araujo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
- Center for Medical Genomics at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil.
- Regional Blood Center at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
16
|
Li Y, Zhou X, Liu J, Yin Y, Yuan X, Yang R, Wang Q, Ji J, He Q. Differentially expressed genes and key molecules of BRCA1/2-mutant breast cancer: evidence from bioinformatics analyses. PeerJ 2020; 8:e8403. [PMID: 31998560 PMCID: PMC6979404 DOI: 10.7717/peerj.8403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
Background BRCA1 and BRCA2 genes are currently proven to be closely related to high lifetime risks of breast cancer. To date, the closely related genes to BRCA1/2 mutations in breast cancer remains to be fully elucidated. This study aims to identify the gene expression profiles and interaction networks influenced by BRCA1/2 mutations, so as to reflect underlying disease mechanisms and provide new biomarkers for breast cancer diagnosis or prognosis. Methods Gene expression profiles from The Cancer Genome Atlas (TCGA) database were downloaded and combined with cBioPortal website to identify exact breast cancer patients with BRCA1/2 mutations. Gene set enrichment analysis (GSEA) was used to analyze some enriched pathways and biological processes associated BRCA mutations. For BRCA1/2-mutant breast cancer, wild-type breast cancer and corresponding normal tissues, three independent differentially expressed genes (DEGs) analysis were performed to validate potential hub genes with each other. Protein-protein interaction (PPI) networks, survival analysis and diagnostic value assessment helped identify key genes associated with BRCA1/2 mutations. Results The regulation process of cell cycle was significantly enriched in mutant group compared with wild-type group. A total of 294 genes were identified after analysis of DEGs between mutant patients and wild-type patients. Interestingly, by the other two comparisons, we identified 43 overlapping genes that not only significantly expressed in wild-type breast cancer patients relative to normal tissues, but more significantly expressed in BRCA1/2-mutant breast patients. Based on the STRING database and cytoscape software, we constructed a PPI network using 294 DEGs. Through topological analysis scores of the PPI network and 43 overlapping genes, we sought to select some genes, thereby using survival analysis and diagnostic value assessment to identify key genes pertaining to BRCA1/2-mutant breast cancer. CCNE1, NPBWR1, A2ML1, EXO1 and TTK displayed good prognostic/diagnostic value for breast cancer and BRCA1/2-mutant breast cancer. Conclusion Our research provides comprehensive and new insights for the identification of biomarkers connected with BRCA mutations, availing diagnosis and treatment of breast cancer and BRCA1/2-mutant breast cancer patients.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Zhou
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiali Liu
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Yin
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Clinical Laboratories, XIAN XD Group Hospital, Xi'an, China
| | - Xiaohong Yuan
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruihua Yang
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qi Wang
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Ji
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian He
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|