1
|
Ye H, Zong Q, Zou H, Zhang R. Emerging insights into the roles of ANGPTL8 beyond glucose and lipid metabolism. Front Physiol 2023; 14:1275485. [PMID: 38107478 PMCID: PMC10722441 DOI: 10.3389/fphys.2023.1275485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Angiopoietin-like protein 8 (ANGPTL8) is a secreted protein predominantly expressed in liver and adipose tissue. ANGPTL8 modulates the clearance of triglycerides (TGs) by suppressing the activity of lipoprotein lipase (LPL) within the plasma. Previous studies found that circulating ANGPTL8 levels were significantly increased in metabolic disorder-related diseases, such as type 2 diabetes mellitus (T2DM), obesity, metabolic syndrome and nonalcoholic fatty liver disease (NAFLD). Whether ANGPTL8 has a direct pathogenic role in these diseases remains to be determined. In this review, we summarize the emerging roles of ANGPTL8 in the regulation of inflammation, tumours, circulatory system-related diseases, and ectopic lipid deposition, which may provide new insights into the diverse functions of ANGPTL8 in various diseases beyond its well-established functions in glucose and lipid metabolism.
Collapse
Affiliation(s)
- Huimin Ye
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qinghai University, Xining, China
| | - Qunchuan Zong
- Department of Traumatology and Orthopaedics, The Affiliated Hospital of Qinghai University, Xining, China
| | - Huajie Zou
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qinghai University, Xining, China
| | - Ruixia Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
2
|
Yu H, Jiao X, Yang Y, Lv Q, Du Z, Li L, Hu C, Du Y, Zhang J, Li F, Sun Q, Wang Y, Chen D, Zhang X, Qin Y. ANGPTL8 deletion attenuates abdominal aortic aneurysm formation in ApoE-/- mice. Clin Sci (Lond) 2023; 137:979-993. [PMID: 37294581 PMCID: PMC10311111 DOI: 10.1042/cs20230031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Angiopoietin-like protein 8 (ANGPTL8) plays important roles in lipid metabolism, glucose metabolism, inflammation, and cell proliferation and migration. Clinical studies have indicated that circulating ANGPTL8 levels are increased in patients with thoracic aortic dissection (TAD). TAD shares several risk factors with abdominal aortic aneurysm (AAA). However, the role of ANGPTL8 in AAA pathogenesis has never been investigated. Here, we investigated the effect of ANGPTL8 knockout on AAA in ApoE-/- mice. ApoE-/-ANGPTL8-/- mice were generated by crossing ANGPTL8-/- and ApoE-/- mice. AAA was induced in ApoE-/- using perfusion of angiotensin II (AngII). ANGPTL8 was significantly up-regulated in AAA tissues of human and experimental mice. Knockout of ANGPTL8 significantly reduced AngII-induced AAA formation, elastin breaks, aortic inflammatory cytokines, matrix metalloproteinase expression, and smooth muscle cell apoptosis in ApoE-/- mice. Similarly, ANGPTL8 sh-RNA significantly reduced AngII-induced AAA formation in ApoE-/- mice. ANGPTL8 deficiency inhibited AAA formation, and ANGPTL8 may therefore be a potential therapeutic target for AAA.
Collapse
Affiliation(s)
- Huahui Yu
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiaolu Jiao
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yunyun Yang
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qianwen Lv
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Zhiyong Du
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Linyi Li
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Chaowei Hu
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yunhui Du
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jing Zhang
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Fan Li
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qiuju Sun
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yu Wang
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Dong Chen
- Department of Pathology, Beijing AnZhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiaoping Zhang
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yanwen Qin
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
3
|
Rashvand F, Irandoust K, Taheri M, Gholamzadeh Khoei S, Gheibi N. The Effect of Four Weeks of Long-Term Endurance Training with and Without Propolis Supplementation on Serum Levels of Betatrophin/ANGPTL8 in Male Athletes. Asian J Sports Med 2022; 13. [DOI: 10.5812/asjsm-120515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 08/14/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2023] Open
Abstract
Background: Betatrophin/angiopoietin-like protein (ANGPTL8) is defined as an adipokine that regulates blood glucose and triglyceride levels. Objectives: This study aimed to evaluate the effect of propolis supplementation for the first time on serum levels of the hormone betatrophin, as a drug target in the treatment of dyslipidemia, in male endurance athletes for four weeks. Methods: 44 male athletes with an average age of 22 ± 3 years, a height of 177.5 ± 6.5 cm, and a weight of 76 ± 6 kg were selected in Qazvin. They were randomly divided into four groups: Supplementation, placebo, physical activity, and control. The supplementation and placebo groups received two 500 mg tablets of propolis and cellulose (in terms of shape and color, are similar to the original supplement and have no properties, flavor, and aroma) once after lunch and once after dinner, respectively. The drug treatment lasted for four weeks. The athletes' weight and serum levels of betatrophin were measured at the beginning and the end of 4 weeks of treatment. The ELISA method was used to assess the serum concentration of betatrophin. Analyzes were performed by the ANCOVA method. Results: The results showed that the long-term endurance training plus propolis supplementation would result in significant changes in the betatrophin serum levels and weight in participants (P = 0.001), but in the athletes without supplementation, these changes were not significant (P > 0.05). Conclusions: The results indicated that betatrophin serum levels in endurance athletes are increased by propolis supplementation, and their weight is decreased.
Collapse
|
4
|
ANGPTL8 is a negative regulator in pathological cardiac hypertrophy. Cell Death Dis 2022; 13:621. [PMID: 35851270 PMCID: PMC9293964 DOI: 10.1038/s41419-022-05029-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 01/21/2023]
Abstract
Pathological cardiac hypertrophy is an independent risk factor for heart failure and is considered a target for the treatment of heart failure. However, the mechanisms underlying pathological cardiac hypertrophy remain largely unknown. We aimed to investigate the role of angiopoietin-like protein 8 (ANGPTL8) in pathological cardiac hypertrophy. We found that serum ANGPTL8 levels were significantly increased in hypertensive patients with cardiac hypertrophy and in mice with cardiac hypertrophy induced by Ang II or TAC. Furthermore, the secretion of ANGPTL8 from the liver was increased during hypertrophic processes, which were triggered by Ang II. In the Ang II- and transverse aortic constriction (TAC)-induced mouse cardiac hypertrophy model, ANGPTL8 deficiency remarkably accelerated cardiac hypertrophy and fibrosis with deteriorating cardiac dysfunction. Accordingly, both recombinant human full-length ANGPTL8 (rANGPTL8) protein and ANGPTL8 overexpression significantly mitigated Ang II-induced cell enlargement in primary neonatal rat cardiomyocytes (NRCMs) and H9c2 cells. Mechanistically, the antihypertrophic effects of ANGPTL8 depended on inhibiting Akt and GSK-3β activation, and the Akt activator SC-79 abolished the antihypertrophic effects of rANGPTL8 in vitro. Moreover, we demonstrated that ANGPTL8 directly bound to the paired Ig-like receptor PIRB (LILRB3) by RNA-seq and immunoprecipitation-mass screening. Remarkably, the antihypertrophic effects of ANGPTL8 were largely blocked by anti-LILRB3 and siRNA-LILRB3. Our study indicated that ANGPTL8 served as a novel negative regulator of pathological cardiac hypertrophy by binding to LILRB3 (PIRB) and inhibiting Akt/GSK3β activation, suggesting that ANGPTL8 may provide synergistic effects in combination with AT1 blockers and become a therapeutic target for cardiac hypertrophy and heart failure.
Collapse
|