1
|
Zhou JQ, Liu ZX, Zhong HF, Liu GQ, Ding MC, Zhang Y, Yu B, Jiang N. Single nucleotide polymorphisms in the development of osteomyelitis and prosthetic joint infection: a narrative review. Front Immunol 2024; 15:1444469. [PMID: 39301021 PMCID: PMC11410582 DOI: 10.3389/fimmu.2024.1444469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024] Open
Abstract
Currently, despite advancements in diagnostic and therapeutic modalities, osteomyelitis and prosthetic joint infection (PJI) continue to pose significant challenges for orthopaedic surgeons. These challenges are primarily attributed to the high degree of heterogeneity exhibited by these disorders, which are influenced by a combination of environmental and host factors. Recent research efforts have delved into the pathogenesis of osteomyelitis and PJI by investigating single nucleotide polymorphisms (SNPs). This review comprehensively summarizes the current evidence regarding the associations between SNPs and the predisposition to osteomyelitis and PJI across diverse populations. The findings suggest potential linkages between SNPs in genes such as IL-1, IL-6, IFN-γ, TNF-α, VDR, tPA, CTSG, COX-2, MMP1, SLC11A1, Bax, NOS2, and NLRP3 with the development of osteomyelitis. Furthermore, SNPs in genes like IL-1, IL-6, TNF-α, MBL, OPG, RANK, and GCSFR are implicated in susceptibility to PJI. However, it is noted that most of these studies are single-center reports, lacking in-depth mechanistic research. To gain a more profound understanding of the roles played by various SNPs in the development of osteomyelitis and PJI, future multi-center studies and fundamental investigations are deemed necessary.
Collapse
Affiliation(s)
- Jia-Qi Zhou
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zi-Xian Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Hong-Fa Zhong
- Department of Trauma Emergency Center, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China
| | - Guan-Qiao Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming-Cong Ding
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Yu Zhang
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Jiang
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Trauma Emergency Center, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China
| |
Collapse
|
2
|
Lizárraga D, Gómez-Gil B, García-Gasca T, Ávalos-Soriano A, Casarini L, Salazar-Oroz A, García-Gasca A. Gestational diabetes mellitus: genetic factors, epigenetic alterations, and microbial composition. Acta Diabetol 2024; 61:1-17. [PMID: 37660305 DOI: 10.1007/s00592-023-02176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Gestational diabetes mellitus (GDM) is a common metabolic disorder, usually diagnosed during the third trimester of pregnancy that usually disappears after delivery. In GDM, the excess of glucose, fatty acids, and amino acids results in foetuses large for gestational age. Hyperglycaemia and insulin resistance accelerate the metabolism, raising the oxygen demand, and creating chronic hypoxia and inflammation. Women who experienced GDM and their offspring are at risk of developing type-2 diabetes, obesity, and other metabolic or cardiovascular conditions later in life. Genetic factors may predispose the development of GDM; however, they do not account for all GDM cases; lifestyle and diet also play important roles in GDM development by modulating epigenetic signatures and the body's microbial composition; therefore, this is a condition with a complex, multifactorial aetiology. In this context, we revised published reports describing GDM-associated single-nucleotide polymorphisms (SNPs), DNA methylation and microRNA expression in different tissues (such as placenta, umbilical cord, adipose tissue, and peripheral blood), and microbial composition in the gut, oral cavity, and vagina from pregnant women with GDM, as well as the bacterial composition of the offspring. Altogether, these reports indicate that a number of SNPs are associated to GDM phenotypes and may predispose the development of the disease. However, extrinsic factors (lifestyle, nutrition) modulate, through epigenetic mechanisms, the risk of developing the disease, and some association exists between the microbial composition with GDM in an organ-specific manner. Genes, epigenetic signatures, and microbiota could be transferred to the offspring, increasing the possibility of developing chronic degenerative conditions through postnatal life.
Collapse
Affiliation(s)
- Dennise Lizárraga
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Bruno Gómez-Gil
- Laboratory of Microbial Genomics, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Teresa García-Gasca
- Laboratory of Molecular and Cellular Biology, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias s/n, 76230, Juriquilla, Querétaro, Mexico
| | - Anaguiven Ávalos-Soriano
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy
| | - Azucena Salazar-Oroz
- Maternal-Fetal Department, Instituto Vidalia, Hospital Sharp Mazatlán, Avenida Rafael Buelna y Dr. Jesús Kumate s/n, 82126, Mazatlán, Sinaloa, Mexico
| | - Alejandra García-Gasca
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico.
| |
Collapse
|
3
|
Hu Y, Jin L, Wang Z. Genome-wide association study of dilated cardiomyopathy-induced heart failure associated with renal insufficiency in a Chinese population. BMC Cardiovasc Disord 2023; 23:335. [PMID: 37391705 PMCID: PMC10314512 DOI: 10.1186/s12872-023-03370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/28/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND As it is unclear whether there is genetic susceptibility to cardiorenal syndrome (CRS), we conducted a genome-wide association study of dilated cardiomyopathy (DCM)-induced heart failure (HF) associated with renal insufficiency (RI) in a Chinese population to identify putative susceptibility variants and culprit genes. METHODS A total of 99 Han Chinese patients with DCM-induced chronic HF were selected and divided into one of three groups, namely, HF with normal renal function (Group 1), HF with mild RI (Group 2) and HF with moderate to severe RI (Group 3). Genomic DNA was extracted from each subject for genotyping. RESULTS According to Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, top 10 lists of molecular function, cell composition and biological process of differential target genes and 15 signalling pathways were discriminated among the three groups. Additionally, sequencing results identified 26 significantly different single-nucleotide polymorphisms (SNPs) in the 15 signalling pathways, including three SNPs (rs57938337, rs6683225 and rs6692782) in ryanodine receptor 2 (RYR2) and two SNPs (rs12439006 and rs16958069) in RYR3. The genotype and allele frequencies of the five SNPs in RYR2 and RYR3 were significantly differential between HF (Group 1) and CRS (Group 2 + 3) patients. CONCLUSION Twenty-six significantly different SNP loci in 17 genes of the 15 KEGG pathways were found in the three patient groups. Among these variants, rs57938337, rs6683225 and rs6692782 in RYR2 and rs12439006 and rs16958069 in RYR3 are associated with RI in Han Chinese patients with heart failure, suggesting that these variants may be used to identify patients susceptible to CRS in the future.
Collapse
Affiliation(s)
- Yuexin Hu
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 246 Guangzhou Road, Nanjing, Jiangsu, 210008, China
- Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, China
| | - Liangli Jin
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 246 Guangzhou Road, Nanjing, Jiangsu, 210008, China
- Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, China
| | - Zhi Wang
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 246 Guangzhou Road, Nanjing, Jiangsu, 210008, China.
- Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, China.
| |
Collapse
|
4
|
Zhang C, Han F, Yu J, Hu X, Hua M, Zhong C, Wang R, Zhao X, Shi Y, Ji C, Ma D. Investigation of NF-κB-94ins/del ATTG and CARD8 (rs2043211) Gene Polymorphism in Acute Lymphoblastic Leukemia. Front Endocrinol (Lausanne) 2019; 10:501. [PMID: 31428046 PMCID: PMC6688047 DOI: 10.3389/fendo.2019.00501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 07/10/2019] [Indexed: 02/02/2023] Open
Abstract
NLRP3 inflammasome has been widely implicated in the development and progression of various hematological diseases. However, how NLRP3 inflammasome contributes to the pathogenesis and clinical features of acute lymphoblastic leukemia (ALL) is still unknown. Here, in ALL patients' bone marrow, we investigated the single-nucleotide polymorphisms (SNPs) and expression of NLRP3 inflammasome related genes, NF-κB, NLRP3, IL-1β, IL-18, Caspase-1, and ASC. A total of 308 ALL patients and 300 healthy participants were included in this study. D allele and DD genotype under codominant model of NF-κB-94ins/del ATTG were showed as a protective factor in susceptibility of ALL. As for CARD8 (rs2043211), AT/TT genotype under dominant model and TT genotype under codominant model greatly increased the ALL susceptibility. We further studied the relationship between NLRP3 inflammasome genetic polymorphisms and clinical relevance. The results showed that DD genotype of NF-κB-94 ins/del ATTG and AT/TT genotype of CARD8 (rs2043211) contributed to lower WBC count and T-cell immunophenotype, respectively. Moreover, we also found that AT and TT genotypes of CARD8 (rs2043211), GT and TT genotypes of IL-1β (rs16944), and TT genotype of IL-18 (rs1946518) were associated with higher mRNA expression of NLRP3 inflammasome related genes and secretion of downstream cytokines. In conclusion, NF-κB-94 ins/del ATTG and CARD8 (rs2043211) genotypes might serve as novel biomarkers and potential targets for ALL.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Fengjiao Han
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Yu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiang Hu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Mingqiang Hua
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Chaoqin Zhong
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xueyun Zhao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Yufeng Shi
- Institute for Financial Studies and School of Mathematics, Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Daoxin Ma
| |
Collapse
|