1
|
Fan Y, Chen X, Shan T, Wang N, Han Q, Ren B, Cheng L. Polymicrobial interactions of Helicobacter pylori and its role in the process of oral diseases. J Oral Microbiol 2025; 17:2469896. [PMID: 40013013 PMCID: PMC11864007 DOI: 10.1080/20002297.2025.2469896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/12/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025] Open
Abstract
Objective Helicobacter pylori (H. pylori) infection affects approximately 50% of the global population. The predominant route of H. pylori transmission is through the oral pathway, making the oral cavity highly significant in its infection. This review focuses on the relationship between H. pylori and oral diseases, the influence of H. pylori infection on the oral microbiota, and the potential mechanisms involving certain oral pathogens. Method To identify relevant studies, we conducted searches in PubMed, Google Scholar using keywords such as "Helicobacter pylori," "oral diseases, " "oral microorganisms, " without any date restrictions. The retrieved publications were subject to a review. Results H. pylori infection is positively correlated with the occurrence of various oral diseases, such as dental caries, periodontitis, and oral lichen planus. H. pylori may affect the oral microbiota through various mechanisms, and there exists an interactive relationship between H. pylori and oral bacteria, including Streptococcus, Porphyromonas gingivalis (P. gingivalis), and Candida albicans (C. albicans). Conclusions H. pylori infection has a close relationship with certain oral diseases. H. pylori modulates oral microflora diversity and structure, while eradication therapy and medications have varying impacts on oral microbiota.
Collapse
Affiliation(s)
- Yufei Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xi Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tiantian Shan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nanxi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Costa LCMC, Carvalho MDG, Vale FF, Marques AT, Rasmussen LT, Chen T, Barros-Pinheiro M. Helicobacter pylori in oral cavity: current knowledge. Clin Exp Med 2024; 24:209. [PMID: 39230790 PMCID: PMC11374826 DOI: 10.1007/s10238-024-01474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
The oral cavity may play a role as a reservoir and in the transmission and colonization of Helicobacter pylori. The route of transmission for H. pylori is not fully understood. The prevalence of this pathogen varies globally, affecting half of the world's population, predominantly in developing countries. Here, we review the prevalence of H. pylori in the oral cavity, the characteristics that facilitate its colonization and dynamics in the oral microbiome, the heterogeneity and diversity of virulence of among strains, and noninvasive techniques for H. pylori detection in oral samples. The prevalence of H. pylori in the oral cavity varies greatly, being influenced by the characteristics of the population, regions where samples are collected in the oral cavity, and variations in detection methods. Although there is no direct association between the presence of H. pylori in oral samples and stomach infection, positive cases for gastric H. pylori frequently exhibit a higher prevalence of the bacterium in the oral cavity, suggesting that the stomach may not be the sole reservoir of H. pylori. In the oral cavity, H. pylori can cause microbiome imbalance and remodeling of the oral ecosystem. Detection of H. pylori in the oral cavity by a noninvasive method may provide a more accessible diagnostic tool as well as help prevent transmission and gastric re-colonization. Further research into this bacterium in the oral cavity will offer insights into the treatment of H. pylori infection, potentially developing new clinical approaches.
Collapse
Affiliation(s)
- Liana Cristina Melo Carneiro Costa
- Programa de Pós-graduação em Ciências da Saúde, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Brazil.
- BioISI - BioSystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal.
| | - Maria das Graças Carvalho
- Departamento de Análises Clínicas e Toxicológicas da Faculdade de Farmácia da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Filipa F Vale
- BioISI - BioSystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia T Marques
- BioISI - BioSystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | | | - Tsute Chen
- The Forsyth Institute (Microbiology), Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Melina Barros-Pinheiro
- Programa de Pós-graduação em Ciências da Saúde, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Brazil
| |
Collapse
|
3
|
Das S, Konwar BK. Inhibiting pathogenicity of vaginal Candida albicans by lactic acid bacteria and MS analysis of their extracellular compounds. APMIS 2024; 132:161-186. [PMID: 38168754 DOI: 10.1111/apm.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
Maintaining healthy vaginal microflora post-puberty is critical. In this study we explore the potential of vaginal lactic acid bacteria (LAB) and their extracellular metabolites against the pathogenicity of Candida albicans. The probiotic culture free supernatant (PCFS) from Lactobacillus crispatus, L. gasseri, and L. vaginalis exhibit an inhibitory effect on budding, hyphae, and biofilm formation of C. albicans. LGPCFS manifested the best potential among the LAB PCFS, inhibiting budding for 24 h and restricting hyphae formation post-stimulation. LGPCFS also pre-eminently inhibited biofilm formation. Furthermore, L. gasseri itself grew under RPMI 1640 stimulation suppressing the biofilm formation of C. albicans. The PCFS from the LAB downregulated the hyphal genes of C. albicans, inhibiting the yeast transformation to fungi. Hyphal cell wall proteins HWP1, ALS3, ECE1, and HYR1 and transcription factors BCR1 and CPH1 were downregulated by the metabolites from LAB. Finally, the extracellular metabolome of the LAB was studied by LC-MS/MS analysis. L.gasseri produced the highest antifungal compounds and antibiotics, supporting its best activity against C. albicans. Vaginal LAB and their extracellular metabolites perpetuate C. albicans at an avirulent state. The metabolites produced by these LAB in vitro have been identified, and can be further exploited as a preventive measure against vaginal candidiasis.
Collapse
Affiliation(s)
- Shreaya Das
- Department of MBBT, Tezpur University, Napaam, Assam, India
| | | |
Collapse
|
4
|
Bačić A, Milivojević V, Petković I, Kekić D, Gajić I, Medić Brkić B, Popadić D, Milosavljević T, Rajilić-Stojanović M. In Search for Reasons behind Helicobacter pylori Eradication Failure-Assessment of the Antibiotics Resistance Rate and Co-Existence of Helicobacter pylori with Candida Species. J Fungi (Basel) 2023; 9:328. [PMID: 36983496 PMCID: PMC10056355 DOI: 10.3390/jof9030328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Helicobacter pylori eradication is characterized by decreasing successful eradication rates. Although treatment failure is primarily associated with resistance to antibiotics, other unknown factors may influence the eradication outcome. This study aimed to assess the presence of the antibiotics resistance genes in H. pylori and the presence of Candida spp., which are proposed to be endosymbiotic hosts of H. pylori, in gastric biopsies of H. pylori-positive patients while simultaneously assessing their relationship. The detection and identification of Candida yeasts and the detection of mutations specific for clarithromycin and fluoroquinolones were performed by using the real-time PCR (RT-PCR) method on DNA extracted from 110 gastric biopsy samples of H. pylori-positive participants. Resistance rate to clarithromycin and fluoroquinolone was 52% and 47%, respectively. Antibiotic resistance was associated with more eradication attempts (p < 0.05). Candida species were detected in nine (8.18%) patients. Candida presence was associated with older age (p < 0.05). A high rate of antibiotic resistance was observed, while Candida presence was scarce, suggesting that endosymbiosis between H. pylori and Candida may not be a major contributing factor to the eradication failure. However, the older age favored Candida gastric mucosa colonization, which could contribute to gastric pathologies and microbiome dysbiosis.
Collapse
Affiliation(s)
- Ana Bačić
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Vladimir Milivojević
- Clinic for Gastroenterology and Hepatology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Isidora Petković
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Dušan Kekić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Institute for Microbiology and Immunology, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Ina Gajić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Institute for Microbiology and Immunology, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Branislava Medić Brkić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Institute for Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty University of Belgrade, 11000 Belgrade, Serbia
| | - Dušan Popadić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Institute for Microbiology and Immunology, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Mirjana Rajilić-Stojanović
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Hiengrach P, Panpetch W, Chindamporn A, Leelahavanichkul A. Helicobacter pylori, Protected from Antibiotics and Stresses Inside Candida albicans Vacuoles, Cause Gastritis in Mice. Int J Mol Sci 2022; 23:8568. [PMID: 35955701 PMCID: PMC9368807 DOI: 10.3390/ijms23158568] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Due to (i) the simultaneous presence of Helicobacter pylori (ulcer-induced bacteria) and Candida albicans in the stomach and (ii) the possibility of prokaryotic-eukaryotic endosymbiosis (intravacuolar H. pylori in the yeast cells) under stresses, we tested this symbiosis in vitro and in vivo. To that end, intravacuolar H. pylori were induced by the co-incubation of C. albicans with H. pylori under several stresses (acidic pH, non-H. pylori-enrichment media, and aerobic environments); the results were detectable by direct microscopy (wet mount) and real-time polymerase chain reaction (PCR). Indeed, intravacuolar H. pylori were predominant under all stresses, especially the lower pH level (pH 2-3). Interestingly, the H. pylori (an amoxicillin-sensitive strain) inside C. albicans were protected from the antibiotic (amoxicillin), while extracellular H. pylori were neutralizable, as indicated by the culture. In parallel, the oral administration of intravacuolar H. pylori in mice caused H. pylori colonization in the stomach resulting in gastritis, as indicated by gastric histopathology and tissue cytokines, similar to the administration of free H. pylori (extra-Candida bacteria). In conclusion, Candida protected H. pylori from stresses and antibiotics, and the intravacuolar H. pylori were able to be released from the yeast cells, causing gastric inflammation with neutrophil accumulations.
Collapse
Affiliation(s)
- Pratsanee Hiengrach
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (W.P.)
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wimonrat Panpetch
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (W.P.)
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ariya Chindamporn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (W.P.)
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Sánchez-Alonzo K, Arellano-Arriagada L, Bernasconi H, Parra-Sepúlveda C, Campos VL, Silva-Mieres F, Sáez-Carrillo K, Smith CT, García-Cancino A. An Anaerobic Environment Drives the Harboring of Helicobacter pylori within Candida Yeast Cells. BIOLOGY 2022; 11:biology11050738. [PMID: 35625466 PMCID: PMC9139145 DOI: 10.3390/biology11050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/07/2022] [Indexed: 11/30/2022]
Abstract
Simple Summary Helicobacter pylori is a pathogen that is associated with a number of gastric pathologies and has adapted to the gastric environment. Outside this organ, stress factors such as oxygen concentration affect the viability of this bacterium. This study aimed to determine if changes in oxygen concentration promoted the entry of H. pylori into the interior of yeast cells of the Candida genus. Co-cultures of H. pylori and Candida strains in Brucella broth plus 5% fetal bovine serum were incubated under microaerobic, anaerobic, or aerobic conditions. Bacteria-like bodies (BLBs) were detected within yeast cells (Y-BLBs) by optical microscopy, identified by molecular techniques, and their viability evaluated by SYTO-9 fluorescence. Co-cultures incubated under the three conditions showed the presence of Y-BLBs, but the highest Y-BLB percentage was present in H. pylori J99 and C. glabrata co-cultures incubated under anaerobiosis. Molecular techniques were used to identify BLBs as H. pylori and SYTO-9 fluorescence confirmed that this bacterium remained viable within yeast cells. In conclusion, although without apparent stress conditions H. pylori harbors within Candida yeast cells, its harboring increases significantly under anaerobic conditions. This endosymbiotic relationship also depends mostly on the H. pylori strain used in the co-culture. Abstract Helicobacter pylori protects itself from stressful environments by forming biofilms, changing its morphology, or invading eukaryotic cells, including yeast cells. There is little knowledge about the environmental factors that influence the endosymbiotic relationship between bacterium and yeasts. Here, we studied if oxygen availability stimulated the growth of H. pylori within Candida and if this was a bacterial- or yeast strain-dependent relationship. Four H. pylori strains and four Candida strains were co-cultured in Brucella broth plus 5% fetal bovine serum, and incubated under microaerobic, anaerobic, or aerobic conditions. Bacteria-like bodies (BLBs) within yeast cells (Y-BLBs) were detected by microscopy. H. pylori was identified by FISH and by PCR amplification of the 16S rRNA gene of H. pylori from total DNA extracted from Y-BLBs from H. pylori and Candida co-cultures. BLBs viability was confirmed by SYTO-9 fluorescence. Higher Y-BLB percentages were obtained under anaerobic conditions and using H. pylori J99 and C. glabrata combinations. Thus, the H. pylori–Candida endosymbiotic relationship is strain dependent. The FISH and PCR results identified BLBs as intracellular H. pylori. Conclusion: Stressful conditions such as an anaerobic environment significantly increased H. pylori growth within yeast cells, where it remained viable, and the bacterium–yeast endosymbiotic relationship was bacterial strain dependent with a preference for C. glabrata.
Collapse
Affiliation(s)
- Kimberly Sánchez-Alonzo
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (K.S.-A.); (L.A.-A.); (C.P.-S.); (F.S.-M.); (C.T.S.)
| | - Luciano Arellano-Arriagada
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (K.S.-A.); (L.A.-A.); (C.P.-S.); (F.S.-M.); (C.T.S.)
| | | | - Cristian Parra-Sepúlveda
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (K.S.-A.); (L.A.-A.); (C.P.-S.); (F.S.-M.); (C.T.S.)
| | - Víctor L. Campos
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile;
| | - Fabiola Silva-Mieres
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (K.S.-A.); (L.A.-A.); (C.P.-S.); (F.S.-M.); (C.T.S.)
| | - Katia Sáez-Carrillo
- Department of Statistics, Faculty of Physical and Mathematical Sciences, Universidad de Concepcion, Concepcion 4070386, Chile;
| | - Carlos T. Smith
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (K.S.-A.); (L.A.-A.); (C.P.-S.); (F.S.-M.); (C.T.S.)
| | - Apolinaria García-Cancino
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (K.S.-A.); (L.A.-A.); (C.P.-S.); (F.S.-M.); (C.T.S.)
- Correspondence: ; Tel.: +56-41-2204144; Fax: +56-41-2245975
| |
Collapse
|
7
|
Temperatures Outside the Optimal Range for Helicobacter pylori Increase Its Harboring within Candida Yeast Cells. BIOLOGY 2021; 10:biology10090915. [PMID: 34571792 PMCID: PMC8472035 DOI: 10.3390/biology10090915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Helicobacter pylori is associated with the development of diverse gastric pathologies. This bacterium has been shown to invade yeast to protect itself from environmental factors such as changes in pH, the presence of antibiotics or variations in nutrients that affect their viability. However, intra-yeast H. pylori has been reported from other sources, including food, or when the storage temperature is outside the optimal growth range for H. pylori, which is 30–37 °C. It is necessary to continue investigating the environmental factors that participate in the entry of the bacteria into yeast. In this work, it was evaluated whether temperature changes promote the entry of H. pylori into Candida and whether this endosymbiosis favors bacterial viability. It was observed that H. pylori significantly increased its invasiveness to yeast when these two microorganisms were co-cultured under 40 °C. The results support that H. pylori invades yeasts to protect itself from stressful environments, favoring its viability in these environments. In addition, it can be suggested that this microorganism would use yeast as a transmission vehicle, thereby contributing to its dissemination in the population. However, the latter still needs to be confirmed. Abstract Helicobacter pylori is capable of entering into yeast, but the factors driving this endosymbiosis remain unknown. This work aimed to determine if temperatures outside the optimal range for H. pylori increase its harboring within Candida. H. pylori strains were co-cultured with Candida strains in Brucella broth supplemented with 5% fetal bovine serum and incubated at 4, 25, 37 or 40 °C. After co-culturing, yeasts containing bacteria-like bodies (Y-BLBs) were observed by optical microscopy, and the bacterium were identified as H. pylori by FISH. The H. pylori 16S rRNA gene was amplified from the total DNA of Y-BLBs. The viability of intra-yeast H. pylori cells was confirmed using a viability assay. All H. pylori strains were capable of entering into all Candida strains assayed. The higher percentages of Y-BLBs are obtained at 40 °C with any of the Candida strains. H pylori also increased its harboring within yeast in co-cultures incubated at 25 °C when compared to those incubated at 37 °C. In conclusion, although H. pylori grew significantly at 40 °C, this temperature increased its harboring within Candida. The endosymbiosis between both microorganisms is strain-dependent and permits bacterial cells to remain viable under the stressing environmental conditions assayed.
Collapse
|
8
|
Sánchez-Alonzo K, Silva-Mieres F, Arellano-Arriagada L, Parra-Sepúlveda C, Bernasconi H, Smith CT, Campos VL, García-Cancino A. Nutrient Deficiency Promotes the Entry of Helicobacter pylori Cells into Candida Yeast Cells. BIOLOGY 2021; 10:426. [PMID: 34065788 PMCID: PMC8151769 DOI: 10.3390/biology10050426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori, a Gram-negative bacterium, has as a natural niche the human gastric epithelium. This pathogen has been reported to enter into Candida yeast cells; however, factors triggering this endosymbiotic relationship remain unknown. The aim of this work was to evaluate in vitro if variations in nutrient concentration in the cultured medium trigger the internalization of H. pylori within Candida cells. We used H. pylori-Candida co-cultures in Brucella broth supplemented with 1%, 5% or 20% fetal bovine serum or in saline solution. Intra-yeast bacteria-like bodies (BLBs) were observed using optical microscopy, while intra-yeast BLBs were identified as H. pylori using FISH and PCR techniques. Intra-yeast H. pylori (BLBs) viability was confirmed using the LIVE/DEAD BacLight Bacterial Viability kit. Intra-yeast H. pylori was present in all combinations of bacteria-yeast strains co-cultured. However, the percentages of yeast cells harboring bacteria (Y-BLBs) varied according to nutrient concentrations and also were strain-dependent. In conclusion, reduced nutrients stresses H. pylori, promoting its entry into Candida cells. The starvation of both H. pylori and Candida strains reduced the percentages of Y-BLBs, suggesting that starving yeast cells may be less capable of harboring stressed H. pylori cells. Moreover, the endosymbiotic relationship between H. pylori and Candida is dependent on the strains co-cultured.
Collapse
Affiliation(s)
- Kimberly Sánchez-Alonzo
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción 4070386, Chile; (K.S.-A.); (F.S.-M.); (L.A.-A.); (C.P.-S.); (C.T.S.)
| | - Fabiola Silva-Mieres
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción 4070386, Chile; (K.S.-A.); (F.S.-M.); (L.A.-A.); (C.P.-S.); (C.T.S.)
| | - Luciano Arellano-Arriagada
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción 4070386, Chile; (K.S.-A.); (F.S.-M.); (L.A.-A.); (C.P.-S.); (C.T.S.)
| | - Cristian Parra-Sepúlveda
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción 4070386, Chile; (K.S.-A.); (F.S.-M.); (L.A.-A.); (C.P.-S.); (C.T.S.)
| | | | - Carlos T. Smith
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción 4070386, Chile; (K.S.-A.); (F.S.-M.); (L.A.-A.); (C.P.-S.); (C.T.S.)
| | - Víctor L. Campos
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4070386, Chile;
| | - Apolinaria García-Cancino
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción 4070386, Chile; (K.S.-A.); (F.S.-M.); (L.A.-A.); (C.P.-S.); (C.T.S.)
| |
Collapse
|
9
|
|
10
|
Antibiotics as a Stressing Factor Triggering the Harboring of Helicobacter pylori J99 within Candida albicans ATCC10231. Pathogens 2021; 10:pathogens10030382. [PMID: 33806815 PMCID: PMC8004595 DOI: 10.3390/pathogens10030382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
First-line treatment for Helicobacter pylori includes amoxicillin and clarithromycin or metronidazole plus a proton pump inhibitor. Treatment failure is associated with antibiotic resistance and possibly also with internalization of H. pylori into eukaryotic cells, such as yeasts. Factors triggering the entry of H. pylori into yeast are poorly understood. Therefore, the aim of this study was to evaluate whether clarithromycin or amoxicillin trigger the entry of H. pylori into C. albicans cells. METHODS H. pylori J99 and C. albicans ATCC 10231 were co-cultured in the presence of subinhibitory concentrations of amoxicillin and clarithromycin as stressors. Bacterial-bearing yeasts were observed by fresh examination. The viability of bacteria within yeasts was evaluated, confirming the entry of bacteria into Candida, amplifying, by PCR, the H. pylori16S rRNA gene in total yeast DNA. RESULTS Amoxicillin significantly increased the entry of H. pylori into C. albicans compared to the control. CONCLUSION the internalization of H. pylori into C. albicans in the presence of antibiotics is dependent on the type of antibiotic used, and it suggests that a therapy including amoxicillin may stimulate the entry of the bacterium into Candida, thus negatively affecting the success of the treatment.
Collapse
|