1
|
Namjoynik A, Islam MA, Islam M. Evaluating the efficacy of human dental pulp stem cells and scaffold combination for bone regeneration in animal models: a systematic review and meta-analysis. Stem Cell Res Ther 2023; 14:132. [PMID: 37189187 DOI: 10.1186/s13287-023-03357-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
INTRODUCTION Human adult dental pulp stem cells (hDPSC) and stem cells from human exfoliated deciduous teeth (SHED) hold promise in bone regeneration for their easy accessibility, high proliferation rate, self-renewal and osteogenic differentiation capacity. Various organic and inorganic scaffold materials were pre-seeded with human dental pulp stem cells in animals, with promising outcomes in new bone formation. Nevertheless, the clinical trial for bone regeneration using dental pulp stem cells is still in its infancy. Thus, the aim of this systematic review and meta-analysis is to synthesise the evidence of the efficacy of human dental pulp stem cells and the scaffold combination for bone regeneration in animal bone defect models. METHODOLOGY This study was registered in PROSPERO (CRD2021274976), and PRISMA guideline was followed to include the relevant full-text papers using exclusion and inclusion criteria. Data were extracted for the systematic review. Quality assessment and the risk of bias were also carried out using the CAMARADES tool. Quantitative bone regeneration data of the experimental (scaffold + hDPSC/SHED) and the control (scaffold-only) groups were also extracted for meta-analysis. RESULTS Forty-nine papers were included for systematic review and only 27 of them were qualified for meta-analysis. 90% of the included papers were assessed as medium to low risk. In the meta-analysis, qualified studies were grouped by the unit of bone regeneration measurement. Overall, bone regeneration was significantly higher (p < 0.0001) in experimental group (scaffold + hDPSC/SHED) compared to the control group (scaffold-only) (SMD: 1.863, 95% CI 1.121-2.605). However, the effect is almost entirely driven by the % new bone formation group (SMD: 3.929, 95% CI 2.612-5.246) while % BV/TV (SMD: 2.693, 95% CI - 0.001-5.388) shows a marginal effect. Dogs and hydroxyapatite-containing scaffolds have the highest capacity in % new bone formation in response to human DPSC/SHED. The funnel plot exhibits no apparent asymmetry representing a lack of remarkable publication bias. Sensitivity analysis also indicated that the results generated in this meta-analysis are robust and reliable. CONCLUSION This is the first synthesised evidence showing that human DPSCs/SHED and scaffold combination enhanced bone regeneration highly significantly compared to the cell-free scaffold irrespective of scaffold type and animal species used. So, dental pulp stem cells could be a promising tool for treating various bone diseases, and more clinical trials need to be conducted to evaluate the effectiveness of dental pulp stem cell-based therapies.
Collapse
Affiliation(s)
- Amin Namjoynik
- School of Dentistry, University of Dundee, Dundee, DD1 4HR, Scotland, UK
| | - Md Asiful Islam
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mohammad Islam
- School of Dentistry, University of Dundee, Dundee, DD1 4HR, Scotland, UK.
| |
Collapse
|
2
|
Dong J, Sakai K, Koma Y, Watanabe J, Liu K, Maruyama H, Sakaguchi K, Hibi H. Dental pulp stem cell-derived small extracellular vesicle in irradiation-induced senescence. Biochem Biophys Res Commun 2021; 575:28-35. [PMID: 34454177 DOI: 10.1016/j.bbrc.2021.08.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
Small extracellular vesicles (sEV) facilitate signaling molecule transfer among cells. We examined the therapeutic efficacy of human dental pulp stem cell-derived sEV (hDPSC-sEV) against cellular senescence in an irradiated-submandibular gland mouse model. Seven-week-old mice were exposed to 25 Gy radiation and randomly assigned to control, phosphate-buffered saline (PBS), or hDPSC-sEV groups. At 18 days post-irradiation, saliva production was measured; histological and reverse transcription-quantitative PCR analyses of the submandibular glands were performed. The salivary flow rate did not differ significantly between the PBS and hDPSC-sEV groups. AQP5-expressing acinar cell numbers and AQP5 expression levels in the submandibular glands were higher in the hDPSC-sEV group than in the other groups. Furthermore, compared with non-irradiated mice, mice in the 25 Gy + PBS group showed a high senescence-associated-β-galactosidase-positive cell number and upregulated senescence-related gene (p16INK4a, p19Arf, p21) and senescence-associated secretory phenotypic factor (MMP3, IL-6, PAI-1, NF-κB, and TGF-β) expression, all of which were downregulated in the hDPSC-sEV group. Superoxide dismutase levels were lower in the PBS group than in the hDPSC-sEV group. In summary, hDPSC-sEV reduced inflammatory cytokine and senescence-related gene expression and reversed oxidative stress in submandibular cells, thereby preventing irradiation-induced cellular senescence. Based on these results, we hope to contribute to the development of innovative treatment methods for salivary gland dysfunction that develops after radiotherapy for head and neck cancer.
Collapse
Affiliation(s)
- Jiao Dong
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Kiyoshi Sakai
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, Nagoya, Aichi, Japan.
| | - Yoshiro Koma
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Junna Watanabe
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Kehong Liu
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroshi Maruyama
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kohei Sakaguchi
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Pan Y, Lu T, Peng L, Zeng Q, Huang X, Yao X, Wu B, Xiong F. Functional Analysis of Ectodysplasin-A Mutations in X-Linked Nonsyndromic Hypodontia and Possible Involvement of X-Chromosome Inactivation. Stem Cells Int 2021; 2021:7653013. [PMID: 34545288 PMCID: PMC8449729 DOI: 10.1155/2021/7653013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mutations of the Ectodysplasin-A (EDA) gene are generally associated with syndrome hypohidrotic ectodermal dysplasia or nonsyndromic tooth agenesis. The influence of EDA mutations on dentinogenesis and odontoblast differentiation has not been reported. The aim of this study was to identify genetic clues for the causes of familial nonsyndromic oligodontia and explore the underlying mechanisms involved, while focusing on the role of human dental pulp stem cells (hDPSCs). MATERIALS AND METHODS Candidate gene sequences were obtained by PCR amplification and Sanger sequencing. Functional analysis was conducted, and the pathogenesis associated with EDA mutations in hDPSCs was investigated to explore the impact of the identified mutation on the phenotype. Capillary electrophoresis (CE) was used to detect X-chromosome inactivation (XCI) in the blood of female carriers. RESULTS In this study, we identified an EDA mutation in a Chinese family: the missense mutation c.1013C>T (Thr338Met). Transfection of hDPSCs with a mutant EDA lentivirus decreased the expression of EDA and dentin sialophosphoprotein (DSPP) compared with transfection of control EDA lentivirus. Mechanistically, mutant EDA inhibited the activation of the NF-κB pathway. The CE results showed that symptomatic female carriers had a skewed XCI with a preferential inactivation of the X chromosome that carried the normal allele. CONCLUSIONS In summary, we demonstrated that EDA mutations result in nonsyndromic tooth agenesis in heterozygous females and that, mechanistically, EDA regulates odontogenesis through the NF-κB signalling pathway in hDPSCs. Due to the large heterogeneity of tooth agenesis, this study provided a genetic basis for individuals who exhibit similar clinical phenotypes.
Collapse
Affiliation(s)
- Yuhua Pan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ting Lu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ling Peng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qi Zeng
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiangyu Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinchen Yao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, 143 Dongzong Road, Pingshan District, Shenzhen 518118, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, China
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs) and Dental Pulp Stem Cells (DPSCs) Display a Similar Profile with Pericytes. Stem Cells Int 2021; 2021:8859902. [PMID: 34349804 PMCID: PMC8328701 DOI: 10.1155/2021/8859902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background Pericytes play an important role in forming functional blood vessels and establishing stable and effective microcirculation, which is crucial for vascular tissue engineering. The slow ex vivo expansion rate, limited proliferative capacity, and variability of tissue-specific phenotypes would hinder experimental studies and clinical translation of primary pericytes. In this study, the angiogenic and pericyte functions of stem cells from human exfoliated deciduous teeth (SHEDs) and postnatal human dental pulp stem cells (DPSCs) were investigated. Methods Osteogenic and adipogenic induction assays were performed to evaluate the mesenchymal potential of SHEDs, DPSCs, and pericytes. An in vitro Matrigel angiogenesis assay was conducted to reveal the ability of SHEDs, DPSCs, and pericytes to stabilize vascular-like structures. Quantitative real-time polymerase chain reaction (RT-qPCR) was performed to evaluate mRNA expression. Flow cytometry, western blotting, and immunostaining were used to assess the protein expression. Wound healing and transwell assays were performed to evaluate the migration ability of SHEDs, DPSCs, and pericytes. Results The osteogenic and adipogenic induction assays showed that SHEDs, DPSCs, and pericytes exhibited similar stem cell characteristics. The mRNA expression levels of PDGFR-β, α-SMA, NG2, and DEMSIN in SHEDs and DPSCs cultured in EC medium were significantly higher than those in the control groups on day 7 (P < 0.05), but significantly higher than those in the pericytes group on day 14 (P < 0.05). Flow cytometry showed that high proportions of SHEDs and DPSCs were positive for various pericyte markers on day 7. The DPSCs, SHEDs, and pericytes displayed strong migration ability; however, there was no significant difference among the groups (P > 0.05). Conclusion The SHEDs and DPSCs display a profile similar to that of pericytes. Our study lays a solid theoretical foundation for the clinical use of dental pulp stem cells as a potential candidate to replace pericytes.
Collapse
|
5
|
Genova T, Cavagnetto D, Tasinato F, Petrillo S, Ruffinatti FA, Mela L, Carossa M, Munaron L, Roato I, Mussano F. Isolation and Characterization of Buccal Fat Pad and Dental Pulp MSCs from the Same Donor. Biomedicines 2021; 9:biomedicines9030265. [PMID: 33800030 PMCID: PMC7999167 DOI: 10.3390/biomedicines9030265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can be harvested from different sites in the oral cavity, representing a reservoir of cells useful for regenerative purposes. As direct comparisons between at least two types of MSCs deriving from the same patient are surprisingly rare in scientific literature, we isolated and investigated the osteoinductive potential of dental pulp stem cells (DPSCs) and buccal fat pad stem cells (BFPSCs). MSCs were isolated from the third molar dental pulp and buccal fat pads of 12 patients. The number of viable cells was quantified through manual count. Proliferation and osteodifferentiation assays, flow cytometry analysis of cell phenotypes, and osteocalcin release in vitro were performed. The isolation of BFPSCs and DPSCs was successful in 7 out of 12 (58%) and 3 out of 12 (25%) of retrieved samples, respectively. The yield of cells expressing typical stem cell markers and the level of proliferation were higher in BFPSCs than in DPSCs. Both BFP-SCs and DPSCs differentiated into osteoblast-like cells and were able to release a mineralized matrix. The release of osteocalcin, albeit greater for BFPSCs, did not show any significant difference between BFPSCs and DPSCs. The yield of MSCs depends on their site of origin as well as on the protocol adopted for their isolation. Our data show that BFP is a valuable source for the derivation of MSCs that can be used for regenerative treatments.
Collapse
Affiliation(s)
- Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (F.A.R.); (L.M.)
- Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (F.T.); (L.M.); (M.C.); (I.R.)
| | - Davide Cavagnetto
- Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (F.T.); (L.M.); (M.C.); (I.R.)
- Correspondence: (D.C.); (F.M.)
| | - Fabio Tasinato
- Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (F.T.); (L.M.); (M.C.); (I.R.)
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Turin, Italy;
| | - Federico Alessandro Ruffinatti
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (F.A.R.); (L.M.)
| | - Luca Mela
- Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (F.T.); (L.M.); (M.C.); (I.R.)
| | - Massimo Carossa
- Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (F.T.); (L.M.); (M.C.); (I.R.)
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (F.A.R.); (L.M.)
| | - Ilaria Roato
- Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (F.T.); (L.M.); (M.C.); (I.R.)
| | - Federico Mussano
- Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (F.T.); (L.M.); (M.C.); (I.R.)
- Correspondence: (D.C.); (F.M.)
| |
Collapse
|
6
|
Jiang Y, Zhang P, Zhang X, Lv L, Zhou Y. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis. Cell Prolif 2021; 54:e12956. [PMID: 33210341 PMCID: PMC7791182 DOI: 10.1111/cpr.12956] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a systemic metabolic bone disease with characteristics of bone loss and microstructural degeneration. The personal and societal costs of osteoporosis are increasing year by year as the ageing of population, posing challenges to public health care. Homing disorders, impaired capability of osteogenic differentiation, senescence of mesenchymal stem cells (MSCs), an imbalanced microenvironment, and disordered immunoregulation play important roles during the pathogenesis of osteoporosis. The MSC transplantation promises to increase osteoblast differentiation and block osteoclast activation, and to rebalance bone formation and resorption. Preclinical investigations on MSC transplantation in the osteoporosis treatment provide evidences of enhancing osteogenic differentiation, increasing bone mineral density, and halting the deterioration of osteoporosis. Meanwhile, the latest techniques, such as gene modification, targeted modification and co-transplantation, are promising approaches to enhance the therapeutic effect and efficacy of MSCs. In addition, clinical trials of MSC therapy to treat osteoporosis are underway, which will fill the gap of clinical data. Although MSCs tend to be effective to treat osteoporosis, the urgent issues of safety, transplant efficiency and standardization of the manufacturing process have to be settled. Moreover, a comprehensive evaluation of clinical trials, including safety and efficacy, is still needed as an important basis for clinical translation.
Collapse
Affiliation(s)
- Yuhe Jiang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNational Engineering Laboratory for Digital and Material Technology of StomatologyNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyBeijingP.R. China
| | - Ping Zhang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNational Engineering Laboratory for Digital and Material Technology of StomatologyNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyBeijingP.R. China
| | - Xiao Zhang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNational Engineering Laboratory for Digital and Material Technology of StomatologyNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyBeijingP.R. China
| | - Longwei Lv
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNational Engineering Laboratory for Digital and Material Technology of StomatologyNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyBeijingP.R. China
| | - Yongsheng Zhou
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNational Engineering Laboratory for Digital and Material Technology of StomatologyNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyBeijingP.R. China
| |
Collapse
|
7
|
Oral stem cells in intraoral bone formation. J Oral Biosci 2020; 62:36-43. [DOI: 10.1016/j.job.2019.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 01/08/2023]
|
8
|
Yanasse RH, De Lábio RW, Marques L, Fukasawa JT, Segato R, Kinoshita A, Matsumoto MA, Felisbino SL, Solano B, Dos Santos RR, Payão SLM. Xenotransplantation of human dental pulp stem cells in platelet-rich plasma for the treatment of full-thickness articular cartilage defects in a rabbit model. Exp Ther Med 2019; 17:4344-4356. [PMID: 31186677 PMCID: PMC6507499 DOI: 10.3892/etm.2019.7499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 03/09/2018] [Indexed: 12/15/2022] Open
Abstract
Stem cells in platelet-rich plasma (PRP) scaffolds may be a promising treatment for cartilage repair. Human dental pulp stem cell (hDPSC) subpopulations have been identified to have substantial angiogenic, neurogenic and regenerative potential when compared with other stem cell sources. The present study evaluated the potential of hDPSCs in a PRP scaffold to regenerate full-thickness cartilage defects in rabbits. Full-thickness articular cartilage defects were created in the patellar groove of the femur of 30 rabbits allocated into three experimental groups: Those with an untreated critical defect (CTL), those treated with PRP (PRP) and those treated with stem cells in a PRP scaffold (PRP+SC). The patellar grooves of the femurs from the experimental groups were evaluated macroscopically and histologically at 6 and 12 weeks post-surgery. The synovial membranes were also collected and evaluated for histopathological analysis. The synovial lining cell layer was enlarged in the CTL group compared with the PRP group at 6 weeks (P=0.037) but not with the PRP+SC group. All groups exhibited low-grade synovitis at 6 weeks and no synovitis at 12 weeks. Notably, macroscopic grades for the area of articular cartilage repair for the PRP+SC group were significantly improved compared with those in the CTL (P=0.001) and PRP (P=0.049) groups at 12 weeks. Furthermore, histological scores (modified O'Driscoll scoring system) of the patellar groove articular cartilage in the PRP+SC and PRP groups, in which the articular cartilage was primarily hyaline-like, were significantly higher compared with those in the CTL group at 12 weeks (P=0.002 and P=0.007, respectively). The present results support the therapeutic use of hDPSCs for the treatment of full-thickness articular cartilage defects.
Collapse
Affiliation(s)
- Ricardo Hideki Yanasse
- Department of Genetics, Blood Center, Faculdade de Medicina de Marília (FAMEMA), Marília, SP 17519-050, Brazil
| | - Roger William De Lábio
- Department of Genetics, Blood Center, Faculdade de Medicina de Marília (FAMEMA), Marília, SP 17519-050, Brazil
| | - Leonardo Marques
- Department of Health Sciences, Universidade do Sagrado Coração, Bauru, SP 17519-050, Brazil
| | - Josianne Tomazini Fukasawa
- Department of Genetics, Blood Center, Faculdade de Medicina de Marília (FAMEMA), Marília, SP 17519-050, Brazil
| | - Rosimeire Segato
- Department of Genetics, Blood Center, Faculdade de Medicina de Marília (FAMEMA), Marília, SP 17519-050, Brazil
| | - Angela Kinoshita
- Department of Health Sciences, Universidade do Sagrado Coração, Bauru, SP 17519-050, Brazil
| | - Mariza Akemi Matsumoto
- Department of Health Sciences, Universidade do Sagrado Coração, Bauru, SP 17519-050, Brazil
| | - Sergio Luis Felisbino
- Department of Morphology, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP 17519-050, Brazil
| | - Bruno Solano
- Center for Biotechnology and Cell Therapy, Monte Tabor Hospital São Rafael, Salvador, BA 17519-050, Brazil
| | - Ricardo Ribeiro Dos Santos
- Center for Biotechnology and Cell Therapy, Monte Tabor Hospital São Rafael, Salvador, BA 17519-050, Brazil
| | - Spencer Luiz Marques Payão
- Department of Genetics, Blood Center, Faculdade de Medicina de Marília (FAMEMA), Marília, SP 17519-050, Brazil.,Department of Health Sciences, Universidade do Sagrado Coração, Bauru, SP 17519-050, Brazil
| |
Collapse
|
9
|
Abstract
Adult stem cells are excellent cell resource for cell therapy and regenerative medicine. Dental pulp stem cells (DPSCs) have been discovered and well known in various application. Here, we reviewed the history of dental pulp stem cell study and the detail experimental method including isolation, culture, cryopreservation, and the differentiation strategy to different cell lineage. Moreover, we discussed the future potential application of the combination of tissue engineering and of DPSC differentiation. This review will help the new learner to quickly get into the DPSC filed.
Collapse
Affiliation(s)
- Xianrui Yang
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Li Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062 Hubei China
| | - Li Xiao
- Department of Stomatology, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Chengdu, 610072 China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062 Hubei China
| |
Collapse
|
10
|
Lin X, Yang H, Wang L, Li W, Diao S, Du J, Wang S, Dong R, Li J, Fan Z. AP2a enhanced the osteogenic differentiation of mesenchymal stem cells by inhibiting the formation of YAP/RUNX2 complex and BARX1 transcription. Cell Prolif 2018; 52:e12522. [PMID: 30443989 PMCID: PMC6430486 DOI: 10.1111/cpr.12522] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
Objectives Bone regeneration by bone tissue engineering is a therapeutic option for bone defects. Improving the osteogenic differentiation of mesenchymal stem cells (MSCs) is essential for successful bone regeneration. We previously showed that AP2a enhances the osteogenic differentiation in MSCs. The present study investigated the mechanism of how AP2a regulates the direct differentiation. Materials and methods Co‐immunoprecipitation and ChIP assays were carried out to investigate the underlying mechanism in MSCs differentiation. The osteogenic differentiation potential was determined by mineralization ability and the expression of osteogenic marker in vitro and the in vivo bone‐like tissue generation in nude mice. Results We show that AP2a can compete with RUNX2, a key transcription factor in osteogenic differentiation, to recruit YAP and release the inhibition of RUNX2 activity from YAP by forming YAP‐AP2a protein complex. YAP‐AP2a protein complex also interacts with the BARX1 promoter through AP2a, inhibit the transcription of BARX1. Moreover, BARX1 inhibits osteogenic differentiation of MSCs. Conclusions Our discoveries revealed that AP2a may regulate the osteogenic differentiation in an indirect way through competing with RUNX2 to relieve the RUNX2 activity which inhibited by YAP, and also in a direct way via targeting the BARX1 and directly repressed its transcription. Thus, our discoveries shed new light on the mechanism of direct differentiation of MSCs and provide candidate targets for improving the osteogenic differentiation and enhancing bone tissue regeneration.
Collapse
Affiliation(s)
- Xiao Lin
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China.,Department of Implant Dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China
| | - Lijun Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China.,Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China
| | - Wenzhi Li
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China.,Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China
| | - Shu Diao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China.,Department of Pediatrics, Capital Medical University School of Stomatology, Beijing, China
| | - Juan Du
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Rui Dong
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China
| | - Jun Li
- Department of Implant Dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|
11
|
Li Y, Yang YY, Ren JL, Xu F, Chen FM, Li A. Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats. Stem Cell Res Ther 2017; 8:198. [PMID: 28962585 PMCID: PMC5622448 DOI: 10.1186/s13287-017-0648-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is one of the major causes of mortality and disability for all ages worldwide. Mesenchymal stem cells (MSCs)-originated exosomes have provided therapeutic effects. However, as an indispensable component of MSCs, whether odontogenic stem cell-generated exosomes could benefit TBI is still unclear. Thus we aimed to explore the potential of stem cells from human exfoliated deciduous teeth-originated exosomes (SHED-Ex) for the management of TBI. METHODS First, a transwell system was used to co-culture activated BV-2 microglia cells with SHED. The secretion levels of neuroinflammatory factors and nitrite were evaluated by enzyme-linked immunosorbent assay (ELISA) and Griess assay. Furthermore, purified SHED-Ex were co-cultured with activated BV-2. ELISA, Griess assay, flow cytometry, immunofluorescence, and qRT-PCR were performed to test the levels of inflammatory factors as well as the microglia phenotype. Finally, SHED and SHED-Ex were locally injected into TBI rat models. Basso, Beattie, and Bresnahan (BBB) scores were chosen to evaluate the motor functional recovery. Histopathology and immunofluorescence were performed to measure the lesion volume and neuroinflammation. RESULTS As a result, SHED-Ex could reduce neuroinflammation by shifting microglia polarization. The administration of SHED-Ex improves rat motor functional recovery and reduces cortical lesion compared with the control group 2 weeks post-injury (P < 0.05). CONCLUSIONS The current study demonstrates for the first time that SHED-Ex contribute a therapeutic benefit to TBI in rats, at least in part by shifting microglia polarization to reduce neuroinflammation. The use of odontogenic stem cells, and indeed their exosomes, may be expanded for the treatment of TBI or other neurological disorders.
Collapse
Affiliation(s)
- Ye Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an, Shaanxi, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi Wu Road No.98, Xi'an, Shaanxi, 710004, China
| | - Yuan-Yuan Yang
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi Wu Road No.98, Xi'an, Shaanxi, 710004, China
| | - Jia-Li Ren
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi Wu Road No.98, Xi'an, Shaanxi, 710004, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Fa-Ming Chen
- Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an, Shaanxi, China. .,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi Wu Road No.98, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
12
|
Ghasemi Hamidabadi H, Rezvani Z, Nazm Bojnordi M, Shirinzadeh H, Seifalian AM, Joghataei MT, Razaghpour M, Alibakhshi A, Yazdanpanah A, Salimi M, Mozafari M, Urbanska AM, Reis RL, Kundu SC, Gholipourmalekabadi M. Chitosan-Intercalated Montmorillonite/Poly(vinyl alcohol) Nanofibers as a Platform to Guide Neuronlike Differentiation of Human Dental Pulp Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11392-11404. [PMID: 28117963 DOI: 10.1021/acsami.6b14283] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In this study, we present a novel chitosan-intercalated montmorillonite/poly(vinyl alcohol) (OMMT/PVA) nanofibrous mesh as a microenvironment for guiding differentiation of human dental pulp stem cells (hDPSCs) toward neuronlike cells. The OMMT was prepared through ion exchange reaction between the montmorillonite (MMT) and chitosan. The PVA solutions containing various concentrations of OMMT were electrospun to form 3D OMMT-PVA nanofibrous meshes. The biomechanical and biological characteristics of the nanofibrous meshes were evaluated by ATR-FTIR, XRD, SEM, MTT, and LDH specific activity, contact angle, and DAPI staining. They were carried out for mechanical properties, overall viability, and toxicity of the cells. The hDPSCs were seeded on the prepared scaffolds and induced with neuronal specific differentiation media at two differentiation stages (2 days at preinduction stage and 6 days at induction stage). The neural differentiation of the cells cultured on the meshes was evaluated by determining the expression of Oct-4, Nestin, NF-M, NF-H, MAP2, and βIII-tubulin in the cells after preinduction, at induction stages by real-time PCR (RT-PCR) and immunostaining. All the synthesized nanofibers exhibited a homogeneous morphology with a favorable mechanical behavior. The population of the cells differentiated into neuronlike cells in all the experimental groups was significantly higher than that in control group. The expression level of the neuronal specific markers in the cells cultured on 5% OMMT/PVA meshes was significantly higher than the other groups. This study demonstrates the feasibility of the OMMT/PVA artificial nerve graft cultured with hDPSCs for regeneration of damaged neural tissues. These fabricated matrices may have a potential in neural tissue engineering applications.
Collapse
Affiliation(s)
| | - Zahra Rezvani
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC) , P.O. Box 14155-4777, Tehran, Iran
| | | | - Haji Shirinzadeh
- Semiconductor Department, Materials and Energy Research Center (MERC) , P.O. Box 14155-4777, Tehran, Iran
| | - Alexander M Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation centre (Ltd) The London BioScience Innovation Centre , London, NW1 0NH, United Kingdom
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS) , Tehran, Iran
| | - Mojgan Razaghpour
- Amirkabir University of Technology , Textile Department, No. 424, Tehran, Iran
| | | | - Abolfazl Yazdanpanah
- Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology , P.O. Box 15875-4413, Tehran, Iran
| | | | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC) , P.O. Box 14155-4777, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS) , Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Aleksandra M Urbanska
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University , New York, New York 10032, United States
| | - Rui L Reis
- 3Bs Research Group, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , AvePark 4805-017 Barco, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , AvePark 4805-017 Barco, Guimaraes, Portugal
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS) , Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
13
|
Mishra R, Bishop T, Valerio IL, Fisher JP, Dean D. The potential impact of bone tissue engineering in the clinic. Regen Med 2016; 11:571-87. [PMID: 27549369 DOI: 10.2217/rme-2016-0042] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bone tissue engineering (BTE) intends to restore structural support for movement and mineral homeostasis, and assist in hematopoiesis and the protective functions of bone in traumatic, degenerative, cancer, or congenital malformation. While much effort has been put into BTE, very little of this research has been translated to the clinic. In this review, we discuss current regenerative medicine and restorative strategies that utilize tissue engineering approaches to address bone defects within a clinical setting. These approaches involve the primary components of tissue engineering: cells, growth factors and biomaterials discussed briefly in light of their clinical relevance. This review also presents upcoming advanced approaches for BTE applications and suggests a probable workpath for translation from the laboratory to the clinic.
Collapse
Affiliation(s)
- Ruchi Mishra
- Department of Plastic Surgery, The Ohio State University, Columbus, OH, USA
| | - Tyler Bishop
- Department of Plastic Surgery, The Ohio State University, Columbus, OH, USA
| | - Ian L Valerio
- Department of Plastic Surgery, The Ohio State University, Columbus, OH, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - David Dean
- Department of Plastic Surgery, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Martinez Saez D, Sasaki RT, Neves ADC, da Silva MCP. Stem Cells from Human Exfoliated Deciduous Teeth: A Growing Literature. Cells Tissues Organs 2016; 202:269-280. [PMID: 27544531 DOI: 10.1159/000447055] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2016] [Indexed: 01/28/2023] Open
Abstract
Adult stem cells research has been considered the most advanced sort of medical-scientific research, particularly stem cells from human exfoliated deciduous teeth (SHED), which represent an immature stem cell population. The purpose of this review is to describe the current knowledge concerning SHED from full-text scientific publications from 2003 to 2015, available in English language and based on the keyword and/or abbreviations 'stem cells from human exfoliated deciduous teeth (SHED)', and individually presented as to the properties of SHED, immunomodulatory properties of SHED and stem cell banking. In summary, these cell populations are easily accessible by noninvasive procedures and can be isolated, cultured and expanded in vitro, successfully differentiated in vitro and in vivo into odontoblasts, osteoblasts, chondrocytes, adipocytes and neural cells, and present low immune reactions or rejection following SHED transplantation. Furthermore, SHED are able to remain undifferentiated and stable after long-term cryopreservation. In conclusion, the high proliferative capacity, easy access, multilineage differentiation capacity, noninvasiveness and few ethical concerns make stem cells from human exfoliated deciduous teeth the most valuable source of stem cells for tissue engineering and cell-based regenerative medicine therapies.
Collapse
|
15
|
Werle SB, Chagastelles P, Pranke P, Casagrande L. The effects of hypoxia on in vitro culture of dental-derived stem cells. Arch Oral Biol 2016; 68:13-20. [DOI: 10.1016/j.archoralbio.2016.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 12/19/2022]
|
16
|
Cryopreservation and Banking of Dental Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:199-235. [DOI: 10.1007/978-3-319-45457-3_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Lee HS, Jeon M, Jeon MJ, Kim SO, Kim SH, Lee JH, Lee JH, Ahn SJ, Shin Y, Song JS. Characteristics of stem cells from human exfoliated deciduous teeth (SHED) from intact cryopreserved deciduous teeth. Cryobiology 2015; 71:374-83. [PMID: 26506257 DOI: 10.1016/j.cryobiol.2015.10.146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 01/30/2023]
Abstract
The aim of this study is to compare the characteristics of stem cells derived from human exfoliated deciduous teeth (SHED) from cryopreserved intact deciduous teeth with those of fresh SHED. In total, 20 exfoliated deciduous teeth were randomly divided into a fresh group (f-SHED; n = 11) and cryopreserved group (c-SHED; n = 9; stored for 1-8 months). Following thawing and separation of the pulp, the SHED cells were cultured, and the characteristics as mesenchymal stem cells were investigated using proliferation assays, cell-cycle analysis, colony-forming unit-fibroblast (CFU-F) assays, and flow cytometry analyses. Furthermore, differentiation into adipogenic and osteogenic lineages was investigated in vitro as well as in vivo via transplantation in mice. We found no significant differences between the two groups in the proliferation analyses, in the expression of mesenchymal stem cell markers, or in the adipogenic and osteogenic differentiation in vitro (p < 0.05). Furthermore, the in vivo transplantation results showed no significant differences in the quantity of bone tissue that formed or in histochemistry performance (p < 0.05). In conclusion, cryopreservation of intact exfoliated deciduous teeth appears to be a useful method for preserving SHED.
Collapse
Affiliation(s)
- Hyo-Seol Lee
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | | | - Mi Jung Jeon
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Seong-Oh Kim
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Seung-Hye Kim
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, South Korea
| | | | - Jea-Ho Lee
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Su-Jin Ahn
- Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Yooseok Shin
- Department of Conservative Dentistry, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Je Seon Song
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, South Korea.
| |
Collapse
|
18
|
Di Benedetto A, Brunetti G, Posa F, Ballini A, Grassi FR, Colaianni G, Colucci S, Rossi E, Cavalcanti-Adam EA, Lo Muzio L, Grano M, Mori G. Osteogenic differentiation of mesenchymal stem cells from dental bud: Role of integrins and cadherins. Stem Cell Res 2015; 15:618-628. [PMID: 26513557 DOI: 10.1016/j.scr.2015.09.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/25/2015] [Accepted: 09/24/2015] [Indexed: 12/30/2022] Open
Abstract
Several studies have reported the beneficial effects of mesenchymal stem cells (MSCs) in tissue repair and regeneration. New sources of stem cells in adult organisms are continuously emerging; dental tissues have been identified as a source of postnatal MSCs. Dental bud is the immature precursor of the tooth, is easy to access and we show in this study that it can yield a high number of cells with ≥95% expression of mesenchymal stemness makers and osteogenic capacity. Thus, these cells can be defined as Dental Bud Stem Cells (DBSCs) representing a promising source for bone regeneration of stomatognathic as well as other systems. Cell interactions with the extracellular matrix (ECM) and neighboring cells are critical for tissue morphogenesis and architecture; such interactions are mediated by integrins and cadherins respectively. We characterized DBSCs for the expression of these adhesion receptors and examined their pattern during osteogenic differentiation. Our data indicate that N-cadherin and cadherin-11 were expressed in undifferentiated DBSCs and their expression underwent changes during the osteogenic process (decreasing and increasing respectively), while expression of E-cadherin and P-cadherin was very low in DBSCs and did not change during the differentiation steps. Such expression pattern reflected the mesenchymal origin of DBSCs and confirmed their osteoblast-like features. On the other hand, osteogenic stimulation induced the upregulation of single subunits, αV, β3, α5, and the formation of integrin receptors α5β1 and αVβ3. DBSCs differentiation toward osteoblastic lineage was enhanced when cells were grown on fibronectin (FN), vitronectin (VTN), and osteopontin (OPN), ECM glycoproteins which contain an integrin-binding sequence, the RGD motif. In addition we established that integrin αVβ3 plays a crucial role during the commitment of MSCs to osteoblast lineage, whereas integrin α5β1 seems to be dispensable. These data suggest that functionalization of biomaterials with such ECM proteins would improve bone reconstruction therapies starting from dental stem cells.
Collapse
Affiliation(s)
- Adriana Di Benedetto
- Department of Clinical and Experimental Medicine, Medical School, University of Foggia, Italy.
| | - Giacomina Brunetti
- Section of Human Anatomy and Histology, Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari, Italy
| | - Francesca Posa
- Department of Clinical and Experimental Medicine, Medical School, University of Foggia, Italy
| | - Andrea Ballini
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari, Italy
| | - Felice Roberto Grassi
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari, Italy
| | - Graziana Colaianni
- Section of Human Anatomy and Histology, Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari, Italy
| | - Silvia Colucci
- Section of Human Anatomy and Histology, Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari, Italy
| | - Enzo Rossi
- Private Practice, Oral and Maxillofacial Surgery, Poggio a Caiano, Florence, Italy
| | - Elisabetta A Cavalcanti-Adam
- Institute of Physical Chemistry, Department of Biophysical Chemistry
- University of Heidelberg AND Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, Medical School, University of Foggia, Italy
| | - Maria Grano
- Section of Human Anatomy and Histology, Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, Medical School, University of Foggia, Italy
| |
Collapse
|