1
|
Fan Y, Lyu P, Bi R, Cui C, Xu R, Rosen CJ, Yuan Q, Zhou C. Creating an atlas of the bone microenvironment during oral inflammatory-related bone disease using single-cell profiling. eLife 2023; 12:82537. [PMID: 36722472 PMCID: PMC9925051 DOI: 10.7554/elife.82537] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/30/2023] [Indexed: 02/02/2023] Open
Abstract
Oral inflammatory diseases such as apical periodontitis are common bacterial infectious diseases that may affect the periapical alveolar bone tissues. A protective process occurs simultaneously with the inflammatory tissue destruction, in which mesenchymal stem cells (MSCs) play a primary role. However, a systematic and precise description of the cellular and molecular composition of the microenvironment of bone affected by inflammation is lacking. In this study, we created a single-cell atlas of cell populations that compose alveolar bone in healthy and inflammatory disease states. We investigated changes in expression frequency and patterns related to apical periodontitis, as well as the interactions between MSCs and immunocytes. Our results highlight an enhanced self-supporting network and osteogenic potential within MSCs during apical periodontitis-associated inflammation. MSCs not only differentiated toward osteoblast lineage cells but also expressed higher levels of osteogenic-related markers, including Sparc and Col1a1. This was confirmed by lineage tracing in transgenic mouse models and human samples from oral inflammatory-related alveolar bone lesions. In summary, the current study provides an in-depth description of the microenvironment of MSCs and immunocytes in both healthy and disease states. We also identified key apical periodontitis-associated MSC subclusters and their biomarkers, which could further our understanding of the protective process and the underlying mechanisms of oral inflammatory-related bone disease. Taken together, these results enhance our understanding of heterogeneity and cellular interactions of alveolar bone cells under pathogenic and inflammatory conditions. We provide these data as a tool for investigators not only to better appreciate the repertoire of progenitors that are stress responsive but importantly to help design new therapeutic targets to restore bone lesions caused by apical periodontitis and other inflammatory-related bone diseases.
Collapse
Affiliation(s)
- Yi Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Chen Cui
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of StomatologyGuangzhouChina
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | | | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| |
Collapse
|
2
|
Džopalić T, Tomić S, Bekić M, Vučević D, Mihajlović D, Eraković M, Čolić M. Ex vivo study of IL-6 expression and function in immune cell subsets from human periapical lesions. Int Endod J 2022; 55:480-494. [PMID: 35150455 DOI: 10.1111/iej.13704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 11/29/2022]
Abstract
AIM Even though IL-6 is a key inflammatory cytokine in periapical lesions (PLs), its function in stable periapical disease is unknown. Therefore, the aim of this study was to investigate following: first, the ex vivo production of IL-6 by clinically different PLs; next, subsets of immune cells expressing IL-6 in PLs according to their inflammatory status and finally, modulatory effect of IL-6 on T-cell cytokine production in cell cultures. METHODOLOGY Inflammatory cells were isolated from a total of 95 human PLs. Detection of IL-6+ cells within the myeloid and lymphoid populations was performed by multicolour flow cytometry. ELISA and FlowCytomix Microbeads Assay were used to measure cytokine levels in culture supernatants. To study the role of IL-6 in PLs, mononuclear cells (MNC) from symptomatic (Sy) or asymptomatic (Asy) PLs were treated with IL-6 or Tocilizumab, an IL-6R blocking antibody. The differences between groups were tested by unpaired t-test, Mann-Whitney or Friedman tests. RESULTS The levels of IL-6 in PL MNC culture supernatants were significantly higher compared to total PL cells and PL granulocytes (p<0.001). MNC from Sy PLs produced significantly hihger levels of IL-6 than MNC from Asy PLs (p<0.001). Flow cytometry analysis showed that NKT cells, CD8+ T cells and M2 macrophages (MØ), were dominant IL-6+ cells, in contrast to CD4+ T cells. However, CD8+ and CD4+ T cells contributed the most to IL-6 production. IL-6hi producing MNC cultures had higher levels of Th1 (IFN-γ), Th17 (IL-17A), Tfh (IL-21) and RANKL, whereas Th2 (IL-4) and Tregs cytokines (IL-10, TGF-β) were lower, compared to IL-6low producing cultures. Exogenous IL-6 stimulated 17A, IL-21 and RANKL, independently of PL activation status, but decreased IFN-γ, IL-4 and IL-33 levels in IL-6hi producing cultures. Tocilizumab increased IL-10 and TGF-β in IL-6low producing cultures. All differences were p<0.05. CONCLUSIONS Most immune cells from Sy PLs expressed higher levels of IL-6 compared to Asy PLs, which correlated with IL-6 production in culture. Analysis of cytokines suggested a dominant pro-inflammatory T-cell response and osteodestructive function of IL-6 in PLs judging by Th17/Tfh cell activation, Tregs inhibition and increased RANKL/OPG ratio. Excessive IL-6 production decreased Th1/Th2 responses.
Collapse
Affiliation(s)
- T Džopalić
- University of Niš, Medical Faculty, Niš, Serbia.,University of Defense in Belgrade, Medical Faculty of the Military Medical Academy, Belgrade, Serbia
| | - S Tomić
- University of Belgrade, Institute for the Application of Nuclear Energy, Belgrade, Serbia
| | - M Bekić
- University of Belgrade, Institute for the Application of Nuclear Energy, Belgrade, Serbia
| | - D Vučević
- University of Defense in Belgrade, Medical Faculty of the Military Medical Academy, Belgrade, Serbia
| | - D Mihajlović
- University of Defense in Belgrade, Medical Faculty of the Military Medical Academy, Belgrade, Serbia
| | - M Eraković
- Clinic for Stomatology, Military Medical Academy, Belgrade, Serbia
| | - M Čolić
- University of Belgrade, Institute for the Application of Nuclear Energy, Belgrade, Serbia.,University of East Sarajevo, Medical Faculty Foča, Foča R. Srpska Bosnia and Herzegovina
| |
Collapse
|
3
|
Valente WAS, Barrocas D, Armada L, Pires FR. Expression of epithelial growth factors and of apoptosis-regulating proteins, and presence of CD57+ cells in the development of inflammatory periapical lesions. J Appl Oral Sci 2022; 30:e20210413. [PMID: 35195153 PMCID: PMC8860407 DOI: 10.1590/1678-7757-2021-0413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
The mechanisms that stimulate the proliferation of epithelial cells in inflammatory periapical lesions are not completely understood and the literature suggests that changes in the balance between apoptosis and immunity regulation appear to influence this process.
Collapse
|
4
|
Altaie AM, Venkatachalam T, Samaranayake LP, Soliman SSM, Hamoudi R. Comparative Metabolomics Reveals the Microenvironment of Common T-Helper Cells and Differential Immune Cells Linked to Unique Periapical Lesions. Front Immunol 2021; 12:707267. [PMID: 34539639 PMCID: PMC8446658 DOI: 10.3389/fimmu.2021.707267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Periapical abscesses, radicular cysts, and periapical granulomas are the most frequently identified pathological lesions in the alveolar bone. While little is known about the initiation and progression of these conditions, the metabolic environment and the related immunological behaviors were examined for the first time to model the development of each pathological condition. Metabolites were extracted from each lesion and profiled using gas chromatography-mass spectrometry in comparison with healthy pulp tissue. The metabolites were clustered and linked to their related immune cell fractions. Clusters I and J in the periapical abscess upregulated the expression of MMP-9, IL-8, CYP4F3, and VEGF, while clusters L and M were related to lipophagy and apoptosis in radicular cyst, and cluster P in periapical granuloma, which contains L-(+)-lactic acid and ethylene glycol, was related to granuloma formation. Oleic acid, 17-octadecynoic acid, 1-nonadecene, and L-(+)-lactic acid were significantly the highest unique metabolites in healthy pulp tissue, periapical abscess, radicular cyst, and periapical granuloma, respectively. The correlated enriched metabolic pathways were identified, and the related active genes were predicted. Glutamatergic synapse (16-20),-hydroxyeicosatetraenoic acids, lipophagy, and retinoid X receptor coupled with vitamin D receptor were the most significantly enriched pathways in healthy control, abscess, cyst, and granuloma, respectively. Compared with the healthy control, significant upregulation in the gene expression of CYP4F3, VEGF, IL-8, TLR2 (P < 0.0001), and MMP-9 (P < 0.001) was found in the abscesses. While IL-12A was significantly upregulated in cysts (P < 0.01), IL-17A represents the highest significantly upregulated gene in granulomas (P < 0.0001). From the predicted active genes, CIBERSORT suggested the presence of natural killer cells, dendritic cells, pro-inflammatory M1 macrophages, and anti-inflammatory M2 macrophages in different proportions. In addition, the single nucleotide polymorphisms related to IL-10, IL-12A, and IL-17D genes were shown to be associated with periapical lesions and other oral lesions. Collectively, the unique metabolism and related immune response shape up an environment that initiates and maintains the existence and progression of these oral lesions, suggesting an important role in diagnosis and effective targeted therapy.
Collapse
Affiliation(s)
- Alaa Muayad Altaie
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Lakshman P. Samaranayake
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Oral Biosciences, Faculty of Dentistry, University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
5
|
Galler KM, Weber M, Korkmaz Y, Widbiller M, Feuerer M. Inflammatory Response Mechanisms of the Dentine-Pulp Complex and the Periapical Tissues. Int J Mol Sci 2021; 22:ijms22031480. [PMID: 33540711 PMCID: PMC7867227 DOI: 10.3390/ijms22031480] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
The macroscopic and microscopic anatomy of the oral cavity is complex and unique in the human body. Soft-tissue structures are in close interaction with mineralized bone, but also dentine, cementum and enamel of our teeth. These are exposed to intense mechanical and chemical stress as well as to dense microbiologic colonization. Teeth are susceptible to damage, most commonly to caries, where microorganisms from the oral cavity degrade the mineralized tissues of enamel and dentine and invade the soft connective tissue at the core, the dental pulp. However, the pulp is well-equipped to sense and fend off bacteria and their products and mounts various and intricate defense mechanisms. The front rank is formed by a layer of odontoblasts, which line the pulp chamber towards the dentine. These highly specialized cells not only form mineralized tissue but exert important functions as barrier cells. They recognize pathogens early in the process, secrete antibacterial compounds and neutralize bacterial toxins, initiate the immune response and alert other key players of the host defense. As bacteria get closer to the pulp, additional cell types of the pulp, including fibroblasts, stem and immune cells, but also vascular and neuronal networks, contribute with a variety of distinct defense mechanisms, and inflammatory response mechanisms are critical for tissue homeostasis. Still, without therapeutic intervention, a deep carious lesion may lead to tissue necrosis, which allows bacteria to populate the root canal system and invade the periradicular bone via the apical foramen at the root tip. The periodontal tissues and alveolar bone react to the insult with an inflammatory response, most commonly by the formation of an apical granuloma. Healing can occur after pathogen removal, which is achieved by disinfection and obturation of the pulp space by root canal treatment. This review highlights the various mechanisms of pathogen recognition and defense of dental pulp cells and periradicular tissues, explains the different cell types involved in the immune response and discusses the mechanisms of healing and repair, pointing out the close links between inflammation and regeneration as well as between inflammation and potential malignant transformation.
Collapse
Affiliation(s)
- Kerstin M. Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93093 Regensburg, Germany;
- Correspondence:
| | - Manuel Weber
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Yüksel Korkmaz
- Department of Periodontology and Operative Dentistry, University of Mainz, 55131 Mainz, Germany;
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93093 Regensburg, Germany;
| | - Markus Feuerer
- Department for Immunology, University Hospital Regensburg, 93053 Regensburg, Germany;
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
6
|
Bertasso AS, Léon JE, Silva RAB, Silva LAB, Queiroz AM, Pucinelli CM, Romualdo PC, Nelson‐Filho P. Immunophenotypic quantification of M1 and M2 macrophage polarization in radicular cysts of primary and permanent teeth. Int Endod J 2020; 53:627-635. [DOI: 10.1111/iej.13257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
- A. S. Bertasso
- Department of Pediatric DentistrySchool of Dentistry of Ribeirão PretoUniversity of São Paulo Ribeirão PretoSPBrazil
| | - J. E. Léon
- Department of Stomatology, Public Oral Health and Forensic Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | - R. A. B. Silva
- Department of Pediatric DentistrySchool of Dentistry of Ribeirão PretoUniversity of São Paulo Ribeirão PretoSPBrazil
| | - L. A. B. Silva
- Department of Pediatric DentistrySchool of Dentistry of Ribeirão PretoUniversity of São Paulo Ribeirão PretoSPBrazil
| | - A. M. Queiroz
- Department of Pediatric DentistrySchool of Dentistry of Ribeirão PretoUniversity of São Paulo Ribeirão PretoSPBrazil
| | - C. M. Pucinelli
- Department of Pediatric DentistrySchool of Dentistry of Ribeirão PretoUniversity of São Paulo Ribeirão PretoSPBrazil
| | - P. C. Romualdo
- Department of Pediatric DentistrySchool of Dentistry of Ribeirão PretoUniversity of São Paulo Ribeirão PretoSPBrazil
| | - P. Nelson‐Filho
- Department of Stomatology, Public Oral Health and Forensic Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| |
Collapse
|
7
|
Weber M, Ries J, Büttner-Herold M, Geppert CI, Kesting M, Wehrhan F. Differences in Inflammation and Bone Resorption between Apical Granulomas, Radicular Cysts, and Dentigerous Cysts. J Endod 2019; 45:1200-1208. [PMID: 31400944 DOI: 10.1016/j.joen.2019.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/26/2019] [Accepted: 06/30/2019] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Dental cysts can be of inflammatory (radicular cysts) or noninflammatory (dentigerous cysts) origin. Apical periodontitis is a necrosis of the pulp and infection of the root canal causing the development of apical granulomas or radicular cysts. The immunology of granuloma and cyst formation is important because modern root filling materials are immunologically active and can contribute to the resolution of apical granulomas. In contrast, radicular cysts often require apicectomy. A better understanding of the pathophysiology of inflammation and bone resorption in apical periodontitis could be the basis for developing new root filling materials with superior immunomodulatory properties. METHODS Forty-one apical granulomas, 23 radicular cysts, and 23 dentigerous cysts were analyzed in this study. A tissue microarray of the 87 consecutive specimens was created, and human leukocyte antigen-DR isotype (HLA-DR)-, CD83-, receptor activator of nuclear factor kappa B ligand-, macrophage colony-stimulating factor (MCSF)-, galectin-3 (Gal3)-, CD4-, and CD8-positive cells were detected by immunohistochemistry. Tissue microarrays were digitized, and the expression of markers was quantitatively assessed. RESULTS HLA-DR, CD83, MCSF, and Gal3 expression was significantly (P < .05) higher in radicular cysts compared with apical granulomas. HLA-DR, CD83, MCSF, receptor activator of nuclear factor kappa B ligand, and Gal3 expression in dentigerous cysts was significantly (P < .05) lower than in both periapical lesions (apical granulomas and radicular cysts). CD4 and CD8 infiltration was not statistically different between apical granulomas and radicular cysts. Dentigerous cysts showed a significantly (P < .05) lower T-cell infiltration than apical periodontitis. The CD4/CD8 ratio was not significantly different between the analyzed groups. CONCLUSIONS The development of radicular cysts in apical periodontitis is associated with an increased expression of myeloid inflammatory markers and bone resorption parameters. Antigen-presenting cells and myeloid cells might be more relevant for the pathogenesis of apical periodontitis than T cells. Increased inflammation might promote the formation of radicular cysts and more pronounced bone resorption.
Collapse
Affiliation(s)
- Manuel Weber
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Jutta Ries
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Carol-Immanuel Geppert
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Wehrhan
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|