1
|
Ott L, Möller J, Burkovski A. Interactions between the Re-Emerging Pathogen Corynebacterium diphtheriae and Host Cells. Int J Mol Sci 2022; 23:3298. [PMID: 35328715 PMCID: PMC8952647 DOI: 10.3390/ijms23063298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023] Open
Abstract
Corynebacterium diphtheriae, the etiological agent of diphtheria, is a re-emerging pathogen, responsible for several thousand deaths per year. In addition to diphtheria, systemic infections, often by non-toxigenic strains, are increasingly observed. This indicates that besides the well-studied and highly potent diphtheria toxin, various other virulence factors may influence the progression of the infection. This review focuses on the known components of C. diphtheriae responsible for adhesion, invasion, inflammation, and cell death, as well as on the cellular signaling pathways activated upon infection.
Collapse
Affiliation(s)
- Lisa Ott
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Jens Möller
- Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Andreas Burkovski
- Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Cappelli EA, do Espírito Santo Cucinelli A, Simpson-Louredo L, Canellas MEF, Antunes CA, Burkovski A, da Silva JFR, Mattos-Guaraldi AL, Saliba AM, dos Santos LS. Insights of OxyR role in mechanisms of host-pathogen interaction of Corynebacterium diphtheriae. Braz J Microbiol 2022; 53:583-594. [PMID: 35169995 PMCID: PMC9151940 DOI: 10.1007/s42770-022-00710-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Corynebacterium diphtheriae, the leading causing agent of diphtheria, has been increasingly related to invasive diseases, including sepsis, endocarditis, pneumonia, and osteomyelitis. Oxidative stress defense is required not only for successful growth and survival under environmental conditions but also in the regulation of virulence mechanisms of human pathogenic species, by promoting mucosal colonization, survival, dissemination, and defense against the innate immune system. OxyR, functioning as a negative and/or positive transcriptional regulator, has been included among the major bacterial coordinators of antioxidant response. OxyR was first reported as a repressor of catalase expression in C. diphtheriae. However, the involvement of OxyR in C. diphtheriae pathogenesis remains unclear. Accordingly, this work aimed to investigate the role of OxyR in mechanisms of host-pathogen interaction of C. diphtheriae through the disruption of the OxyR of the diphtheria toxin (DT)-producing C. diphtheriae CDC-E8392 strain. The effects of OxyR gene disruption were analyzed through interaction assays with human epithelial cell lines (HEp-2 and pneumocytes A549) and by the induction of experimental infections in Caenorhabditis elegans nematodes and Swiss Webster mice. The OxyR disruption exerted influence on NO production and mechanism accountable for the expression of the aggregative-adherence pattern (AA) expressed by CDC-E8392 strain on human epithelial HEp-2 cells. Moreover, invasive potential and intracytoplasmic survival within HEp-2 cells, as well as the arthritogenic potential in mice, were found affected by the OxyR disruption. In conclusion, data suggest that OxyR is implicated in mechanisms of host-pathogen interaction of C. diphtheriae.
Collapse
Affiliation(s)
- Elisabete Alves Cappelli
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Andrezza do Espírito Santo Cucinelli
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Liliane Simpson-Louredo
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Maria Eurydice Freire Canellas
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Camila Azevedo Antunes
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil ,grid.5330.50000 0001 2107 3311Microbiology Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Burkovski
- grid.5330.50000 0001 2107 3311Microbiology Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jemima Fuentes Ribeiro da Silva
- grid.412211.50000 0004 4687 5267Department of Histology and Embryology, Roberto Alcantara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ana Luíza Mattos-Guaraldi
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Alessandra Mattos Saliba
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Louisy Sanches dos Santos
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Batista Araújo MR, Bernardes Sousa MÂ, Seabra LF, Caldeira LA, Faria CD, Bokermann S, Sant'Anna LO, Dos Santos LS, Mattos-Guaraldi AL. Cutaneous infection by non-diphtheria-toxin producing and penicillin-resistant Corynebacterium diphtheriae strain in a patient with diabetes mellitus. Access Microbiol 2022; 3:000284. [PMID: 35018328 PMCID: PMC8742586 DOI: 10.1099/acmi.0.000284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
Diphtheria is a potentially fatal infection, mostly caused by diphtheria toxin (DT)-producing Corynebacterium diphtheriae strains. During the last decades, the isolation of DT-producing C. diphtheriae strains has been decreasing worldwide. However, non-DT-producing C. diphtheriae strains emerged as causative agents of cutaneous and invasive infections. Although endemic in countries with warm climates, cutaneous diphtheria is rarely reported in Brazil. Presently, an unusual case of skin lesion in a Brazilian elderly diabetic patient infected by a penicillin-resistant non-DT-producing C. diphtheriae strain was reported. Laboratory diagnosis included mass spectrometry and multiplex PCR analyses. Since cutaneous diphtheria lesions are possible sources of secondary diphtheria cases and systemic diseases and considering that penicillin is the first line of antimicrobial agent for the treatment of these infections, the detection of penicillin-resistant strains of diphtheria bacilli should be a matter of concern. Thus, cases similar to the presently reported should be appropriately investigated and treated, particularly in patients with risk factor (s) for the development of C. diphtheriae invasive infections, such as diabetes. Moreover, health professionals must be aware of the presence of C. diphtheriae in cutaneous lesions of lower limbs, a common type of morbidity in diabetic patients, especially in tropical and subtropical countries.
Collapse
Affiliation(s)
- Max Roberto Batista Araújo
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute. Av. das Nações, 3801 - Parque Jardim Itaú, Minas Gerais, Brazil
| | - Mireille Ângela Bernardes Sousa
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute. Av. das Nações, 3801 - Parque Jardim Itaú, Minas Gerais, Brazil
| | - Luisa Ferreira Seabra
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute. Av. das Nações, 3801 - Parque Jardim Itaú, Minas Gerais, Brazil
| | - Letícia Aparecida Caldeira
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute. Av. das Nações, 3801 - Parque Jardim Itaú, Minas Gerais, Brazil
| | - Carmem Dolores Faria
- Bacterial and Fungal Diseases Service, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio Bokermann
- Center of Bacteriology, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, Brazil
| | - Lincoln Oliveira Sant'Anna
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, The Collaborating Center for Reference and Research on Diphtheria, National Health Foundation, Ministry of Health, Rio de Janeiro, Brazil
| | - Louisy Sanches Dos Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, The Collaborating Center for Reference and Research on Diphtheria, National Health Foundation, Ministry of Health, Rio de Janeiro, Brazil
| | - Ana Luíza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, The Collaborating Center for Reference and Research on Diphtheria, National Health Foundation, Ministry of Health, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Rodrigues J, Pinto M, Brito MJ, Martins JD, Gouveia C. Fever and Limp in a 10-Year-old Girl With Congenital Heart Disease. Pediatr Infect Dis J 2021; 40:1055-1057. [PMID: 33657595 DOI: 10.1097/inf.0000000000003119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Margarida Pinto
- Laboratory of Microbiology, Department of Clinical Pathology, Hospital de Dona Estefânia, CHULC - EPE, Lisbon, Portugal
| | | | - José Diogo Martins
- Pediatric Cardiology Unit, Hospital de Santa Marta, CHULC - EPE, Lisbon, Portugal
| | - Catarina Gouveia
- From the Infectious Diseases Unit, Pediatric Department
- Nova Medical School, Faculdade de Ciências Médicas, Lisbon, Portugal
| |
Collapse
|
5
|
Marosevic DV, Berger A, Kahlmeter G, Payer SK, Hörmansdorfer S, Sing A. Antimicrobial susceptibility of Corynebacterium diphtheriae and Corynebacterium ulcerans in Germany 2011-17. J Antimicrob Chemother 2021; 75:2885-2893. [PMID: 32747952 DOI: 10.1093/jac/dkaa280] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diphtheria is mainly caused by diphtheria-toxin-producing strains of Corynebacterium diphtheriae and Corynebacterium ulcerans. The recommended first-line antibiotic is penicillin or erythromycin, but reliable susceptibility data are scarce. OBJECTIVES To define WT MIC distributions of 12 antimicrobial agents and provide data for the determination of tentative epidemiological cut-off values (TECOFFs) for potentially toxigenic corynebacteria and to evaluate the potential usefulness of a gradient test (Etest) for susceptibility testing of penicillin, erythromycin and clindamycin. METHODS For the 421 human or veterinary isolates from the period 2011-17, MICs of 12 antimicrobial agents were determined. Etest performance was evaluated for penicillin, erythromycin and clindamycin. RESULTS MIC distributions were characterized and TECOFFs could be set for 11 out of 24 antibiotic/species combinations. The current EUCAST clinical breakpoints, predominantly determined for Corynebacterium species other than C. diphtheriae and C. ulcerans, divide the WT MIC distributions of penicillin and clindamycin, thereby making reproducible susceptibility testing of C. diphtheriae and C. ulcerans difficult. For erythromycin, 4% of C. diphtheriae and 2% of C. ulcerans had MICs higher than those for WT isolates. Phenotypically detectable resistance to other antibiotics was rare. Etest underestimated MICs of penicillin and lower concentrations needed to be included for erythromycin, while for clindamycin the Etest was not a good surrogate method. CONCLUSIONS MIC distributions based on reference broth microdilution for potentially toxigenic Corynebacterium spp. were developed. For five and six agents, TECOFFs were suggested for C. diphtheriae and C. ulcerans, respectively, but for Corynebacterium pseudotuberculosis the number of isolates was too low.
Collapse
Affiliation(s)
- Durdica V Marosevic
- Public Health Microbiology, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany.,European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Anja Berger
- Public Health Microbiology, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany.,Consultant Laboratory for Diphtheria, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Gunnar Kahlmeter
- Clinical Microbiology and the EUCAST Development Laboratory, Central Hospital, Växjö, Sweden
| | - Sarah Katharina Payer
- Public Health Microbiology, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Stefan Hörmansdorfer
- Public Health Microbiology, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Andreas Sing
- Public Health Microbiology, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany.,Consultant Laboratory for Diphtheria, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| |
Collapse
|
6
|
Chang C, Nguyen MT, Ton-That H. Genetic Manipulation of Corynebacterium diphtheriae and Other Corynebacterium Species. ACTA ACUST UNITED AC 2021; 58:e111. [PMID: 32865881 DOI: 10.1002/cpmc.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article describes several established approaches for genetic manipulation of Corynebacterium diphtheriae, the causative agent of diphtheria that is known to have provided key evidence for Koch's postulates on the germ theory. First, it includes a detailed gene deletion method that generates nonpolar, in-frame, markerless deletion mutants, utilizing the levansucrase SacB as a counter-selectable marker. Second, it provides a thorough protocol for rescuing deletion mutants using Escherichia coli-Corynebacterium shuttle vectors. Finally, a Tn5 transposon mutagenesis procedure is described. In principle, these protocols can be used for other Corynebacterium species, including Corynebacterium glutamicum and Corynebacterium matruchotii. © 2020 Wiley Periodicals LLC Basic Protocol 1: Gene deletion in Corynebacterium diphtheriae Basic Protocol 2: Complementation of a mutant strain Basic Protocol 3: Tn5 transposon mutagenesis of Corynebacterium diphtheriae.
Collapse
Affiliation(s)
- Chungyu Chang
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California
| | - Minh Tan Nguyen
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California.,NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Hung Ton-That
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California.,Molecular Biology Institute, University of California, Los Angeles, California
| |
Collapse
|
7
|
Borisova O, Chaplin A, Gadua N, Pimenova A, Alexeeva I, Rakitsky G, Afanas'ev S, Donskikh E, Kafarskaya L. Characterization of the genotype and the phenotype of nontoxigenic strains of Corynebacterium diphtheriae subsp. lausannense isolated in Russian residents. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In 2018, a few sequencing studies were published revealing the existence of two monophyletic clusters within the C. diphtheriae species, meaning that this species can be divided into two subspecies: C. diphtheriae subsp. diphtheriae and C. diphtheriae subsp. lausannense. The objective of our study was to describe the genotype and the phenotype of 2 nontoxigenic C. diphtheriae strains isolated in Russia in 2017–2018, which were classified by us as C. diphtheriae subsp. lausannense based on the aggregated data yielded by a variety of techniques, including microbiological and molecular genetic techniques, as well as a bioinformatic search for subspecies-specific genes in the publicly available genomes of C. diphtheriae. The isolated strains had morphological and biochemical characteristics of C. diphtheriae. The strains were assigned to the MLST type ST199 included in the clonal complex associated with subsp. lausannense. PCR revealed that both analyzed strains of C. diphtheriae subsp. lausannense carried the ptsI gene encoding phosphoenolpyruvate-protein phosphotransferase and did not carry the narG gene encoding the synthesis of nitrate reductase subunits, whereas the strains of C. diphtheriae subsp. diphtheriae had the narG gene and did not have ptsI. We experimentally proved the ability of lausannense strains to ferment N-acetylglucosamine. Our findings expand the knowledge of the biological diversity of C. diphtheriae and indicate the need for estimating the spread of these microorganisms in Russia, as well as their pathogenic potential.
Collapse
Affiliation(s)
- O.Yu. Borisova
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - A.V. Chaplin
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - N.T. Gadua
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - A.S. Pimenova
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - I.N. Alexeeva
- Regional Clinical Psychiatric Hospital, Khabarovsk, Russia
| | - G.F. Rakitsky
- Regional Clinical Psychiatric Hospital, Khabarovsk, Russia
| | - S.S. Afanas'ev
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - E.E. Donskikh
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - L.I. Kafarskaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
8
|
Weerasekera D, Fastner T, Lang R, Burkovski A, Ott L. Of mice and men: Interaction of Corynebacterium diphtheriae strains with murine and human phagocytes. Virulence 2020; 10:414-428. [PMID: 31057086 PMCID: PMC6527023 DOI: 10.1080/21505594.2019.1614384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Seven non-toxigenic C. diphtheriae strains and one toxigenic strain were analyzed with regard to their interaction with murine macrophages (BMM) and human THP-1 macrophage-like cells. Proliferation assays with BMM and THP-1 revealed similar intracellular CFUs for C. diphtheriae strains independent of the host cell. Strain ISS4060 showed highest intracellular CFUs, while the toxigenic DSM43989 was almost not detectable. This result was confirmed by TLR 9 reporter assays, showing a low signal for DSM43989, indicating that the bacteria are not endocytosed. In contrast, the non-pathogenic C. glutamicum showed almost no intracellular CFUs independent of the host cell, but was recognized by TLR9, indicating that the bacteria were degraded immediately after endocytosis. In terms of G-CSF and IL-6 production, no significant differences between BMM and THP-1 were observed. G-CSF production was considerably higher than IL-6 for all C. diphtheriae strains and the C. glutamicum did not induce high cytokine secretion in general. Furthermore, all corynebacteria investigated in this study were able to induce NFκB signaling but only viable C. diphtheriae strains were able to cause host cell damage, whereas C. glutamicum did not. The absence of Mincle resulted in reduced G-CSF production, while no influence on the uptake of the bacteria was observed. In contrast, when MyD88 was absent, both the uptake of the bacteria and cytokine production were blocked. Consequently, phagocytosis only occurs when the TLR/MyD88 pathway is functional, which was also supported by showing that all corynebacteria used in this study interact with human TLR2.
Collapse
Affiliation(s)
- Dulanthi Weerasekera
- a Department Biologie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Tamara Fastner
- a Department Biologie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Roland Lang
- b Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universtitätsklinikum Erlangen , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Andreas Burkovski
- a Department Biologie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Lisa Ott
- a Department Biologie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
9
|
Sutton-Fitzpatrick U, Grant C, Nashev D, Fleming C. Corynebacterium diphtheriae bloodstream infection: the role of antitoxin. BMJ Case Rep 2019; 12:12/11/e231914. [PMID: 31678926 DOI: 10.1136/bcr-2019-231914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A 65-year-old male patient presented with fever, fast atrial fibrillation and frank haematuria on return to Ireland from travel in East Africa. He had a systolic murmur leading to a clinical suspicion of endocarditis. He had no specific clinical features of diphtheria. Blood cultures were taken and empiric therapy commenced with benzylpenicillin, vancomycin and gentamicin. Corynebacterium diphtheriae was detected on blood culture. The isolate was submitted to a reference laboratory for evaluation of toxigenicity. While initially there was concern regarding the possibility of myocarditis, a clinical decision was made not to administer diphtheria antitoxin in the absence of clinical features of respiratory diphtheria, in the presence of invasive infection and with presumptive previous immunisation. There is no specific guidance on the role of antitoxin in this setting. The issue is not generally addressed in previous reports of C. diphtheriae blood stream infection.
Collapse
Affiliation(s)
| | - Conor Grant
- Infectious Diseases, Galway University Hospitals, Galway, Ireland
| | - Dimitar Nashev
- Clinical Microbiology, Galway University Hospitals, Galway, Ireland
| | | |
Collapse
|
10
|
Induction of Necrosis in Human Macrophage Cell Lines by Corynebacterium diphtheriae and Corynebacterium ulcerans Strains Isolated from Fatal Cases of Systemic Infections. Int J Mol Sci 2019; 20:ijms20174109. [PMID: 31443569 PMCID: PMC6747468 DOI: 10.3390/ijms20174109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 01/10/2023] Open
Abstract
When infecting a human host, Corynebacterium diphtheriae and Corynebacterium ulcerans are able to impair macrophage maturation and induce cell death. However, the underlying molecular mechanisms are not well understood. As a framework for this project, a combination of fluorescence microscopy, cytotoxicity assays, live cell imaging, and fluorescence-activated cell sorting was applied to understand the pathogenicity of two Corynebacterium strains isolated from fatal cases of systemic infections. The results showed a clear cytotoxic effect of the bacteria. The observed survival of the pathogens in macrophages and, subsequent, necrotic lysis of cells may be mechanisms explaining dissemination of C. diphtheriae and C. ulcerans to distant organs in the body.
Collapse
|
11
|
Weerasekera D, Möller J, Kraner ME, Azevedo Antunes C, Mattos-Guaraldi AL, Burkovski A. Beyond diphtheria toxin: cytotoxic proteins of Corynebacterium ulcerans and Corynebacterium diphtheriae. MICROBIOLOGY-SGM 2019; 165:876-890. [PMID: 31162026 DOI: 10.1099/mic.0.000820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diphtheria toxin is one of the best investigated bacterial toxins and the major virulence factor of toxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans strains. However, also diphtheria toxin-free strains of these two species can cause severe infections in animals and humans, indicating the presence of additional virulence factors. In this study, we present a first characterization of two proteins with cytotoxic effect in corynebacteria. A putative ribosome-binding protein (AEG80717, CULC809_00177), first annotated in a genome sequencing project of C. ulcerans strain 809, was investigated in detail together with a homologous protein identified in C. diphtheriae strain HC04 (AEX80148, CDHC04_0155) in this study. The corresponding proteins show striking structural similarity to Shiga-like toxins. Interaction of wild-type, mutant and complementation as well as overexpression strains with invertebrate model systems and cell lines were investigated. Depending on the presence of the corresponding genes, detrimental effects were observed in vivo in two invertebrate model systems, Caenorhabditis elegans and Galleria mellonella, and on various animal and human epithelial and macrophage cell lines in vitro. Taken together, our results support the idea that pathogenicity of corynebacteria is a multifactorial process and that new virulence factors may influence the outcome of potentially fatal corynebacterial infections.
Collapse
Affiliation(s)
- Dulanthi Weerasekera
- > Microbiology Division, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jens Möller
- > Microbiology Division, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Max Edmund Kraner
- Biochemistry Division, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Camila Azevedo Antunes
- > Microbiology Division, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ana Luiza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Andreas Burkovski
- > Microbiology Division, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
12
|
Proteomics of diphtheria toxoid vaccines reveals multiple proteins that are immunogenic and may contribute to protection of humans against Corynebacterium diphtheriae. Vaccine 2019; 37:3061-3070. [PMID: 31036455 DOI: 10.1016/j.vaccine.2019.04.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/10/2019] [Accepted: 04/21/2019] [Indexed: 01/01/2023]
Abstract
Introduced for mass immunization in the 1920s, vaccines against diphtheria are among the oldest and safest vaccines known. The basic principle of their production is the inactivation of purified diphtheria toxin by formaldehyde cross-linking, which converts the potentially fatal toxin in a completely harmless protein aggregate, which is still immunogenic. Since in addition to diphtheria toxin also other proteins may be secreted by Corynebacterium diphtheriae during cultivation, we assumed that diphtheria toxoid might not be the only component present in the vaccine. To address this question, we established a protocol to reverse formaldehyde cross-linking and carried out mass spectrometric analyses. Different secreted, membrane-associated and cytoplasmic proteins of C. diphtheriae were detected in several vaccine preparations from across the world. Based on these results, bioinformatics and Western blot analyses were applied to characterize if these proteins are immunogenic and may therefore support protection against C. diphtheriae. In frame of this study, we could show that the C. diphtheriae toxoid vaccines induce antibodies against different C. diphtheriae proteins and against diphtheria toxin secreted by Corynebacterium ulcerans, an emerging pathogen which is outnumbering C. diphtheriae as cause of diphtheria-like illness in Western Europe.
Collapse
|
13
|
Tagini F, Pillonel T, Croxatto A, Bertelli C, Koutsokera A, Lovis A, Greub G. Distinct Genomic Features Characterize Two Clades of Corynebacterium diphtheriae: Proposal of Corynebacterium diphtheriae Subsp. diphtheriae Subsp. nov. and Corynebacterium diphtheriae Subsp. lausannense Subsp. nov. Front Microbiol 2018; 9:1743. [PMID: 30174653 PMCID: PMC6108181 DOI: 10.3389/fmicb.2018.01743] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/12/2018] [Indexed: 12/25/2022] Open
Abstract
Corynebacterium diphtheriae is the etiological agent of diphtheria, a disease caused by the presence of the diphtheria toxin. However, an increasing number of records report non-toxigenic C. diphtheriae infections. Here, a C. diphtheriae strain was recovered from a patient with a past history of bronchiectasis who developed a severe tracheo-bronchitis with multiple whitish lesions of the distal trachea and the mainstem bronchi. Whole-genome sequencing (WGS), performed in parallel with PCR targeting the toxin gene and the Elek test, provided clinically relevant results in a short turnaround time, showing that the isolate was non-toxigenic. A comparative genomic analysis of the new strain (CHUV2995) with 56 other publicly available genomes of C. diphtheriae revealed that the strains CHUV2995, CCUG 5865 and CMCNS703 share a lower average nucleotide identity (ANI) (95.24 to 95.39%) with the C. diphtheriae NCTC 11397T reference genome than all other C. diphtheriae genomes (>98.15%). Core genome phylogeny confirmed the presence of two monophyletic clades. Based on these findings, we propose here two new C. diphtheriae subspecies to replace the lineage denomination used in previous multilocus sequence typing studies: C. diphtheriae subsp. lausannense subsp. nov. (instead of lineage-2), regrouping strains CHUV2995, CCUG 5865, and CMCNS703, and C. diphtheriae subsp. diphtheriae subsp. nov, regrouping all other C. diphtheriae in the dataset (instead of lineage-1). Interestingly, members of subspecies lausannense displayed a larger genome size than subspecies diphtheriae and were enriched in COG categories related to transport and metabolism of lipids (I) and inorganic ion (P). Conversely, they lacked all genes involved in the synthesis of pili (SpaA-type, SpaD-type and SpaH-type), molybdenum cofactor and of the nitrate reductase. Finally, the CHUV2995 genome is particularly enriched in mobility genes and harbors several prophages. The genome encodes a type II-C CRISPR-Cas locus with 2 spacers that lacks csn2 or cas4, which could hamper the acquisition of new spacers and render strain CHUV2995 more susceptible to bacteriophage infections and gene acquisition through various mechanisms of horizontal gene transfer.
Collapse
Affiliation(s)
- Florian Tagini
- Institute of Microbiology, Department of Laboratory Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland
| | - Trestan Pillonel
- Institute of Microbiology, Department of Laboratory Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland
| | - Antony Croxatto
- Institute of Microbiology, Department of Laboratory Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, Department of Laboratory Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland
| | - Angela Koutsokera
- Division of Pulmonology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Alban Lovis
- Division of Pulmonology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Department of Laboratory Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
14
|
Czajka U, Wiatrzyk A, Mosiej E, Formińska K, Zasada AA. Changes in MLST profiles and biotypes of Corynebacterium diphtheriae isolates from the diphtheria outbreak period to the period of invasive infections caused by nontoxigenic strains in Poland (1950-2016). BMC Infect Dis 2018. [PMID: 29523087 PMCID: PMC5845185 DOI: 10.1186/s12879-018-3020-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Corynebacterium diphtheriae is a re-emerging pathogen in Europe causing invasive infections in vaccinated persons and classical diphtheria in unvaccinated persons. In the presented study we analysed genetic changes in C. diphtheriae isolates collected in Poland from the period before the introduction of the mass anti-diphtheria vaccination to the present time when over 98% of the population is vaccinated. Methods A total of 62 C. diphtheriae isolates collected in the 1950s–1960s, 1990s and 2000–2016 in Poland were investigated. Examined properties of the isolates included toxigenic status, presence of tox gene, biotype, MLST type (ST) and type of infection. Results A total of 12 sequence types (STs) were identified among the analysed C. diphtheriae isolates. The highest variability of STs was observed among isolates from diphtheria and asymptomatic carriers collected in the XX century. Over 95% of isolates collected from invasive and wound infections in 2004–2016 belonged to ST8. Isolates from the XX century represented all four biotypes: mitis, gravis, intermedius and belfanti, but the belfanti biotype appeared only after the epidemic in the 1990s. All except three isolates from the XXI century represented the biotype gravis. Conclusions During a diphtheria epidemic period, non-epidemic clones of C. diphtheriae might also disseminate and persist in a particular area after the epidemic. An increase of the anti-diphtheria antibody level in the population causes not only the elimination of toxigenic strains from the population but may also influence the reduction of diversity of C. diphtheriae isolates. MLST types do not reflect the virulence of isolates. Each ST can be represented by various virulent variants representing various pathogenic capacities, for example toxigenic non-invasive, nontoxigenic invasive and nontoxigenic non-invasive.
Collapse
Affiliation(s)
- Urszula Czajka
- Department of Vaccines and Sera Evaluation, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791, Warsaw, Poland
| | - Aldona Wiatrzyk
- Department of Vaccines and Sera Evaluation, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791, Warsaw, Poland
| | - Ewa Mosiej
- Department of Vaccines and Sera Evaluation, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791, Warsaw, Poland
| | - Kamila Formińska
- Department of Vaccines and Sera Evaluation, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791, Warsaw, Poland
| | - Aleksandra A Zasada
- Department of Vaccines and Sera Evaluation, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791, Warsaw, Poland.
| |
Collapse
|
15
|
Peixoto RS, Hacker E, Antunes CA, Weerasekera D, Dias AA, Martins CA, Hirata R, Santos KRND, Burkovski A, Mattos-Guaraldi AL. Pathogenic properties of a Corynebacterium diphtheriae strain isolated from a case of osteomyelitis. J Med Microbiol 2017; 65:1311-1321. [PMID: 27902402 DOI: 10.1099/jmm.0.000362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Corynebacterium diphtheriae is typically recognized as a colonizer of the upper respiratory tract (respiratory diphtheria) and the skin (cutaneous diphtheria). However, different strains of Corynebacteriumdiphtheriae can also cause invasive infections. In this study, the characterization of a non-toxigenic Corynebacteriumdiphtheriae strain (designated BR-INCA5015) isolated from osteomyelitis in the frontal bone of a patient with adenoid cystic carcinoma was performed. Pathogenic properties of the strain BR-INCA5015 were tested in a Caenorhabditis elegans survival assay showing strong colonization and killing by this strain. Survival rates of 3.8±2.7 %, 33.6±7.3 % and 0 % were observed for strains ATCC 27010T, ATCC 27012 and BR-INCA5015, respectively, at day 7. BR-INCA5015 was able to colonize epithelial cells, showing elevated capacity to adhere to and survive within HeLa cells compared to other Corynebacteriumdiphtheriae isolates. Intracellular survival in macrophages (THP-1 and RAW 264.7) was significantly higher compared to control strains ATCC 27010T (non-toxigenic) and ATCC 27012 (toxigenic). Furthermore, the ability of BR-INCA5015 to induce osteomyelitis was confirmed by in vivo assay using Swiss Webster mice.
Collapse
Affiliation(s)
- Renata Stavracakis Peixoto
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University (IMPPG/UFRJ), Rio de Janeiro, RJ, Brazil.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Elena Hacker
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Camila Azevedo Antunes
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Dulanthi Weerasekera
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - A A Dias
- National Institute for Quality Control in Health (INCQS), Fundação Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Carlos Alberto Martins
- Brazilian National Cancer Institute - Ministry of Health, INCA, Rio de Janeiro, RJ, Brazil
| | - Raphael Hirata
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Kátia Regina Netto Dos Santos
- Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University (IMPPG/UFRJ), Rio de Janeiro, RJ, Brazil
| | - Andreas Burkovski
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ana Luíza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil.,Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University (IMPPG/UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
16
|
von Graevenitz A. Importance of Coryneform Bacteria in Infective Endocarditis. Infect Dis Rep 2015; 7:6103. [PMID: 26500742 PMCID: PMC4593888 DOI: 10.4081/idr.2015.6103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/21/2015] [Indexed: 12/02/2022] Open
|
17
|
Tellurite resistance: a putative pitfall in Corynebacterium diphtheriae diagnosis? Antonie van Leeuwenhoek 2015; 108:1275-9. [PMID: 26459339 DOI: 10.1007/s10482-015-0558-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
Abstract
Corynebacterium diphtheriae strains continue to circulate worldwide causing diphtheria and invasive diseases, such as endocarditis, osteomyelitis, pneumonia and catheter-related infections. Presumptive C. diphtheriae infections diagnosis in a clinical microbiology laboratory requires a primary isolation consisting of a bacterial culture on blood agar and agar containing tellurite (TeO3(2-)). In this study, nine genome sequenced and four unsequenced strains of C. diphtheriae from different sources, including three samples from a recent outbreak in Brazil, were characterized with respect to their growth properties on tellurite-containing agar. Levels of tellurite-resistance (Te(R)) were evaluated by determining the minimum inhibitory concentrations of potassium tellurite (K2TeO3) and by a viability reduction test in solid culture medium with K2TeO3. Significant differences in Te(R) levels of C. diphtheriae strains were observed independent of origin, biovar or presence of the tox gene. Data indicated that the standard initial screening with TeO3(2-)-selective medium for diphtheria bacilli identification may lead to false-negative results in C. diphtheriae diagnosis laboratories.
Collapse
|
18
|
Santos LSD, Antunes CA, Santos CSD, Pereira JAA, Sabbadini PS, Luna MDGD, Azevedo V, Hirata Júnior R, Burkovski A, Asad LMBDO, Mattos-Guaraldi AL. Corynebacterium diphtheriae putative tellurite-resistance protein (CDCE8392_0813) contributes to the intracellular survival in human epithelial cells and lethality of Caenorhabditis elegans. Mem Inst Oswaldo Cruz 2015; 110:662-8. [PMID: 26107188 PMCID: PMC4569831 DOI: 10.1590/0074-02760140479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/15/2015] [Indexed: 11/29/2022] Open
Abstract
Corynebacterium diphtheriae, the aetiologic agent of diphtheria,
also represents a global medical challenge because of the existence of invasive
strains as causative agents of systemic infections. Although tellurite
(TeO32-) is toxic to most microorganisms, TeO32--resistant
bacteria, including C. diphtheriae, exist in
nature. The presence of TeO32--resistance (TeR)
determinants in pathogenic bacteria might provide selective advantages in the natural
environment. In the present study, we investigated the role of the putative
TeR determinant (CDCE8392_813gene) in the virulence
attributes of diphtheria bacilli. The disruption of CDCE8392_0813 gene expression in
the LDCIC-L1 mutant increased susceptibility to TeO32- and reactive oxygen
species (hydrogen peroxide), but not to other antimicrobial agents. The LDCIC-L1
mutant also showed a decrease in both the lethality of Caenorhabditis elegans
and the survival inside of human epithelial cells compared to wild-type
strain. Conversely, the haemagglutinating activity and adherence to and formation of
biofilms on different abiotic surfaces were not regulated through the CDCE8392_0813
gene. In conclusion, the CDCE8392_813 gene contributes to the TeR and
pathogenic potential of C. diphtheriae.
Collapse
Affiliation(s)
- Louisy Sanches Dos Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Camila Azevedo Antunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, BR
| | - Cintia Silva Dos Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - José Augusto Adler Pereira
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Priscila Soares Sabbadini
- Laboratório de Doenças Bacterianas, Centro de Ciências da Saúde, Centro Universitário do Maranhão, São Luís, MA, BR
| | - Maria das Graças de Luna
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Vasco Azevedo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, BR
| | - Raphael Hirata Júnior
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Andreas Burkovski
- Lehrstuhl fuer Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, DE
| | - Lídia Maria Buarque de Oliveira Asad
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Ana Luíza Mattos-Guaraldi
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| |
Collapse
|
19
|
Diphtheria outbreak in Maranhão, Brazil: microbiological, clinical and epidemiological aspects. Epidemiol Infect 2015; 143:791-8. [PMID: 25703400 DOI: 10.1017/s0950268814001241] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe microbiological, clinical and epidemiological aspects of a diphtheria outbreak that occurred in Maranhão, Brazil. The majority of the 27 confirmed cases occurred in partially (n = 16) or completely (n = 10) immunized children (n = 26). Clinical signs and characteristic symptoms of diphtheria such as cervical lymphadenopathy and pseudomembrane formation were absent in 48% and 7% of the cases, respectively. Complications such as paralysis of lower limbs were observed. Three cases resulted in death, two of them in completely immunized children. Microbiological analysis identified the isolates as Corynebacterium diphtheriae biovar intermedius with a predominant PFGE type. Most of them were toxigenic and some showed a decrease in penicillin G susceptibility. In conclusion, diphtheria remains endemic in Brazil. Health professionals need to be aware of the possibility of atypical cases of C. diphtheriae infection, including pharyngitis without pseudomembrane formation.
Collapse
|
20
|
Souza MC, dos Santos LS, Sousa LP, Faria YV, Ramos JN, Sabbadini PS, da Santos CS, Nagao PE, Vieira VV, Gomes DLR, Hirata Júnior R, Mattos-Guaraldi AL. Biofilm formation and fibrinogen and fibronectin binding activities by Corynebacterium pseudodiphtheriticum invasive strains. Antonie Van Leeuwenhoek 2015; 107:1387-99. [PMID: 25828766 DOI: 10.1007/s10482-015-0433-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/18/2015] [Indexed: 11/30/2022]
Abstract
Biofilm-related infections are considered a major cause of morbidity and mortality in hospital environments. Biofilms allow microorganisms to exchange genetic material and to become persistent colonizers and/or multiresistant to antibiotics. Corynebacterium pseudodiphtheriticum (CPS), a commensal bacterium that colonizes skin and mucosal sites has become progressively multiresistant and responsible for severe nosocomial infections. However, virulence factors of this emergent pathogen remain unclear. Herein, we report the adhesive properties and biofilm formation on hydrophilic (glass) and hydrophobic (plastic) abiotic surfaces by CPS strains isolated from patients with localized (ATCC10700/Pharyngitis) and systemic (HHC1507/Bacteremia) infections. Adherence to polystyrene attributed to hydrophobic interactions between bacterial cells and this negatively charged surface indicated the involvement of cell surface hydrophobicity in the initial stage of biofilm formation. Attached microorganisms multiplied and formed microcolonies that accumulated as multilayered cell clusters, a step that involved intercellular adhesion and synthesis of extracellular matrix molecules. Further growth led to the formation of dense bacterial aggregates embedded in the exopolymeric matrix surrounded by voids, typical of mature biofilms. Data also showed CPS recognizing human fibrinogen (Fbg) and fibronectin (Fn) and involvement of these sera components in formation of "conditioning films". These findings suggested that biofilm formation may be associated with the expression of different adhesins. CPS may form biofilms in vivo possibly by an adherent biofilm mode of growth in vitro currently demonstrated on hydrophilic and hydrophobic abiotic surfaces. The affinity to Fbg and Fn and the biofilm-forming ability may contribute to the establishment and dissemination of infection caused by CPS.
Collapse
Affiliation(s)
- Monica Cristina Souza
- Laboratório de Difteria e Corinebactérias de Importância Clínica (LDCIC), Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (UERJ), Av. 28 de Setembro, 87 - Fundos, 3°andar, Vila Isabel, Rio de Janeiro, RJ, 20.551-030, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Non-toxigenic penicillin-resistant cutaneous C. diphtheriae infection: a case report and review of the literature. J Infect Public Health 2014; 8:98-100. [PMID: 25027172 DOI: 10.1016/j.jiph.2014.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/19/2014] [Accepted: 05/24/2014] [Indexed: 11/23/2022] Open
Abstract
Here, we report a case of non-toxigenic Corynebacterium diphtheriae in a previously healthy 14-year-old girl that was acquired in Ethiopia and presented locally. This is the first clinical case of penicillin-resistant C. diphtheriae in the UK. This is significant finding because penicillin is the recommended first-line agent for the prophylaxis against and treatment of C. diphtheriae in patients who are not allergic to penicillin.
Collapse
|
22
|
Damasco PV, Ramos JN, Correal JCD, Potsch MV, Vieira VV, Camello TCF, Pereira MP, Marques VD, Santos KRN, Marques EA, Castier MB, Hirata R, Mattos-Guaraldi AL, Fortes CQ. Infective endocarditis in Rio de Janeiro, Brazil: a 5-year experience at two teaching hospitals. Infection 2014; 42:835-42. [PMID: 24934541 DOI: 10.1007/s15010-014-0640-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/19/2014] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Despite the recent advances in diagnosis and treatment, mortality rates due to infective endocarditis (IE) remain high if not aggressively treated with antibiotics, whether or not associated with surgery. Data on the prevalence, epidemiology and etiology of IE from developing countries remain scarce. The aim of this observational, prospective cohort study was to report a 5-year experience of IE at two teaching hospitals in Rio de Janeiro, Brazil. MATERIAL AND METHODS Demographical, anamnestic and microbiological characteristics of 71 IE patients were evaluated during the period of January 2009 to March 2013. RESULTS The mean age of the IE patients was 49.8 ± 2.4 years, of which 41 (57.7%) were males. The median time between the onset of symptoms and diagnosis of IE was 35.8 ± 4.8 days. A total of 31 (43.6%) cases of community-acquired infective endocarditis (CAIE) and 40 (56.3%) cases of healthcare-acquired infective endocarditis (HAIE) were observed. Staphylococcus aureus (30%) was the predominant cause of IE. Streptococcus spp. (45.1 %) was the predominant cause of the CAIE while S. aureus (32.5%) and Enterococcus spp. (27.2 %) were the main etiological agents of HAIE. For 64 (90.1 %) patients with native valve endocarditis, the mitral valve was the most commonly affected (48.3%). The main source of IE in this cohort was intravascular catheter. The tricuspid valve and renal chronic insufficiency were more frequent in patients with HAIE than CAIE (p = 0.001). The risk factors associated with in-hospital mortality rate (46.4%) in IE patients were: age over 45 (OR 3.4; 95% CI 1.03-11.24; p = 0.04) and chronic renal insufficiency (OR 38.3; 95% CI 3.2-449.4; p = 0.004). CONCLUSIONS At two main teaching hospitals in Brazil, Streptococcus spp. was the principal pathogen of CAIE while S. aureus and Enterococcus spp. were the most frequent causes of HAIE. IE remains a serious disease associated with high in-hospital mortality rate (46.6%); especially, in individuals over 45 years of age and with renal failure. Data suggest that early surgery may improve the outcome of IE patients.
Collapse
Affiliation(s)
- P V Damasco
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Peixoto RS, Pereira GA, Sanches Dos Santos L, Rocha-de-Souza CM, Gomes DLR, Silva Dos Santos C, Werneck LMC, Dias AADSDO, Hirata R, Nagao PE, Mattos-Guaraldi AL. Invasion of endothelial cells and arthritogenic potential of endocarditis-associated Corynebacterium diphtheriae. MICROBIOLOGY-SGM 2013; 160:537-546. [PMID: 24344208 DOI: 10.1099/mic.0.069948-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although infection by Corynebacterium diphtheriae is a model of extracellular mucosal pathogenesis, different clones have been also associated with invasive infections such as sepsis, endocarditis, septic arthritis and osteomyelitis. The mechanisms that promote C. diphtheriae infection and haematogenic dissemination need further investigation. In this study we evaluated the association and invasion mechanisms with human umbilical vein endothelial cells (HUVECs) and experimental arthritis in mice of endocarditis-associated strains and control non-invasive strains. C. diphtheriae strains were able to adhere to and invade HUVECs at different levels. The endocarditis-associated strains displayed an aggregative adherence pattern and a higher number of internalized viable cells in HUVECs. Transmission electron microscopy (TEM) analysis revealed intracellular bacteria free in the cytoplasm and/or contained in a host-membrane-confined compartment as single micro-organisms. Data showed bacterial internalization dependent on microfilament and microtubule stability and involvement of protein phosphorylation in the HUVEC signalling pathway. A high number of affected joints and high arthritis index in addition to the histopathological features indicated a strain-dependent ability of C. diphtheriae to cause severe polyarthritis. A correlation between the arthritis index and increased systemic levels of IL-6 and TNF-α was observed for endocarditis-associated strains. In conclusion, higher incidence of potential mechanisms by which C. diphtheriae may access the bloodstream through the endothelial barrier and stimulate the production of pro-inflammatory cytokines such as IL-6 and TNF-α, in addition to the ability to affect the joints and induce arthritis through haematogenic spread are thought to be related to the pathogenesis of endocarditis-associated strains.
Collapse
Affiliation(s)
- Renata Stavracakis Peixoto
- Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University (IMPPG/UFRJ), Rio de Janeiro, RJ, Brazil.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Gabriela Andrade Pereira
- Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University (IMPPG/UFRJ), Rio de Janeiro, RJ, Brazil.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Louisy Sanches Dos Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Cláudio Marcos Rocha-de-Souza
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Débora Leandro Rama Gomes
- Faculty of Pharmacy, Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil
| | - Cintia Silva Dos Santos
- Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University (IMPPG/UFRJ), Rio de Janeiro, RJ, Brazil.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Lucia Maria Correa Werneck
- National Institute for Quality Control in Health (INCQS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | | | - Raphael Hirata
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Prescilla Emy Nagao
- Biology Institute Roberto Alcântara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Ana Luíza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Torres LDFC, Ribeiro D, Hirata R, Pacheco LGC, Souza MC, dos Santos LS, dos Santos CS, Salah M, da Costa MM, Ribeiro MG, Selim SA, Azevedo VADC, Mattos-Guaraldi AL. Multiplex polymerase chain reaction to identify and determine the toxigenicity of Corynebacterium spp with zoonotic potential and an overview of human and animal infections. Mem Inst Oswaldo Cruz 2013; 108:S0074-02762013000300272. [PMID: 23778659 PMCID: PMC4005569 DOI: 10.1590/s0074-02762013000300003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 09/14/2012] [Indexed: 11/21/2022] Open
Abstract
Corynebacterium diphtheriae, Corynebacterium ulcerans and Corynebacterium pseudotuberculosis constitute a group of potentially toxigenic microorganisms that are related to different infectious processes in animal and human hosts. Currently, there is a lack of information on the prevalence of disease caused by these pathogens, which is partially due to a reduction in the frequency of routine laboratory testing. In this study, a multiplex polymerase chain reaction (mPCR) assay that can simultaneously identify and determine the toxigenicity of these corynebacterial species with zoonotic potential was developed. This assay uses five primer pairs targeting the following genes: rpoB (Corynebacterium spp), 16S rRNA (C. ulcerans and C. pseudotuberculosis), pld (C. pseudotuberculosis), dtxR (C. diphtheriae) and tox [diphtheria toxin (DT) ]. In addition to describing this assay, we review the literature regarding the diseases caused by these pathogens. Of the 213 coryneform strains tested, the mPCR results for all toxigenic and non-toxigenic strains of C . diphtheriae, C. ulcerans and C. pseudotuberculosis were in 100% agreement with the results of standard biochemical tests and PCR-DT. As an alternative to conventional methods, due to its advantages of specificity and speed, the mPCR assay used in this study may successfully be applied for the diagnosis of human and/or animal diseases caused by potentially toxigenic corynebacterial species.
Collapse
Affiliation(s)
- Luciene de Fátima Costa Torres
- Laboratório de Difteria e Corinebactérias de Importância Clínica, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Dayana Ribeiro
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Raphael Hirata
- Laboratório de Difteria e Corinebactérias de Importância Clínica, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - Monica Cristina Souza
- Laboratório de Difteria e Corinebactérias de Importância Clínica, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Louisy Sanches dos Santos
- Laboratório de Difteria e Corinebactérias de Importância Clínica, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Cíntia Silva dos Santos
- Laboratório de Difteria e Corinebactérias de Importância Clínica, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Mohammad Salah
- Faculdade de Medicina Veterinária, Universidade do Cairo, Giza, Egito
| | | | - Marcio Garcia Ribeiro
- Departamento de Higiene Veterinária e Saúde Pública, Escola de Medicina Veterinária e Ciência Animal, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - Salah A Selim
- Faculdade de Medicina Veterinária, Universidade do Cairo, Giza, Egito
| | | | - Ana Luiza Mattos-Guaraldi
- Laboratório de Difteria e Corinebactérias de Importância Clínica, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
25
|
Souza MCD, Santos LSD, Gomes DLR, Sabbadini PS, Santos CSD, Camello TCF, Asad LMBO, Rosa ACDP, Nagao PE, Hirata Júnior R, Guaraldi ALDM. Aggregative adherent strains of Corynebacterium pseudodiphtheriticum enter and survive within HEp-2 epithelial cells. Mem Inst Oswaldo Cruz 2013; 107:486-93. [PMID: 22666859 DOI: 10.1590/s0074-02762012000400008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 02/15/2012] [Indexed: 11/21/2022] Open
Abstract
Corynebacterium pseudodiphtheriticum is a well-known human pathogen that mainly causes respiratory disease and is associated with high mortality in compromised hosts. Little is known about the virulence factors and pathogenesis of C. pseudodiphtheriticum. In this study, cultured human epithelial (HEp-2) cells were used to analyse the adherence pattern, internalisation and intracellular survival of the ATCC 10700 type strain and two additional clinical isolates. These microorganisms exhibited an aggregative adherence-like pattern to HEp-2 cells characterised by clumps of bacteria with a "stacked-brick" appearance. The differences in the ability of these microorganisms to invade and survive within HEp-2 cells and replicate in the extracellular environment up to 24 h post infection were evaluated. The fluorescent actin staining test demonstrated that actin polymerisation is involved in the internalisation of the C. pseudodiphtheriticum strains. The depolymerisation of microfilaments by cytochalasin E significantly reduced the internalisation of C. pseudodiphtheriticum by HEp-2 cells. Bacterial internalisation and cytoskeletal rearrangement seemed to be partially triggered by the activation of tyrosine kinase activity. Although C. pseudodiphtheriticum strains did not demonstrate an ability to replicate intracellularly, HEp-2 cells were unable to fully clear the pathogen within 24 h. These characteristics may explain how some C. pseudodiphtheriticum strains cause severe infection in human patients.
Collapse
Affiliation(s)
- Monica Cristina de Souza
- Laboratório de Difteria e Corinebacterias de Importância Clínica, Instituto de Biologia Roberto Alcântara Gomes, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gomes DLR, Peixoto RS, Barbosa EAB, Napoleão F, Sabbadini PS, Dos Santos KRN, Mattos-Guaraldi AL, Hirata R. SubMICs of penicillin and erythromycin enhance biofilm formation and hydrophobicity of Corynebacterium diphtheriae strains. J Med Microbiol 2013; 62:754-760. [PMID: 23449875 DOI: 10.1099/jmm.0.052373-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Subinhibitory concentrations (subMICs) of antibiotics may alter bacterial surface properties and change microbial physiology. This study aimed to investigate the effect of a subMIC (⅛ MIC) of penicillin (PEN) and erythromycin (ERY) on bacterial morphology, haemagglutinating activity, cell-surface hydrophobicity (CSH) and biofilm formation on glass and polystyrene surfaces, as well as the distribution of cell-surface acidic anionic residues of Corynebacterium diphtheriae strains (HC01 tox(-) strain; CDC-E8392 and 241 tox(+) strains). All micro-organisms tested were susceptible to PEN and ERY. Growth in the presence of PEN induced bacterial filamentation, whereas subMIC of ERY caused cell-size reduction of strains 241 and CDC-E8392. Adherence to human erythrocytes was reduced after growth in the presence of ERY, while CSH was increased by a subMIC of both antibiotics in bacterial adherence to n-hexadecane assays. Conversely, antibiotic inhibition of biofilm formation was not observed. All strains enhanced biofilm formation on glass after treatment with ERY, while only strain 241 increased glass adherence after cultivation in the presence of PEN. Biofilm production on polystyrene surfaces was improved by ⅛ MIC of ERY. After growth in the presence of both antimicrobial agents, strains 241 and CDC-E8392 exhibited anionic surface charges with focal distribution. In conclusion, subMICs of PEN and ERY modified bacterial surface properties and enhanced not only biofilm formation but also cell-surface hydrophobicity. Antibiotic-induced biofilm formation may contribute to the inconsistent success of antimicrobial therapy for C. diphtheriae infections.
Collapse
Affiliation(s)
- D L R Gomes
- Faculty of Pharmacy, Federal Institute of Education, Science and Technology of Rio de Janeiro, IFRJ, Rio de Janeiro RJ, Brazil
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, UERJ, Rio de Janeiro RJ, Brazil
| | - R S Peixoto
- Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University, UFRJ, Rio de Janeiro RJ, Brazil
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, UERJ, Rio de Janeiro RJ, Brazil
| | - E A B Barbosa
- Faculty of Pharmacy, Federal Institute of Education, Science and Technology of Rio de Janeiro, IFRJ, Rio de Janeiro RJ, Brazil
| | - F Napoleão
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, UERJ, Rio de Janeiro RJ, Brazil
| | - P S Sabbadini
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, UERJ, Rio de Janeiro RJ, Brazil
| | - K R N Dos Santos
- Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University, UFRJ, Rio de Janeiro RJ, Brazil
| | - A L Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, UERJ, Rio de Janeiro RJ, Brazil
| | - R Hirata
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, UERJ, Rio de Janeiro RJ, Brazil
| |
Collapse
|
27
|
Soares SC, Silva A, Trost E, Blom J, Ramos R, Carneiro A, Ali A, Santos AR, Pinto AC, Diniz C, Barbosa EGV, Dorella FA, Aburjaile F, Rocha FS, Nascimento KKF, Guimarães LC, Almeida S, Hassan SS, Bakhtiar SM, Pereira UP, Abreu VAC, Schneider MPC, Miyoshi A, Tauch A, Azevedo V. The pan-genome of the animal pathogen Corynebacterium pseudotuberculosis reveals differences in genome plasticity between the biovar ovis and equi strains. PLoS One 2013; 8:e53818. [PMID: 23342011 PMCID: PMC3544762 DOI: 10.1371/journal.pone.0053818] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/03/2012] [Indexed: 12/11/2022] Open
Abstract
Corynebacterium pseudotuberculosis is a facultative intracellular pathogen and the causative agent of several infectious and contagious chronic diseases, including caseous lymphadenitis, ulcerative lymphangitis, mastitis, and edematous skin disease, in a broad spectrum of hosts. In addition, Corynebacterium pseudotuberculosis infections pose a rising worldwide economic problem in ruminants. The complete genome sequences of 15 C. pseudotuberculosis strains isolated from different hosts and countries were comparatively analyzed using a pan-genomic strategy. Phylogenomic, pan-genomic, core genomic, and singleton analyses revealed close relationships among pathogenic corynebacteria, the clonal-like behavior of C. pseudotuberculosis and slow increases in the sizes of pan-genomes. According to extrapolations based on the pan-genomes, core genomes and singletons, the C. pseudotuberculosis biovar ovis shows a more clonal-like behavior than the C. pseudotuberculosis biovar equi. Most of the variable genes of the biovar ovis strains were acquired in a block through horizontal gene transfer and are highly conserved, whereas the biovar equi strains contain great variability, both intra- and inter-biovar, in the 16 detected pathogenicity islands (PAIs). With respect to the gene content of the PAIs, the most interesting finding is the high similarity of the pilus genes in the biovar ovis strains compared with the great variability of these genes in the biovar equi strains. Concluding, the polymerization of complete pilus structures in biovar ovis could be responsible for a remarkable ability of these strains to spread throughout host tissues and penetrate cells to live intracellularly, in contrast with the biovar equi, which rarely attacks visceral organs. Intracellularly, the biovar ovis strains are expected to have less contact with other organisms than the biovar equi strains, thereby explaining the significant clonal-like behavior of the biovar ovis strains.
Collapse
Affiliation(s)
- Siomar C. Soares
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Center for Biotechnology, Bielefeld University, Bielefeld, Nordrhein-Westfalen, Germany
- CLIB Graduate Cluster Industrial Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Nordrhein-Westfalen, Germany
| | - Artur Silva
- Department of Genetics, Federal University of Pará, Belém, Pará, Brazil
| | - Eva Trost
- Center for Biotechnology, Bielefeld University, Bielefeld, Nordrhein-Westfalen, Germany
- CLIB Graduate Cluster Industrial Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Nordrhein-Westfalen, Germany
| | - Jochen Blom
- Center for Biotechnology, Bielefeld University, Bielefeld, Nordrhein-Westfalen, Germany
| | - Rommel Ramos
- Department of Genetics, Federal University of Pará, Belém, Pará, Brazil
| | - Adriana Carneiro
- Department of Genetics, Federal University of Pará, Belém, Pará, Brazil
| | - Amjad Ali
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson R. Santos
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anne C. Pinto
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Diniz
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eudes G. V. Barbosa
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda A. Dorella
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávia Aburjaile
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávia S. Rocha
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina K. F. Nascimento
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luís C. Guimarães
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Center for Biotechnology, Bielefeld University, Bielefeld, Nordrhein-Westfalen, Germany
- CLIB Graduate Cluster Industrial Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Nordrhein-Westfalen, Germany
| | - Sintia Almeida
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Syed S. Hassan
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Syeda M. Bakhtiar
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ulisses P. Pereira
- Department of Veterinary Medicine, Federal University of Lavras, Lavras, Brazil
| | - Vinicius A. C. Abreu
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Anderson Miyoshi
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andreas Tauch
- Center for Biotechnology, Bielefeld University, Bielefeld, Nordrhein-Westfalen, Germany
| | - Vasco Azevedo
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
28
|
Ott L, Scholz B, Höller M, Hasselt K, Ensser A, Burkovski A. Induction of the NFκ-B signal transduction pathway in response to Corynebacterium diphtheriae infection. Microbiology (Reading) 2013; 159:126-135. [DOI: 10.1099/mic.0.061879-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lisa Ott
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Mikrobiologie, Staudtstr. 5, 91058 Erlangen, Germany
| | - Brigitte Scholz
- Klinische und Molekulare Virologie, Virologisches Institut des Universitätsklinikums Erlangen, Schlossgarten 4, 91054, Erlangen, Germany
| | - Martina Höller
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Mikrobiologie, Staudtstr. 5, 91058 Erlangen, Germany
| | - Kristin Hasselt
- BioCer Entwicklungs-GmbH, Ludwig-Thoma-Str. 36c, 95447 Bayreuth, Germany
| | - Armin Ensser
- Klinische und Molekulare Virologie, Virologisches Institut des Universitätsklinikums Erlangen, Schlossgarten 4, 91054, Erlangen, Germany
| | - Andreas Burkovski
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Mikrobiologie, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
29
|
Dias AADSDO, Santos LS, Sabbadini PS, Santos CS, Silva Junior FC, Napoleão F, Nagao PE, Villas-Bôas MHS, Hirata Junior R, Guaraldi ALM. Corynebacterium ulcerans diphtheria: an emerging zoonosis in Brazil and worldwide. Rev Saude Publica 2012; 45:1176-91. [PMID: 22124745 DOI: 10.1590/s0034-89102011000600021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 05/27/2011] [Indexed: 11/21/2022] Open
Abstract
The article is a literature review on the emergence of human infections caused by Corynebacterium ulcerans in many countries including Brazil. Articles in Medline/PubMed and SciELO databases published between 1926 and 2011 were reviewed, as well as articles and reports of the Brazilian Ministry of Health. It is presented a fast, cost-effective and easy to perform screening test for the presumptive diagnosis of C. ulcerans and C. diphtheriae infections in most Brazilian public and private laboratories. C. ulcerans spread in many countries and recent isolation of this pathogen in Rio de Janeiro, southeastern Brazil, is a warning to clinicians, veterinarians, and microbiologists on the occurrence of zoonotic diphtheria and C. ulcerans dissemination in urban and rural areas of Brazil and/or Latin America.
Collapse
|
30
|
Sabbadini PS, Assis MC, Trost E, Gomes DLR, Moreira LO, Dos Santos CS, Pereira GA, Nagao PE, Azevedo VADC, Hirata Júnior R, Dos Santos ALS, Tauch A, Mattos-Guaraldi AL. Corynebacterium diphtheriae 67-72p hemagglutinin, characterized as the protein DIP0733, contributes to invasion and induction of apoptosis in HEp-2 cells. Microb Pathog 2012; 52:165-76. [PMID: 22239957 DOI: 10.1016/j.micpath.2011.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/29/2011] [Accepted: 12/05/2011] [Indexed: 11/25/2022]
Abstract
Although Corynebacterium diphtheriae has been classically described as an exclusively extracellular pathogen, there is growing evidence that it may be internalized by epithelial cells. The aim of the present report was to investigate the nature and involvement of the surface-exposed non-fimbrial 67-72 kDa proteins (67-72p), previously characterized as adhesin/hemagglutinin, in C. diphtheriae internalization by HEp-2 cells. Transmission electron microscopy and bacterial internalization inhibition assays indicated the role of 67-72p as invasin for strains of varied sources. Cytoskeletal changes with accumulation of polymerized actin in HEp-2 cells beneath adherent 67-72p-adsorbed microspheres were observed by the Fluorescent actin staining test. Trypan blue staining method and Methylthiazole tetrazolium reduction assay showed a significant decrease in viability of HEp-2 cells treated with 67-72p. Morphological changes in HEp-2 cells observed after treatment with 67-72p included vacuolization, nuclear fragmentation and the formation of apoptotic bodies. Flow cytometry revealed an apoptotic volume decrease in HEp-2 cells treated with 67-72p. Moreover, a double-staining assay using Propidium Iodide/Annexin V gave information about the numbers of vital vs. early apoptotic cells and late apoptotic or secondary necrotic cells. The comparative analysis of MALDI-TOF MS experiments with the probes provided for 67-72p CDC-E8392 with an in silico proteome deduced from the complete genome sequence of C. diphtheriae identified with significant scores 67-72p as the protein DIP0733. In conclusion, DIP0733 (67-72p) may be directly implicated in bacterial invasion and apoptosis of epithelial cells in the early stages of diphtheria and C. diphtheriae invasive infection.
Collapse
|
31
|
Mattos-Guaraldi AL, Damasco PV, Gomes DLR, Melendez MG, Santos LS, Marinelli RS, Napoleão F, Sabbadini PS, Santos CS, Moreira LO, Hirata R. Concurrent diphtheria and infectious mononucleosis: difficulties for management, investigation and control of diphtheria in developing countries. J Med Microbiol 2011; 60:1685-1688. [DOI: 10.1099/jmm.0.027870-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- A. L. Mattos-Guaraldi
- Disciplina de Microbiologia e Imunologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - P. V. Damasco
- Disciplina de Doenças Infecciosas e Parasitárias, Universidade do Rio de Janeiro, Rio de Janeiro, Brazil
- Disciplina de Doenças Infecciosas e Parasitárias, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - D. L. R. Gomes
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
- Disciplina de Microbiologia e Imunologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M. G. Melendez
- Disciplina de Doenças Infecciosas e Parasitárias, Universidade do Rio de Janeiro, Rio de Janeiro, Brazil
| | - L. S. Santos
- Disciplina de Microbiologia e Imunologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - R. S. Marinelli
- Laboratório Central Noel Nutels, LACEN-SESDEC (Laboratório Central de Saúde Publica – Secretaria de Estado de Saúde e Defesa Civil), Rio de Janeiro, Brazil
| | - F. Napoleão
- Laboratório Central Noel Nutels, LACEN-SESDEC (Laboratório Central de Saúde Publica – Secretaria de Estado de Saúde e Defesa Civil), Rio de Janeiro, Brazil
- Disciplina de Microbiologia e Imunologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - P. S. Sabbadini
- Disciplina de Microbiologia e Imunologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - C. S. Santos
- Disciplina de Microbiologia e Imunologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - L. O. Moreira
- Disciplina de Patologia Geral, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - R. Hirata
- Disciplina de Microbiologia e Imunologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Dias AASO, Silva FC, Santos LS, Ribeiro-Carvalho MM, Sabbadini PS, Santos CS, Filardy AA, Myioshi A, Azevedo VA, Hirata R, Villas-Bôas MHS, Mattos-Guaraldi AL. Strain-dependent arthritogenic potential of the zoonotic pathogen Corynebacterium ulcerans. Vet Microbiol 2011; 153:323-31. [PMID: 21742447 DOI: 10.1016/j.vetmic.2011.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/30/2011] [Accepted: 06/07/2011] [Indexed: 11/26/2022]
Abstract
During the last decade the majority of diphtheria cases in Europe had Corynebacterium ulcerans as the etiologic agent with dogs and cats as the reservoir hosts. However, little has been documented about the virulence factors of this zoonotic pathogen. To set up an in vivo experimental C. ulcerans infection model, conventional Swiss Webster mice were intravenously infected with different doses (from 1 × 10(7) to 5 × 10(9) bacteria per mouse) of C. ulcerans strains, namely 809 (from human lower respiratory tract), BR-AD22 (from asymptomatic dog nares) and CDC-KC279. Mortality rates were demonstrated by LD(50) values ranging from 1.9 × 10(8) to 1.3 × 10(9). Viable bacteria were recovered from blood, kidneys, liver, spleen and joints. For CDC-KC279 and 809 strains (2 × 10(8)mL(-1)) approximately 85% and 72% of animals with articular lesions were observed, respectively; BR-AD22-infected mice showed no signs of arthritis. CDC-KC279 and 809 strains exhibited higher arthritogenic potential when compared to the homologous toxigenic (ATCC27012) and non-toxigenic (ATCC27010) strains of Corynebacterium diphtheriae. A high number of affected joints and arthritis index in addition to the histopathological features, including subcutaneous edema, inflammatory infiltrate, damage to bone tissue and synoviocyte hypertrophy, indicated a strain-dependent ability of C. ulcerans strains to cause severe polyarthritis. A correlation between the arthritis index and systemic levels of IL-6 and TNF-α was observed for C. ulcerans strains, with the exception of the non-arthritogenic BR-AD22 strain. In conclusion, C. ulcerans revealed a strain-dependent arthritogenic potential independent of DNAse, PLD and diphtheria toxin production.
Collapse
Affiliation(s)
- A A S O Dias
- Programa de Pós-Graduação em Vigilância Sanitária/Instituto Nacional de Controle de Qualidade em Saúde - Fundação Oswaldo Cruz, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Multilocus sequence types of invasive Corynebacterium diphtheriae isolated in the Rio de Janeiro urban area, Brazil. Epidemiol Infect 2011; 140:617-20. [DOI: 10.1017/s0950268811000963] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARYInvasive infections caused by Corynebacterium diphtheriae in vaccinated and non-vaccinated individuals have been reported increasingly. In this study we used multilocus sequence typing (MLST) to study genetic relationships between six invasive strains of this bacterium isolated solely in the urban area of Rio de Janeiro, Brazil, during a 10-year period. Of note, all the strains rendered negative results in PCR reactions for the tox gene, and four strains presented an atypical sucrose-fermenting ability. Five strains represented new sequence types. MLST results did not support the hypothesis that invasive (sucrose-positive) strains of C. diphtheriae are part of a single clonal complex. Instead, one of the main findings of the study was that such strains can be normally found in clonal complexes with strains related to non-invasive disease. Comparative analyses with C. diphtheriae isolated in different countries provided further information on the geographical circulation of some sequence types.
Collapse
|
34
|
Poetsch A, Haussmann U, Burkovski A. Proteomics of corynebacteria: From biotechnology workhorses to pathogens. Proteomics 2011; 11:3244-55. [PMID: 21674800 DOI: 10.1002/pmic.201000786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/09/2022]
Abstract
Corynebacteria belong to the high G+C Gram-positive bacteria (Actinobacteria) and are closely related to Mycobacterium and Nocardia species. The best investigated member of this group of almost seventy species is Corynebacterium glutamicum, a soil bacterium isolated in 1957, which is used for the industrial production of more than two million tons of amino acids per year. This review focuses on the technical advances made in proteomics approaches during the last years and summarizes applications of these techniques with respect to C. glutamicum metabolic pathways and stress response. Additionally, selected proteome applications for other biotechnologically important or pathogenic corynebacteria are described.
Collapse
Affiliation(s)
- Ansgar Poetsch
- Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
35
|
Ott L, Höller M, Rheinlaender J, Schäffer TE, Hensel M, Burkovski A. Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells. BMC Microbiol 2010; 10:257. [PMID: 20942914 PMCID: PMC2965157 DOI: 10.1186/1471-2180-10-257] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 10/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corynebacterium diphtheriae, the causative agent of diphtheria, is well-investigated in respect to toxin production, while little is known about C. diphtheriae factors crucial for colonization of the host. In this study, we investigated strain-specific differences in adhesion, invasion and intracellular survival and analyzed formation of pili in different isolates. RESULTS Adhesion of different C. diphtheriae strains to epithelial cells and invasion of these cells are not strictly coupled processes. Using ultrastructure analyses by atomic force microscopy, significant differences in macromolecular surface structures were found between the investigated C. diphtheriae strains in respect to number and length of pili. Interestingly, adhesion and pili formation are not coupled processes and also no correlation between invasion and pili formation was found. Using RNA hybridization and Western blotting experiments, strain-specific pili expression patterns were observed. None of the studied C. diphtheriae strains had a dramatic detrimental effect on host cell viability as indicated by measurements of transepithelial resistance of Detroit 562 cell monolayers and fluorescence microscopy, leading to the assumption that C. diphtheriae strains might use epithelial cells as an environmental niche supplying protection against antibodies and macrophages. CONCLUSIONS The results obtained suggest that it is necessary to investigate various isolates on a molecular level to understand and to predict the colonization process of different C. diphtheriae strains.
Collapse
Affiliation(s)
- Lisa Ott
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nürnberg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Hirata R, Pacheco LG, Soares SC, Santos LS, Moreira LO, Sabbadini PS, Santos CS, Miyoshi A, Azevedo VA, Mattos-Guaraldi AL. Similarity of rpoB gene sequences of sucrose-fermenting and non-fermenting Corynebacterium diphtheriae strains. Antonie van Leeuwenhoek 2010; 99:733-7. [DOI: 10.1007/s10482-010-9519-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/30/2010] [Indexed: 11/30/2022]
|
37
|
Gomes DLR, Martins CAS, Faria LMD, Santos LS, Santos CS, Sabbadini PS, Souza MC, Alves GB, Rosa ACP, Nagao PE, Pereira GA, Hirata R, Mattos-Guaraldi AL. Corynebacterium diphtheriae as an emerging pathogen in nephrostomy catheter-related infection: evaluation of traits associated with bacterial virulence. J Med Microbiol 2009; 58:1419-1427. [PMID: 19628642 DOI: 10.1099/jmm.0.012161-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Corynebacterium diphtheriae still represents a global medical challenge, particularly due to the significant number of individuals susceptible to diphtheria and the emergence of non-toxigenic strains as the causative agents of invasive infections. In this study, we characterized the clinical and microbiological features of what we believe to be the first case of C. diphtheriae infection of a percutaneous nephrostomy catheter insertion site in an elderly patient with a fatal bladder cancer. Moreover, we demonstrated the potential role of adherence, biofilm formation and fibrin deposition traits in C. diphtheriae from the catheter-related infection. Non-toxigenic C. diphtheriae isolated from the purulent discharge (named strain BR-CAT5003748) was identified by the API Coryne system (code 1 010 324) and a multiplex PCR for detection of dtxR and tox genes. Strain BR-CAT5003748 showed resistance to oxacillin, ceftazidime and ciprofloxacin. In experiments performed in vitro, the catheter isolate was classified as moderately hydrophobic and as moderately adherent to polystyrene surfaces. Glass provided a more effective surface for biofilm formation than polystyrene. Micro-organisms adhered to (>1.5 x 10(6) c.f.u.) and multiplied on surfaces of polyurethane catheters. Microcolony formation (a hallmark of biofilm formation) and amorphous accretions were observed by scanning electron microscopy on both external and luminal catheter surfaces. Micro-organisms yielded simultaneous expression of localized adherence-like and aggregative-like (LAL/AAL) adherence patterns to HEp-2 cells. Interestingly, the coagulase tube test resulted in the formation of a thin layer of fibrin embedded in rabbit plasma by the non-toxigenic BR-CAT5003748 strain. In conclusion, C. diphtheriae should be recognized as a potential cause of catheter-related infections in at-risk populations such as elderly and cancer patients. LAL/AAL strains may be associated with virulence traits that enable C. diphtheriae to effectively produce biofilms on catheter surfaces. Biofilm formation and fibrin deposition could have contributed to the persistence of C. diphtheriae at the infected insertion site and the obstruction of the nephrostomy catheter.
Collapse
Affiliation(s)
- Débora L R Gomes
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medicine, University of the State of Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil
| | - Carlos A S Martins
- Hospital Infection Control Committee, National Cancer Institute, INCA, Health Ministry, Rio de Janeiro, RJ, Brazil.,Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medicine, University of the State of Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil
| | - Lúcia M D Faria
- Hospital Infection Control Committee, National Cancer Institute, INCA, Health Ministry, Rio de Janeiro, RJ, Brazil
| | - Louisy S Santos
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medicine, University of the State of Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil
| | - Cintia S Santos
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medicine, University of the State of Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil
| | - Priscila S Sabbadini
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medicine, University of the State of Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil
| | - Mônica C Souza
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medicine, University of the State of Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil
| | - Gabriela B Alves
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medicine, University of the State of Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil
| | - Ana C P Rosa
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medicine, University of the State of Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil
| | - Prescilla E Nagao
- Roberto Alcantara Gomes Biology Institute, University of the State of Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil
| | - Gabriela A Pereira
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medicine, University of the State of Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil
| | - Raphael Hirata
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medicine, University of the State of Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil
| | - Ana L Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medicine, University of the State of Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|