1
|
Amiri MA, Farshidfar N, Miron RJ, Dziedzic A, Hamedani S, Daneshi S, Tayebi L. The Potential Therapeutic Effects of Platelet-Derived Biomaterials on Osteoporosis: A Comprehensive Review of Current Evidence. Int J Biomater 2023; 2023:9980349. [PMID: 38098766 PMCID: PMC10721351 DOI: 10.1155/2023/9980349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/09/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Osteoporosis is a chronic multifactorial condition that affects the skeletal system, leading to the deterioration of bone microstructure and an increased risk of bone fracture. Platelet-derived biomaterials (PDBs), so-called platelet concentrates, such as platelet-rich plasma (PRP) and platelet-rich fibrin (PRF), have shown potential for improving bone healing by addressing microstructural impairment. While the administration of platelet concentrates has yielded positive results in bone regeneration, the optimal method for its administration in the clinical setting is still debatable. This comprehensive review aims to explore the systemic and local use of PRP/PRF for treating various bone defects and acute fractures in patients with osteoporosis. Furthermore, combining PRP/PRF with stem cells or osteoinductive and osteoconductive biomaterials has shown promise in restoring bone microstructural properties, treating bony defects, and improving implant osseointegration in osteoporotic animal models. Here, reviewing the results of in vitro and in vivo studies, this comprehensive evaluation provides a detailed mechanism for how platelet concentrates may support the healing process of osteoporotic bone fractures.
Collapse
Affiliation(s)
- Mohammad Amin Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Farshidfar
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Richard J. Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, Katowice, Poland
| | - Shahram Hamedani
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Daneshi
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| |
Collapse
|
2
|
Asserson DB. Allogeneic Mesenchymal Stem Cells After In Vivo Transplantation: A Review. Cell Reprogram 2023; 25:264-276. [PMID: 37971885 DOI: 10.1089/cell.2023.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Autologous mesenchymal stem cells (MSCs) are ideal for tissue regeneration because of their ability to circumvent host rejection, but their procurement and processing present logistical and time-sensitive challenges. Allogeneic MSCs provide an alternative cell-based therapy capable of positively affecting all human organ systems, and can be readily available. Extensive research has been conducted in the treatment of autoimmune, degenerative, and inflammatory diseases with such stem cells, and has demonstrated predominantly safe outcomes with minimal complications. Nevertheless, continued clinical trials are necessary to ascertain optimal harvest and transplant techniques.
Collapse
Affiliation(s)
- Derek B Asserson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Freitas NPP, Silva BDP, Bezerra MRL, Pescini LYG, Olinda RG, Salgueiro CCDM, Nunes JF, Martins JAM, Neto SG, Martins LT. Freeze-dried Platelet-rich Plasma and Stem Cell-conditioned Medium for Therapeutic Use in Horses. J Equine Vet Sci 2023; 121:104189. [PMID: 36464033 DOI: 10.1016/j.jevs.2022.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/19/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
This study investigated platelet-rich plasma (PRP) and adipose stem cell-conditioned medium (ASC-CM) use as a strategy to accelerate tissue healing. Platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) were quantified in fresh and freeze-dried PRP and ASC-CM, and a stability test was performed in the freeze-dried samples (90 and 180 days of storage). A cell proliferation test was performed using equine mesenchymal stem cell culture in reconstituted PRP gel mesh after freeze-drying. In vivo PRP, ASC-CM applications, or their association were performed in induced wounds at 15 and 9-day intervals, according to the treatments: saline solution (control), PRP, ASC-CM, or ASC-CM + PRP. Horses were monitored through photographs and wound area measurements on days 5, 7, 15, and 24 after lesion induction. Skin biopsies were obtained on days 15 and 24 of the experiment. PDGF and VEGF quantification did not differ between fresh or freeze-dried treatments, was similar after freeze-drying or 90 days of storage, but showed a significant reduction after 180 days of storage. Comparing all treatments, no differences were observed in the histopathological analyses. For inflammation, fibroplasia, and collagen formation, only the time effect between the first and second biopsies was significant. The cell proliferation test revealed intense multiplication in the PRP gel mesh. Healing time was similar among all treatments. In conclusion, our results showed the possibility to produce and maintain freeze-dried PRP and ASC-CM for 90 days. Further studies are needed to better explore the in vivo therapeutic PRP and ASC-CM effects.
Collapse
Affiliation(s)
- Natália P P Freitas
- Department of Veterinary Medicine, Graduate Program, Rede Nordeste de Biotecnologia (Renorbio), State University of Ceará (UECE), Fortaleza, Ceará, Brazil.
| | - Beatriz D'Almeida P Silva
- Department of Veterinary Medicine, Experimental Biology Unit (Nubex), University of Fortaleza (Unifor), Fortaleza, Ceará, Brazil
| | - Marcus R L Bezerra
- Department of Biotechnology, Graduate Program, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | - Laura Y G Pescini
- Department of Veterinary Medicine, Experimental Biology Unit (Nubex), University of Fortaleza (Unifor), Fortaleza, Ceará, Brazil
| | - Roberio G Olinda
- Department of Pathology, Vetlab Veterinary Laboratory, Fortaleza, Ceará, Brazil
| | | | - José F Nunes
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, State University of Ceará (UECE), Fortaleza, Ceará, Brazil
| | - Jorge A M Martins
- Department of Veterinary Medicine, Federal University of Cariri (UFCA), Crato, Ceará, Brazil
| | - Saul G Neto
- Department of Veterinary Medicine, Experimental Biology Unit (Nubex), University of Fortaleza (Unifor), Fortaleza, Ceará, Brazil
| | - Leonardo T Martins
- Department of Veterinary Medicine, Experimental Biology Unit (Nubex), University of Fortaleza (Unifor), Fortaleza, Ceará, Brazil
| |
Collapse
|
4
|
Pacheco IKC, Reis FDS, Carvalho CESD, De Matos JME, Argôlo Neto NM, Baeta SDAF, Silva KRD, Dantas HV, Sousa FBD, Fialho ACV. Development of castor polyurethane scaffold ( Ricinus communisL.) and its effect with stem cells for bone repair in an osteoporosis model. Biomed Mater 2021; 16. [PMID: 34416741 DOI: 10.1088/1748-605x/ac1f9e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/20/2021] [Indexed: 01/25/2023]
Abstract
The development of 'smart' scaffolds has achieved notoriety among current prospects for bone repair, especially for chronic osteopathy, such as osteoporosis. Millions of individuals in the world suffer from poor bone healing due to osteoporosis. The objective of this work was to produce and characterize castor polyurethane (PU) scaffolds (Ricinus communisL.)andevaluate itsin vitrobiocompatibility with stem cells and osteoinductive effectin vivoon bone failures in a leporid model of osteoporosis. The material was characterized using Fourier-transform infrared spectroscopy, thermogravimetric analysis, SEM, and porosity analysis. Then, the biocompatibility was assessed by adhesion using SEM and cytotoxicity in a 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium assay. The osteoinductive effectin vivowas determined in bone defects in rabbit tibias (Oryctolagus cuniculus) submitted to castor PU scaffold, castor PU scaffold associated with stem cells, and negative control, after four and eight weeks, evaluated by computed microtomography and histopathology. The scaffolds were porous, with an average pore size of 209.5 ± 98.2 µm, absence of cytotoxicity, and positive cell adhesivenessin vitro.All the animals presented osteoporosis, characterized by multifocal osteoblastic inactivity and areas of mild fibrosis. There were no statistical differences between these treatments in the fourth week of treatment. In the eighth week, the treatment with castor PU scaffold alone induced more significant bone formation when compared to the other groups, followed by treatment with an association between castor PU scaffold and stem cells. The castor PU scaffold was harmless to cell culture, favoring cell adhesiveness and proliferation, in addition to inducing bone neoformation in osteoporotic rabbits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karla Rovaris Da Silva
- Department of Pathology and Dental Clinic, Federal University of Piauí, Teresina, Brasil
| | - Hugo Victor Dantas
- Graduate Program in Dentistry, Federal University of Parnaíba, João Pessoa, Brasil
| | | | | |
Collapse
|
5
|
Sheu SY, Hsu YK, Chuang MH, Chu CM, Lin PC, Liao JH, Lin SZ, Kuo TF. Enhanced Bone Formation in Osteoporotic Mice by a Novel Transplant Combined with Adipose-derived Stem Cells and Platelet-rich Fibrin Releasates. Cell Transplant 2021; 29:963689720927398. [PMID: 32648485 PMCID: PMC7563809 DOI: 10.1177/0963689720927398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteoporotic fracture is the main complication of osteoporosis (OP) and accounts for millions of injuries annually. Local intervention by intra-marrow injection has been a good option for preventing osteoporotic bone loss when the osteoporotic femoral fracture has been treated. In this study, tail vein transplantations were examined to evaluate the cell-based therapeutic approach for treating OP with adipose-derived stem cells (ADSCs) and platelet-rich fibrin releasates (PRFr) in an ovariectomized (OVX) mice model. Thirty-six 12-wk-old female ICR mice were randomly divided into six groups: untreated control; sham-operated; OVX-control; OVX-ADSCs; OVX-PRFr; and OVX-ADSCs+PRFr. Starting 8 wk after ovariectomy, the OVX mice received tail vein injections once each week for four consecutive weeks, then were evaluated radiographically and histopathologically 8 wk after the first injection. We also assessed changes to bone trabeculae in the proximal tibial growth plate. In OVX mice treated with ADSCs or PRFr alone, or with a combination of ADSCs and PRFr, the trabecular bone mineral density (BMD), bone volume ratios (BV/TV), and numbers (Tb.N) in the proximal tibia areas were significantly higher than that in the OVX-control group. Significant differences between OVX-treated mice and OVX controls were found for trabecular separation, but not for trabecular thickness. These results indicate that ADSCs or PRFr treatment enhances bone microarchitecture in OP. The treatment of bone loss of OVX mice with ADSCs+PRFr induced greater bone consolidation with bone tissue production (P < 0.01) when compared to the others. Thus, we conclude that the transplantation of ADSCs combined with PRFr might provide an alternative strategy for the treatment of various bone disorders in OP with an unlimited source of cells and releasates.
Collapse
Affiliation(s)
- Shi-Yuan Sheu
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan.,Department of Chinese Medicine, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Yuan-Kai Hsu
- Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Ming-Hsi Chuang
- Ph.D. Program of Technology Management, Chung Hwa University, Hsinchu, Taiwan.,Gwo Xi Stem Cell Applied Technology Co., Ltd, Hsinchu, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Ming Chu
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Po-Cheng Lin
- Gwo Xi Stem Cell Applied Technology Co., Ltd, Hsinchu, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Jeng-Hao Liao
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Tzu Chi foundation; Department of Neurosurgery, Buddhist Tzu Chi General hospital, Tzu Chi University, Hualien, Taiwan
| | - Tzong-Fu Kuo
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung, Taiwan
| |
Collapse
|
6
|
Abbasi N, Lee RSB, Ivanovski S, Love RM, Hamlet S. In vivo bone regeneration assessment of offset and gradient melt electrowritten (MEW) PCL scaffolds. Biomater Res 2020; 24:17. [PMID: 33014414 PMCID: PMC7529514 DOI: 10.1186/s40824-020-00196-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/21/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Biomaterial-based bone tissue engineering represents a promising solution to overcome reduced residual bone volume. It has been previously demonstrated that gradient and offset architectures of three-dimensional melt electrowritten poly-caprolactone (PCL) scaffolds could successfully direct osteoblast cells differentiation toward an osteogenic lineage, resulting in mineralization. The aim of this study was therefore to evaluate the in vivo osteoconductive capacity of PCL scaffolds with these different architectures. METHODS Five different calcium phosphate (CaP) coated melt electrowritten PCL pore sized scaffolds: 250 μm and 500 μm, 500 μm with 50% fibre offset (offset.50.50), tri layer gradient 250-500-750 μm (grad.250top) and 750-500-250 μm (grad.750top) were implanted into rodent critical-sized calvarial defects. Empty defects were used as a control. After 4 and 8 weeks of healing, the new bone was assessed by micro-computed tomography and immunohistochemistry. RESULTS Significantly more newly formed bone was shown in the grad.250top scaffold 8 weeks post-implantation. Histological investigation also showed that soft tissue was replaced with newly formed bone and fully covered the grad.250top scaffold. While, the bone healing did not happen completely in the 250 μm, offset.50.50 scaffolds and blank calvaria defects following 8 weeks of implantation. Immunohistochemical analysis showed the expression of osteogenic markers was present in all scaffold groups at both time points. The mineralization marker Osteocalcin was detected with the highest intensity in the grad.250top and 500 μm scaffolds. Moreover, the expression of the endothelial markers showed that robust angiogenesis was involved in the repair process. CONCLUSIONS These results suggest that the gradient pore size structure provides superior conditions for bone regeneration.
Collapse
Affiliation(s)
- Naghmeh Abbasi
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
| | - Ryan S. B. Lee
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
- School of Dentistry, University of Queensland, Herston Campus, Herston, Queensland 4006 Australia
| | - Saso Ivanovski
- School of Dentistry, University of Queensland, Herston Campus, Herston, Queensland 4006 Australia
| | - Robert M. Love
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
| | - Stephen Hamlet
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
| |
Collapse
|
7
|
Wong CC, Liao JH, Sheu SY, Lin PY, Chen CH, Kuo TF. Novel transplant of combined platelet-rich fibrin Releasate and bone marrow stem cells prevent bone loss in Ovariectomized osteoporotic mice. BMC Musculoskelet Disord 2020; 21:527. [PMID: 32770974 PMCID: PMC7415181 DOI: 10.1186/s12891-020-03549-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/30/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Osteoporosis is a metabolic bone disorder characterized by deterioration in the quantity and quality of bone tissue, with a consequent increase susceptibility to fracture. METHODS In this study, we sought to determine the efficacy of platelet-rich fibrin releasates (PRFr) in augmenting the therapeutic effects of stem cell-based therapy in treating osteoporotic bone disorder. An osteoporosis mouse model was established through bilateral ovariectomy on 12-week-old female ICR (Institute of Cancer Research) mice. Eight weeks postoperatively, the ovariectomized (OVX) mice were left untreated (control) or injected with PRFr, bone marrow stem cells (BMSCs), or the combination of BMSCs and PRFr. Two different injection (single versus quadruple) dosages were tested to investigate the accumulative effects of BMSCS and PRFr on bone quality. Eight weeks after injection, the changes in tibial microstructural profiles included the percentage of bone volume versus total tissue volume (BV/TV, %), bone mineral density (BMD, g/cm3), trabecular number (Tb.N, number/mm), and trabecular separation (Tb.Sp, mm) and bony histology were analyzed. RESULTS Postmenopausal osteoporosis model was successfully established in OVX mice, evidenced by reduced BMD, decreased BV/TV, lower Tb.N but increased Tb.Sp. Eight weeks after injection, there was no significant change to BMD and bone trabeculae could be detected in mice that received single-injection regimen. In contrast, in mice which received 4 doses of combined PRFr and BMSCs, the BMD, BV/TV, and TB.N increased, and the TB.Sp decreased significantly compared to untreated OVX mice. Moreover, the histological analysis showed the trabecular spacing become narrower in OVX-mice treated with quadruple injection of BMSCs and combined PRFr and BMSCs than untreated control. CONCLUSION The systemic administration of combined BMSCs and PRFr protected against OVX-induced bone mass loss in mice. Moreover, the improvement of bony profile scores in quadruple-injection group is better than the single-injection group, probably through the increase in effect size of cells and growth factors. Our data also revealed the combination therapy of BMSCs and PRFr has better effect in enhancing osteogenesis, which may provide insight for the development of a novel therapeutic strategy in osteoporosis treatment.
Collapse
Affiliation(s)
- Chin-Chean Wong
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.,Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan.,International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Non-invasive Cancer Therapy Research Institute of Taiwan, Taipei, 10489, Taiwan
| | - Jeng-Hao Liao
- School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Shi-Yuan Sheu
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, 84001, Taiwan. .,Department of Chinese Medicine, E-Da Cancer Hospital, Kaohsiung, 84001, Taiwan.
| | - Po-Yu Lin
- School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Hwa Chen
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.,Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan.,School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.,School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tzong-Fu Kuo
- School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan. .,Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
8
|
Salamanna F, Maglio M, Sartori M, Tschon M, Fini M. Platelet Features and Derivatives in Osteoporosis: A Rational and Systematic Review on the Best Evidence. Int J Mol Sci 2020; 21:ijms21051762. [PMID: 32143494 PMCID: PMC7084230 DOI: 10.3390/ijms21051762] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background: With the increase in aging population, the rising prevalence of osteoporosis (OP) has become an important medical issue. Accumulating evidence showed a close relationship between OP and hematopoiesis and emerging proofs revealed that platelets (PLTs), unique blood elements, rich in growth factors (GFs), play a critical role in bone remodeling. The aim of this review was to evaluate how PLT features, size, volume, bioactive GFs released, existing GFs in PLTs and PLT derivatives change and behave during OP. Methods: A systematic search was carried out in PubMed, Scopus, Web of Science Core Collection and Cochrane Central Register of Controlled Trials databases to identify preclinical and clinical studies in the last 10 years on PLT function/features and growth factor in PLTs and on PLT derivatives during OP. The methodological quality of included studies was assessed by QUIPS tool for assessing risk of bias in the clinical studies and by the SYRCLE tool for assessing risk of bias in animal studies. Results: In the initial search, 2761 studies were obtained, only 47 articles were submitted to complete reading, and 23 articles were selected for the analysis, 13 on PLT function/features and growth factor in PLTs and 10 on PLT derivatives. Risk of bias of almost all animal studies was high, while the in the clinical studies risk of bias was prevalently moderate/low for the most of the studies. The majority of the evaluated studies highlighted a positive correlation between PLT size/volume and bone mineralization and an improvement in bone regeneration ability by using PLTs bioactive GFs and PLT derivatives. Conclusions: The application of PLT features as OP markers and of PLT-derived compounds as therapeutic approach to promote bone healing during OP need to be further confirmed to provide clear evidence for the real efficacy of these interventions and to contribute to the clinical translation.
Collapse
|