1
|
Miorando D, Cristina Maccagnan J, Dalla Vecchia CA, Vedoy Ferraz C, Monteiro M, Assunta Busato M, Antônio Lutinski J, Isadora Roman M, de Souza Rezende R, Vidal Gutiérrez M, Hage-Melim LIS, Pontes FMM, Barison A, Nepel A, Veselinova A, Roman Junior WA. Friedericia Chica, a Medicinal Plant from the Amazon Region, is Repellent Against Aedes Aegypti: In Vivo and Molecular Docking Evidence. Chem Biodivers 2025; 22:e202401128. [PMID: 39412496 DOI: 10.1002/cbdv.202401128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/15/2024] [Indexed: 11/13/2024]
Abstract
Fridericia chica is widely distributed in Brazil, where it is commonly known as crajiru or pariri in several regions. Despite its popular use for treating inflammations and as an insect repellent, there has been limited assessment of its chemical and biological properties, including its bioinsecticide activities. In this study, we conducted phytochemical analyses and investigated the larvicidal and repellent effects of F. chica against the mosquito Aedes aegypti. The F. chica (HEFc) hydroalcoholic extract was partitioned using column chromatography, and subfractions were analyzed using chromatographic and spectroscopic analyses (ESI-IT-MSn and NMR). In addition, HEFc was evaluated for its larvicidal and repellent activities. Phytochemical analyses revealed the presence of 17 constituents, including 2,4-dihydroxybenzoic and p-coumaric acids, along with umbelliferone, acetovanilone, myricetin-3-O-glucuronide, and cis-isorhapontigenin, which are reported for the first time in this species. Although no larvicidal effect was observed at the doses tested, the HEFc exhibited promising repellent effects against A. aegypti, which aligns with its ethnopharmacological potential. In addition, molecular docking studies demonstrated that the compounds of HEFc interacted efficiently with insect odorant binding proteins (OBPs), providing repellent effects. Consistent with the chemical profile and in silico studies, preparations of F. chica have considerable repellent potential.
Collapse
Affiliation(s)
- Daniela Miorando
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | | | | | - Cleidiane Vedoy Ferraz
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Marcelo Monteiro
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Maria Assunta Busato
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Junir Antônio Lutinski
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Maria Isadora Roman
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, Chapecó, SC, Brazil
| | - Renan de Souza Rezende
- Laboratory of Ecology Entomology, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Max Vidal Gutiérrez
- Department of Chemical, Biological and Agricultural Sciences, Universidad de Sonora, Navojoa Sonora, Mexico
| | | | | | - Andersson Barison
- Laboratory of RMN (LabRMN), Federal University of Paraná, UFPR, Curitiba, PR, Brazil
| | - Angelita Nepel
- Laboratory of RMN (LabRMN), Federal University of Paraná, UFPR, Curitiba, PR, Brazil
| | - Anzhela Veselinova
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, Salamanca, Spain
| | - Walter Antônio Roman Junior
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, Chapecó, SC, Brazil
| |
Collapse
|
2
|
Miorando D, Steffler AM, Vecchia CAD, Simomura VL, Veloso JJ, Buzatto MV, Nunes RKS, Somensi LB, Gutiérrez MV, Melim LISH, Pontes FMM, Silva LM, Veselinova A, González-Sánchez L, Jambrina PG, Junior WAR. Gastroprotective role of a flavonoid-rich subfraction from Fridericia chica (Bonpl.) L. G. Lohmann: a medicinal plant used in the Amazon region. Inflammopharmacology 2024:10.1007/s10787-024-01544-6. [PMID: 39126568 DOI: 10.1007/s10787-024-01544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Fridericia chica is an Amazonian plant used to treat stomach disorders. However, the pharmacological activity of flavonoids in the extract has yet to be investigated. Therefore, we considered that a flavonoid-rich F. chica subfraction (FRS) has gastroprotective functions. For this, before the induction of gastric ulcers with ethanol or piroxicam, the rats received vehicle (water), omeprazole (30 mg/kg), or FRS (30 mg/kg), and the ulcer area was measured macro and microscopically, and the antisecretory action was investigated in pylorus-ligated rats. In addition, the roles of nitric oxide (NO) and nonprotein sulfhydryl compounds (NP-SH) in the gastroprotective effects of FRS were studied. FRS reduced ethanol- and piroxicam-induced ulcerations by 81% and 77%, respectively, as confirmed histologically. Antioxidant effects were observed for FRS through the maintenance of GSH and LPO levels, and the SOD and CAT activity similar to those found in the nonulcerated group. Moreover, FRS avoided the increase in MPO activity and TNF, IL-6, IL-4 and IL-10 levels. Moreover, mucin staining increased in ulcerated rats receiving FRS, and the pharmacological mechanism gastroprotective seems to involve the NO and NP-SH in addition to antisecretory actions. The chemical study by mass spectrometry confirmed the presence of flavonoids in FRS, and molecular docking studies have shown that these compounds interact with cyclooxygenase-1 and NO synthase. Furthermore, there was no indication that FRS had cytotoxic effects. Our results support the popular use of F. chica, and we conclude that the gastroprotection effect promoted by FRS can be attributed to the combined effect of the flavonoids.
Collapse
Affiliation(s)
- Daniela Miorando
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Amanda M Steffler
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Cristian A Dalla Vecchia
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Viviane L Simomura
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Jaqueline J Veloso
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, Chapecó, SC, Brazil
| | - Maike V Buzatto
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, Chapecó, SC, Brazil
| | - Ruan K S Nunes
- Postgraduate Program in Pharmaceutical Sciences, University of Vale Do Itajaí, Itajaí, SC, Brazil
| | - Lincon B Somensi
- Postgraduate Program in Development and Society, University of Alto Vale Do Rio Do Peixe, Caçador, SC, Brazil
| | - Max V Gutiérrez
- Department of Chemical, Biological and Agricultural Sciences, Universidad de Sonora, Navojoa Sonora, Mexico
| | | | | | - Luisa M Silva
- Laboratory of TGI Pharmacology and Interactions, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Anzhela Veselinova
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, Salamanca, Spain
| | - Lola González-Sánchez
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, Salamanca, Spain
| | - Pablo G Jambrina
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, Salamanca, Spain
| | - Walter A Roman Junior
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil.
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, Chapecó, SC, Brazil.
| |
Collapse
|
3
|
de Freitas Gomes A, Batalha ADDSJ, de Castro Alves CE, Galvão de Azevedo R, Rodriguez Amado JR, Pereira de Souza T, Koolen HHF, da Silva FMA, Chaves FCM, Florentino Neto S, Boechat AL, Soares Pontes G. Immunomodulatory and Anticancer Effects of Fridericia chica Extract-Loaded Nanocapsules in Myeloid Leukemia. Pharmaceutics 2024; 16:828. [PMID: 38931948 PMCID: PMC11207419 DOI: 10.3390/pharmaceutics16060828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Nanocapsules provide selective delivery and increase the bioavailability of bioactive compounds. In this study, we examined the anticancer and immunomodulatory potential of Fridericia chica (crajiru) extract encapsulated in nanocapsules targeting myeloid leukemias. Nanocapsules containing crajiru (nanocapsules-CRJ) were prepared via interfacial polymer deposition and solvent displacement. Size and polydispersity were measured by dynamic light scattering. Biological assays were performed on leukemia cell lines HL60 and K562 and on non-cancerous Vero cells and human PBMC. The anticancer activity was evaluated using cytotoxicity and clonogenic assays, while the immunomodulatory activity was evaluated by measuring the levels of pro- and anti-inflammatory cytokines in PBMC supernatants treated with concentrations of nanocapsules-CRJ. Nanocapsules-CRJ exhibited significant cytotoxic activity against HL60 and K562 cells at concentrations ranging from 0.75 to 50 μg/mL, with the greatest reductions in cell viability observed at 50 μg/mL (p < 0.001 for HL60; p < 0.01 for K562), while not affecting non-cancerous Vero cells and human PBMCs. At concentrations of 25 μg/mL and 50 μg/mL, nanocapsules-CRJ reduced the formation of HL60 and K562 colonies by more than 90% (p < 0.0001). Additionally, at a concentration of 12 μg/mL, nanocapsules-CRJ induced the production of the cytokines IL-6 (p = 0.0002), IL-10 (p = 0.0005), IL-12 (p = 0.001), and TNF-α (p = 0.005), indicating their immunomodulatory potential. These findings suggest that nanocapsules-CRJ hold promise as a potential therapeutic agent with both cytotoxic and immunomodulatory properties.
Collapse
Affiliation(s)
- Alice de Freitas Gomes
- Post-Graduate Program in Hematology, The State University of Amazon (UEA), Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil;
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; (C.E.d.C.A.); (R.G.d.A.)
| | - Adriane Dâmares de Souza Jorge Batalha
- Laboratory of Innovative Therapies, Federal University of Amazonas (UFAM)), Manaus 69077-000, AM, Brazil;
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas (UFAM), Manaus 69077-000, AM, Brazil
| | - Carlos Eduardo de Castro Alves
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; (C.E.d.C.A.); (R.G.d.A.)
| | - Renata Galvão de Azevedo
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; (C.E.d.C.A.); (R.G.d.A.)
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas (UFAM), Manaus 69077-000, AM, Brazil
| | - Jesus Rafael Rodriguez Amado
- Post-Graduate Program in Health Sciences, Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados 79825-070, MS, Brazil (S.F.N.)
| | - Tatiane Pereira de Souza
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Amazonas (UFAM)), Manaus 69077-000, AM, Brazil;
| | | | | | | | - Serafim Florentino Neto
- Post-Graduate Program in Health Sciences, Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados 79825-070, MS, Brazil (S.F.N.)
| | - Antônio Luiz Boechat
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas (UFAM), Manaus 69077-000, AM, Brazil
| | - Gemilson Soares Pontes
- Post-Graduate Program in Hematology, The State University of Amazon (UEA), Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil;
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; (C.E.d.C.A.); (R.G.d.A.)
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas (UFAM), Manaus 69077-000, AM, Brazil
| |
Collapse
|
4
|
Sasikala M, Mohan S, Swarnakumari S, Nagarajan A. Isolation and in vivo evaluation of anti-breast cancer activity of resin glycoside merremoside from Ipomoea aquatica Forsskal in overcoming multi-drug resistance. PHYTOMEDICINE PLUS 2022; 2:100359. [DOI: 10.1016/j.phyplu.2022.100359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
|
5
|
Batalha ADDSJ, Souza DCDM, Ubiera RD, Chaves FCM, Monteiro WM, da Silva FMA, Koolen HHF, Boechat AL, Sartim MA. Therapeutic Potential of Leaves from Fridericia chica (Bonpl.) L. G. Lohmann: Botanical Aspects, Phytochemical and Biological, Anti-Inflammatory, Antioxidant and Healing Action. Biomolecules 2022; 12:biom12091208. [PMID: 36139047 PMCID: PMC9496332 DOI: 10.3390/biom12091208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Plants of the species Fridericia chica (Bonpl.) L. G. Lohmann (Bignoniaceae), which are widely distributed in Brazil and named crajiru in the state of Amazonas, are known in folk medicine as a traditional medicine in the form of a tea for the treatment of intestinal colic, diarrhea, and anemia, among other diseases. The chemical analysis of extracts of the leaves has identified phenolic compounds, a class of secondary metabolites that provide defense for plants and benefits to the health of humans. Several studies have shown the therapeutic efficacy of F. chica extracts, with antitumor, antiviral, wound healing, anti-inflammatory, and antioxidant activities being among the therapeutic applications already proven. The healing action of F. chica leaf extract has been demonstrated in several experimental models, and shows the ability to favor the proliferation of fibroblasts, which is essential for tissue repair. The anti-inflammatory activity of F. chica has been clearly demonstrated by several authors, who suggest that it is related to the presence of 3-deoxyanthocyanidins, which is capable of inhibiting pro-inflammatory pathways such as the kappa B (NF-kB) nuclear transcription factor pathway. Another important effect attributed to this species is the antioxidant effect, attributed to phenolic compounds interrupting chain reactions caused by free radicals and donating hydrogen atoms or electrons. In conclusion, the species Fridericia chica has great therapeutic potential, which is detailed in this paper with the objective of encouraging new research and promoting the sum of efforts for the inclusion of herbal medicines in health systems around the world.
Collapse
Affiliation(s)
| | - Damy Caroline de Melo Souza
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
| | - Rosmery Duran Ubiera
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
| | | | - Wuelton Marcelo Monteiro
- Tropical Medicine Graduate Program, Amazonas State University—UEA, Manaus 69040-000, Brazil
- Tropical Medicine Foundation Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, Brazil
| | | | - Hector Henrique Ferreira Koolen
- Tropical Medicine Graduate Program, Amazonas State University—UEA, Manaus 69040-000, Brazil
- Research Group in Metabolomics and Mass Spectrometry, Amazonas State University, Manaus 690065-130, Brazil
| | - Antônio Luiz Boechat
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
- Laboratory of Innovative Therapies, Department of Parasitology, Amazonas State University—UEA, Manaus 69080-900, Brazil
| | - Marco Aurélio Sartim
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
- Tropical Medicine Graduate Program, Amazonas State University—UEA, Manaus 69040-000, Brazil
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Brazil
- Correspondence:
| |
Collapse
|
6
|
A Review of the Phytochemistry and Pharmacological Properties of the Genus Arrabidaea. Pharmaceuticals (Basel) 2022; 15:ph15060658. [PMID: 35745577 PMCID: PMC9227117 DOI: 10.3390/ph15060658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
The genus Arrabidaea, consisting of ~170 species, belongs to the family Bignoniaceae, distributed around the Neotropics and temperate zone. The center of diversity of the family is in Brazil, where 56 genera and about 340 species exist. Most species of the genus Arrabidaea are traditionally utilized as diuretics and antiseptics, as well as for treating intestinal colic, diarrhea, kidney stones, rheumatoid arthritis, wounds, and enterocolitis. The genus is chemically diverse with different substance classes; most of them are triterpenes, phenolic acids, and flavonoids, and they exhibit valuable pharmacological properties, such as antitumor, antioxidant, leishmanicidal, trypanocidal, anti-inflammatory, and healing properties. This review presents information on the chemical constituents isolated from seven Arrabidaea species, and the pharmacological activities of the extracts, fractions and pure substances isolated since 1994, obtained from electronic databases. The various constituents present in the different species of this genus demonstrate a wide pharmacological potential for the development of new therapeutic agents, however its potential has been underestimated.
Collapse
|
7
|
Emam KK, Abdel Fattah ME, El Rayes SM, Hebishy MA, Dessouki AA. Assessment of Wheat Germ Oil Role in the Prevention of Induced Breast Cancer in Rats. ACS OMEGA 2022; 7:13942-13952. [PMID: 35559156 PMCID: PMC9089347 DOI: 10.1021/acsomega.2c00434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/04/2022] [Indexed: 05/27/2023]
Abstract
Breast cancer is the most predominant cause of death in women globally. The current study was performed to evaluate the possible protective role of wheat germ oil (WGO), wheat germ powder (WGP), and vitamin E (Vit E) against breast carcinoma induced by the environmental carcinogen 7,12-dimethylbenz[a]anthracene (DMBA) in Sprague Dawely albino rats. Eighty female rats were divided into eight groups, each of ten rats. All protective agents were taken 21 days prior to DMBA treatment. Group I served as the normal control. Group II received Vit E (100 mg/kg BW/d) by gavage. Group III was fed a 20% WGP enriched basal diet. Group IV received WGO (270 mg/kg BW/d) by gavage. Group V received DMBA (50 mg/kg body weight/subcutaneous injection). Group VI received Vit E + DMBA. Group VII received WGP + DMBA. Group VIII received WGO + DMBA. The investigation focused on bodyweights, complete blood picture (CBC), cancer antigen 15.3 (CA15.3), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and histopathological and immunohistochemical analyses. Results showed that all cancer protective agents significantly improved CBC parameters, proliferating cell nuclear antigen (PCNA), and the histopathology picture, with the best improvement in the WGO group. In addition, WGO, WGP, and Vit E decreased the CA15.3 and MDA levels and elevated both the SOD and CAT levels compared to the DMBA group. Consequently, supplementation with WGO, WGP, and Vit E protects against lipid peroxidation and oxidative stress and reduces breast cancer.
Collapse
Affiliation(s)
- Kholoud Khaled Emam
- Department
of Chemistry, Faculty of Sciences, Suez
Canal University, Ismailia, 41522, Egypt
| | | | - Samir Mohamed El Rayes
- Department
of Chemistry, Faculty of Sciences, Suez
Canal University, Ismailia, 41522, Egypt
| | | | - Amina Ali Dessouki
- Department
of Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
8
|
Latif A, Issa Khan M, Rakha A, Ali Khan J. Evaluating the therapeutic potential of white button mushroom (Agaricus bisporus) against DMBA-induced breast cancer in Sprague Dawley rats. J Food Biochem 2021; 45:e13979. [PMID: 34698374 DOI: 10.1111/jfbc.13979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/10/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022]
Abstract
The current research work was designed to investigate the protective effects of white button mushroom (Agaricus bisporus) against 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer. Breast cancer was induced in rats by the administration of a single dose of 50 mg/kg DMBA via gavage. The rats were divided into four groups: G1 (negative control group), G2 (positive control group), G3 (rats receiving mushroom extract), and G4 (rats administered with doxorubicin). The mushroom extract significantly (p < .001) improved the activity of antioxidant enzymes in carcinogenic rats. Moreover, the mushroom extract also prevented the increase in the concentration of tumor biomarkers that are CEA, CA 15.3, and CRP in experimental rats. Liver function enzymes were also raised in G2 and G4 compared with G3. Besides, the RBCs and Hb were also reduced significantly in G4 while in G3. The mushroom extract effectively controlled the level of RBCs and Hb. An improvement in lipid profile was also measured in mushroom extract receiving rats. Conclusively, the mushroom extract alleviated DMBA-induced breast cancer potentially via improving antioxidants, reducing lipid peroxidation, and decreasing tumor biomarkers. PRACTICAL APPLICATIONS: The present research study examined the antitumor potential of white button mushroom. The mushroom effectively prevented the increase in tumor biomarkers, reduction in antioxidant enzymes, and increase in lipid peroxidation in rats with DMBA-induced breast cancer. The mushroom can be used as a potential source to prevent breast cancer and further research can be conducted to explore its anticancer mechanisms.
Collapse
Affiliation(s)
- Anam Latif
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Allah Rakha
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Junaid Ali Khan
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
9
|
Olivero-Verbel J, De la Parra-Guerra A, Caballero-Gallardo K, Sierra-Marquez L, Fuentes-Lopez K, Franco-Marmolejo J, Jannasch AS, Sepulveda MS, Stashenko E. The aqueous extract of Fridericia chica grown in northern Colombia ameliorates toxicity induced by Tergitol on Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109026. [PMID: 33626396 DOI: 10.1016/j.cbpc.2021.109026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
The aqueous extract of fallen leaves from Fridericia chica (Bonpl.) L.G. Lohmann is utilized as a remedy in communities at northern Colombia. Traditional uses include wound healing, gastrointestinal inflammation, leukemia and psoriasis, among others. The aims of this research were to evaluate the potential of the aqueous extract of fallen leaves of F. chica (AEFchica) to inhibit ethoxylated nonylphenol (Tergitol)-induced toxicity in Caenorhabditis elegans; and to identify its main components. The pharmacological properties of AEFchica was evaluated using a Tergitol-induced toxicity model in Caenorhabditis elegans. Lethality, locomotion, reproduction, and DAF-16 nuclear translocation were quantified. The chemical composition of AEFchica was carried out using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. AEFchica induced very little lethality on C. elegans (5.6%) even at high concentrations (10,000 μg/mL). The extract had no effect on locomotion impairing induced by ethoxylated nonylphenol. However, AEFchica (1000 μg/mL) abrogated Tergitol-induced mortality, recovering up to 53.3% of the nematodes from lethality induced by 10 mM Tergitol. Similarly, it also blocked Tergitol-dependent reproduction inhibition (82.1% recovery), as well as DAF-16 nuclear translocation (>95%), suggesting a prominent role on oxidative stress control. The chemical analysis indicated the presence of a great variety of molecules with known antioxidant, metabolic and immune modulator properties, such as hydroxylated methoxy flavones, N-methyl-1-deoxynojirimycin, and rehmaionoside A. In short, the aqueous extract of F. chica protects C. elegans from the deleterious effects of Tergitol on lethality, reproduction and oxidative stress involving DAF-16-mediated pathway. This extract is a promising source of bioactive phytochemicals for multi-target pharmacological purposes.
Collapse
Affiliation(s)
- Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia.
| | - Ana De la Parra-Guerra
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia.
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia.
| | - Lucellys Sierra-Marquez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia.
| | - Katerin Fuentes-Lopez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia.
| | - Jackeline Franco-Marmolejo
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, 1203 W State St. West Lafayette, IN 47907, USA.
| | - Amber S Jannasch
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, 1203 W State St. West Lafayette, IN 47907, USA.
| | - Maria S Sepulveda
- Department of Forestry and Natural Resources, Purdue University, 195 Marsteller St., West Lafayette, IN 47907, USA.
| | - Elena Stashenko
- Center for Chromatography and Mass Spectrometry, CROM-MASS, CIBIMOL-CENIVAM, Industrial University of Santander, Carrera 27, Calle 9, Building 45, Bucaramanga 680002, Colombia.
| |
Collapse
|
10
|
Arroyo-Acevedo JL, Herrera-Calderon O, Rojas-Armas JP, Chávez-Asmat R, Calva J, Behl T. Histopathological evaluation of Senecio rhizomatus Rusby in 7,12-dimethylbenz(α) anthracene-induced breast cancer in female rats. Vet World 2021; 14:569-577. [PMID: 33935399 PMCID: PMC8076450 DOI: 10.14202/vetworld.2021.569-577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background and Aim: Senecio rhizomatus Rusby (SrR) is a medicinal plant of the Asteraceae family and traditionally consumed as infusion in the Andean region from Peru for inflammatory disorders. This study aimed to determine the histopathological changes afforded by SrR in 7, 12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer (BC) in rats. Materials and Methods: An ethanolic extract of SrR aerial parts was prepared by maceration with 96% ethanol, and the chemical components were identified by gas chromatography coupled to mass spectrometry; the antioxidant activity was determined by 1,1-diphenyl-2-picril-hidrazil (DPPH) assay; and the acute toxicity was assessed according to the OCED 423 guidelines. In a pharmacological study, 30 female Holztman rats were distributed randomly into five groups, as follows. Group I: Negative control (physiological serum, 2 mL/kg); Group II. DMBA (80 mg/Kg body weight); and Groups III, IV, and V: DMBA + ethanol extract of SrR at doses of 10, 100, and 200 mg/kg, respectively. Results: The antioxidant activity of the SrR extract against DPPH was 92.50% at 200 mg/mL. The oral administration of SrR at doses of 50, 300, 2000, and 5000 mg/kg did not show any clinical evidence of toxicity or occurrence of death. The groups that received SrR presented a lower frequency of tumors and acumulative tumor volume compared with the DMBA group (p<0.05); the DMBA group exhibited a higher incidence of necrosis and moderate mitosis, up to 66.67% and 100.00%, respectively. Finally, infiltrating carcinoma with extensive tumor necrosis was evidenced. Conclusion: In experimental conditions, the ethanolic extract of SrR had a protective effect in DMBA-induced BC in female rats. Furthermore, the antioxidant activity of its main phytochemicals could be responsible for the effect observed, and SrR seems to be a safe extract in the preclinical phase.
Collapse
Affiliation(s)
- Jorge Luis Arroyo-Acevedo
- Laboratory of Experimental Pharmacology, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Av. Miguel Grau 755, Cercado de Lima 15001, Peru
| | - Oscar Herrera-Calderon
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr Puno 1002, Lima 15001, Peru
| | - Juan Pedro Rojas-Armas
- Laboratory of Experimental Pharmacology, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Av. Miguel Grau 755, Cercado de Lima 15001, Peru
| | - Roberto Chávez-Asmat
- Association for the Development of Student Research in Health Sciences, Faculty of Medicine. Universidad Nacional Mayor de San Marcos, Av. Miguel Grau 755, Cercado de Lima 15001, Peru
| | - James Calva
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano s/n, 1101608 Loja, Ecuador
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| |
Collapse
|