1
|
Meyer AV, Tolochko TA, Minina VI, Timofeeva AA, Larionov AV. Complex Approach to Evaluating Genotoxicity from Occupational Factors in Coal Mining Industry. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420050105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Savchenko YA, Minina VI, Bakanova ML, Glushkov AN. Genotoxic and Carcinogenic Effects of Industrial Factors in Coal Mining and Coal-Processing Industry (Review). RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419060140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Volobaev VP, Larionov AV, Kalyuzhnaya EE, Serdyukova ES, Yakovleva S, Druzhinin VG, Babich OO, Hill EG, Semenihin VA, Panev NI, Minina VI, Sivanesan SD, Naoghare P, da Silva J, Barcelos GRM, Prosekov AY. Associations of polymorphisms in the cytokine genes IL1β (rs16944), IL6 (rs1800795), IL12b (rs3212227) and growth factor VEGFA (rs2010963) with anthracosilicosis in coal miners in Russia and related genotoxic effects. Mutagenesis 2018; 33:129-135. [DOI: 10.1093/mutage/gex047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Valentin P Volobaev
- Department of Genetics, Kemerovo State University, Russian Federation
- Department of Bionanotechnology, Kemerovo State University, Russian Federation
| | | | | | | | | | | | - Olga O Babich
- Department of Bionanotechnology, Kemerovo State University, Russian Federation
| | - Elena G Hill
- Department of Occupational Pathology, Kemerovo Regional Clinical Hospital, Russian Federation
| | - Victor A Semenihin
- Department for Occupational Pathology, Regional Clinical Center of Miners’ Health, Russian Federation
| | - Nikolay I Panev
- Research Institute for Complex Problems of Hygiene and Occupational Diseases, Russian Federation
| | - Varvara I Minina
- The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences Russian Federation
| | | | - Pravin Naoghare
- CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, Post-Graduation Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Brazil
| | - Gustavo R M Barcelos
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Brazil
| | | |
Collapse
|
4
|
Fernandes AS, Mello FVC, Thode Filho S, Carpes RM, Honório JG, Marques MRC, Felzenszwalb I, Ferraz ERA. Impacts of discarded coffee waste on human and environmental health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:30-36. [PMID: 28301808 DOI: 10.1016/j.ecoenv.2017.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/14/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Coffee is one of the most widely consumed beverages throughout the world. So far, many studies have shown the properties of coffee beverages, but little is known about its impacts on human and environmental health from its discard in the environment. So, the present work aims to investigate the mutagenic, genotoxic, cytotoxic and ecotoxic effects of leached (LE) and solubilized (SE) extracts from coffee waste, simulating the disposal of this residue in landfills and via sewage systems, respectively. Chemical analyses were also carried out. LE and SE induced mutagenicity in the TA98 Salmonella strain with and without exogenous metabolization (S9). In the TA100 only SE induced mutagenicity, what was observed without S9. An increase in the frequency of micronuclei was observed in HepG2 cell line after 3 and 24h of exposure to both extracts. No cytotoxic effects were observed in HepG2 cells by WST-1 assay. The EC50 values for the LE and SE were 1.5% and 11.26% for Daphnia similis, 0.12% and 1.39% for Ceriodaphnia dubia and 6.0% and 5.5% for Vibrio fischeri, respectively. Caffeine and several transition metals were found in both extracts. Coffee waste discarded in the environment may pose a risk to human and environmental health, since this compound can cause DNA damage and present toxicity to aquatic organisms.
Collapse
Affiliation(s)
- A S Fernandes
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - F V C Mello
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - S Thode Filho
- Multidisciplinary Laboratory of Waste Management, Federal Institute of Education, Science and Technology of Rio de Janeiro, Duque de Caxias, RJ, Brazil
| | - R M Carpes
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - J G Honório
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - M R C Marques
- Laboratory of Environmental Technology, Department of Organic Chemistry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - I Felzenszwalb
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - E R A Ferraz
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratory of Toxicology, Department of Pharmacy and Pharmaceutical Administration, Pharmacy College, Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
5
|
León-Mejía G, Silva LFO, Civeira MS, Oliveira MLS, Machado M, Villela IV, Hartmann A, Premoli S, Corrêa DS, Da Silva J, Henriques JAP. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24019-24031. [PMID: 27638803 DOI: 10.1007/s11356-016-7623-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
Exposure to coal and coal ashes can cause harmful effects in in vitro and in vivo systems, mainly by the induction of oxidative damage. The aim of this work was to assess cytotoxic and genotoxic effects using the V79 cell line treated with coal and coal fly ash particles derived from a coal power plant located in Santa Catarina, Brazil. Two coal samples (COAL11 and COAL16) and two coal fly ash samples (CFA11 and CFA16) were included in this study. COAL16 was co-firing with a mixture of fuel oil and diesel oil. The comet assay data showed that exposure of V79 cells to coal and coal fly ash particles induced primary DNA lesions. Application of lesion-specific endonucleases (FPG and ENDO III) demonstrated increased DNA effects indicating the presence of high amounts of oxidative DNA lesions. The cytokinesis-block micronucleus cytome assay analysis showed that exposure of V79 cells to high concentrations of coal and coal fly ash particles induced cytotoxic effects (apoptosis and necrosis) and chromosomal instability (nucleoplasmic bridges, nuclear buds, and micronucleus (MN) formation). These results may be associated with compounds contained in the surface of the particles as hazardous elements, ultrafine/nanoparticles, and polycyclic aromatic hydrocarbons (PAHs) which were detected in the samples. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Grethel León-Mejía
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Unidad de Investigación, Desarrollo e Innovación en Genética y Biología Molecular, Universidad Simón Bolívar, Barranquilla, Colombia.
| | - Luis F O Silva
- Research group in Environmental Management and Sustainability, Faculty of Environmental Sciences, Universidad de la Costa, Barranquilla, Colombia
- Universidade do Sul de Santa Catarina, Pró-Reitoria de Ensino, de Pesquisa e de Extensão, UNISUL -Universidade do Sul de Santa Catarina Pedra Branca, Palhoça, SC, 88137900, Brazil
| | - Matheus S Civeira
- Universidade do Sul de Santa Catarina, Pró-Reitoria de Ensino, de Pesquisa e de Extensão, UNISUL -Universidade do Sul de Santa Catarina Pedra Branca, Palhoça, SC, 88137900, Brazil
| | - Marcos L S Oliveira
- Universidade do Sul de Santa Catarina, Pró-Reitoria de Ensino, de Pesquisa e de Extensão, UNISUL -Universidade do Sul de Santa Catarina Pedra Branca, Palhoça, SC, 88137900, Brazil
| | - Miriana Machado
- InnVitro Pesquisa e Desenvolvimento, Porto Alegre, RS, Brazil
| | | | | | - Suziane Premoli
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - Dione Silva Corrêa
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - Juliana Da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - João Antônio Pêgas Henriques
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Volobaev VP, Sinitsky MY, Larionov AV, Druzhinin VG, Gafarov NI, Minina VI, Kulemin JE. Modifying influence of occupational inflammatory diseases on the level of chromosome aberrations in coal miners. Mutagenesis 2015; 31:225-9. [DOI: 10.1093/mutage/gev080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
7
|
León-Mejía G, Quintana M, Debastiani R, Dias J, Espitia-Pérez L, Hartmann A, Henriques JAP, Da Silva J. Genetic damage in coal miners evaluated by buccal micronucleus cytome assay. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 107:133-139. [PMID: 24927390 DOI: 10.1016/j.ecoenv.2014.05.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/30/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
During coal mining activities, large quantities of coal dust, ashes, polycyclic aromatic hydrocarbons and metals are released into the environment. This complex mixture presents one of the most important occupational hazards for health of workers. The aim of the present study was to evaluate the genetic damage together with the presence of inorganic elements, in an exposed workers population to coal mining residues of Guajira-Colombia. Thus, 100 exposed workers and 100 non-exposed control individuals were included in this study. To determine genetic damage we assessed the micronucleus (MN) frequencies and nuclear buds in buccal mucosa samples (BMCyt) assay, which were significantly higher in the exposed group than non-exposed control group. In addition, karyorrhectic and karyolytic cells were also significantly higher in the exposed group (cell death). No significant difference was observed between the exposed groups engaged in different mining activities. No correlation between age, alcohol consumption, time of service and MN assay data were found in this study. However, the content of inorganic elements in blood samples analyzed by a Particle-induced X-ray emission technique (PIXE) showed higher values of silicon (Si) and aluminum (Al) in the exposed group. In this study we discuss the possibility of DNA damage observed in the mine workers cells be a consequence of oxidative damage.
Collapse
Affiliation(s)
- Grethel León-Mejía
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.
| | - Milton Quintana
- Unidad de Investigación, Desarrollo e Innovación en Genética y Biología Molecular, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Rafaela Debastiani
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil
| | - Johnny Dias
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil
| | - Lyda Espitia-Pérez
- Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Colombia
| | | | - João Antônio Pêgas Henriques
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil; Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brasil.
| | - Juliana Da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Canoas-RS, Brasil
| |
Collapse
|
8
|
Meenakshi C, Mohankumar MN. Synergistic effect of radon in blood cells of smokers – An in vitro study. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 757:79-82. [DOI: 10.1016/j.mrgentox.2013.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 06/13/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022]
|
9
|
León-Mejía G, Espitia-Pérez L, Hoyos-Giraldo LS, Da Silva J, Hartmann A, Henriques JAP, Quintana M. Assessment of DNA damage in coal open-cast mining workers using the cytokinesis-blocked micronucleus test and the comet assay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:686-691. [PMID: 21215992 DOI: 10.1016/j.scitotenv.2010.10.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 10/28/2010] [Accepted: 10/28/2010] [Indexed: 05/30/2023]
Abstract
Coal mining is one of the most important causes of environmental pollution, as large quantities of coal dust particles are emitted. Colombia-South America has large natural coal reserves and "El Cerrejón" is the world's largest open-cast mine located in the northern department of Guajira. The aim of the present study was to evaluate genotoxic effects in a population exposed to coal residues from the open-cast mine "El Cerrejón". 100 exposed workers and 100 non-exposed control individuals were included in this study. The exposed group was divided according to different mining area activities: (i). Transport of extracted coal, (ii). Equipment field maintenance, (iii). Coal stripping and, (iv). Coal embarking. Blood samples were taken to investigate biomarkers of genotoxicity, specifically, primary DNA damage as damage index (DI), tail length and% of tail DNA using the Comet assay (alkaline version) and chromosome damage as micronucleus (MN) frequency in lymphocytes. Both biomarkers showed statistically significantly higher values in the exposed group compared to the non-exposed control group. No difference was observed between the exposed groups executing different mining activities. These results indicate that exposure to coal mining residues may result in an increased genotoxic exposure in coal mining workers. We did not find a correlation between age, alcohol consumption and service time with the biomarkers of genotoxicity. Our results are the first data of genotoxic effects induced by coal mining exposure in Colombia, and thus, contribute to the exploration of test batteries use for monitoring of exposed populations and may stimulate designing control, hygiene and prevention strategies for occupational health risk assessment in developing countries.
Collapse
Affiliation(s)
- Grethel León-Mejía
- Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | | | | | | | | | | | | |
Collapse
|