1
|
de Oliveira Carvalho H, Gonçalves DES, Picanço KRT, de Lima Teixeira Dos Santos AVT, Lucia M, Hu X, Fernandes CP, Ferreira IM, Carvalho JCT. Actions of Cannabis sativa L. fixed oil and nano-emulsion on venom-induced inflammation of Bothrops moojeni snake in rats. Inflammopharmacology 2020; 29:123-135. [PMID: 32924074 DOI: 10.1007/s10787-020-00754-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/30/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bothrops moojeni snake venom (VBm) has toxins that cause pronounced tissue damage and exacerbated inflammatory reaction. Cannabis sativa L. is a plant species that produces an oil (CSO) rich in unsaturated fatty acids. Nano-emulsions have several advantages, such as better stability and higher penetrating power in membranes. Therefore, this study evaluated the effect of a nano-emulsion based on this herbal derivative (NCS) against VBm-induced inflammation in Wistar rats. METHODS The CSO and NCS were submitted to physicochemical characterization. The inflammatory process was induced by the VBm (0.10 mg/kg) as follows: rat paw edema, peritonitis, analysis of leukocyte infiltrate in gastrocnemius muscle of rats and formation of granulomatous tissue. RESULTS No significant changes were observed when the NCS was submitted to the centrifugation and thermal stress tests. There was no phase separation, changes in density (0.978 ± 0.01 g/cm3) and viscosity (0.889 ± 0.15). The droplet diameter ranged from 119.7 ± 065 to 129.3 ± 0.15 nm and the polydispersity index ranged from 0.22 ± 0.008 to 0.23 ± 0.011. The results showed that treatments with CSO (200 and 400 mg/kg) and NCS (100 mg/kg) were able to decrease significantly (p < 0.001) the formation of edema and granulomatous tissue. The CSO and NCS groups significantly attenuated (p < 0.001) the recruitment of inflammatory cells in the tests for peritonitis and leukocyte infiltrate. The histopathological analysis of the gastrocnemius muscle showed a reduction in tissue damage caused by VBm. CONCLUSION The results obtained in this study showed anti-inflammatory activity of the CSO which may be due to a high UFA content. The nanosizing, as evidenced by the incorporation of the CSO in the NCS improved the effect and opens the perspective for the obtainment of a nanomedicine in which a kinetic stable phytotherapic can be used at low doses.
Collapse
Affiliation(s)
- Helison de Oliveira Carvalho
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Rodovia Juscelino Kubitsheck, km 02, Macapá, Amapá, 68903-419, Brazil
- Programa de Pós-graduação em Inovação Farmacêutica, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brazil
| | - Danna Emanuelle Santos Gonçalves
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Rodovia Juscelino Kubitsheck, km 02, Macapá, Amapá, 68903-419, Brazil
| | - Karyny Roberta Tavares Picanço
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Rodovia Juscelino Kubitsheck, km 02, Macapá, Amapá, 68903-419, Brazil
| | - Abrahão Victor Tavares de Lima Teixeira Dos Santos
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Rodovia Juscelino Kubitsheck, km 02, Macapá, Amapá, 68903-419, Brazil
| | - Maria Lucia
- Serpentário do Departamento de Ciências Biológicas da Universidade José do Rosário Vellano - UNIFENAS, Alfenas, Minas Gerais, Brasil
| | - Xuebo Hu
- Laboratory of Drug Discovery and Molecular Engineering, College of Plant Science and Technology, Huazhong Agricultural University, 1 Shizishan, Nanhu, Wuhan, 430070, China
| | - Caio Pinho Fernandes
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Rodovia Juscelino Kubitsheck, km 02, Macapá, Amapá, 68903-419, Brazil
- Programa de Pós-graduação em Inovação Farmacêutica, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brazil
- Laboratório de Nanobiotecnologia Fitofarmacêutica, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Rodovia Juscelino Kubitsheck, km 02, Macapá, Amapá, 68902-280, Brazil
| | - Irlon Maciel Ferreira
- Programa de Pós-graduação em Inovação Farmacêutica, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brazil
- Laboratório de Biocatálise e Biotransformação em Química Orgânica, Curso de Química, Universidade Federal do Amapá, Macapá, Brazil
| | - José Carlos Tavares Carvalho
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Rodovia Juscelino Kubitsheck, km 02, Macapá, Amapá, 68903-419, Brazil.
- Programa de Pós-graduação em Inovação Farmacêutica, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brazil.
| |
Collapse
|
2
|
Mamede CCN, de Sousa Simamoto BB, da Cunha Pereira DF, de Oliveira Costa J, Ribeiro MSM, de Oliveira F. Edema, hyperalgesia and myonecrosis induced by Brazilian bothropic venoms: overview of the last decade. Toxicon 2020; 187:10-18. [PMID: 32846146 DOI: 10.1016/j.toxicon.2020.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 01/19/2023]
Abstract
Snakebite accidents are considered serious public health problems. They are often neglected, and individuals who have received insufficient treatment are subjected to various disabling alterations. Snake venoms are secretions composed of biologically active molecules capable of triggering local and systemic effects in envenomation victims. Bothropic snakes are responsible for most of the ophidian accidents in Brazil; their venoms are mainly related to local manifestations, due to a composition that is especially rich in proteases and phospholipases A2. The most common local damages are inflammation, with consequent cellular activation and release of inflammatory mediators, hemorrhage, edema, pain and (myo)necrosis, which may lead to amputation of the affected areas. Antivenom therapy is the main treatment for snakebites. However, the efficiency is mainly due to the neutralization of the toxins responsible for the systemic alterations. Thus, the local damages can evolve to markedly compromise the tissue. The complexity of these local effects associated with the toxicity of the snake venom components of the genus Bothrops, arouse interest in the study of the biochemical and pathophysiological mechanisms involved with the actions caused by toxins of the venom. Therefore, this review aims to analyze the edematogenic, hyperalgesic and myotoxic effects caused by Brazilian bothropic venoms in order to contribute to the study and elucidation of the mechanisms of action of its components and, consequently, enable discoveries of more effective combined therapies in the treatment of local damages resulting from envenoming.
Collapse
Affiliation(s)
| | | | | | - Júnia de Oliveira Costa
- Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro (IFTM), Ituiutaba, MG, Brazil
| | | | - Fabio de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| |
Collapse
|
4
|
Rapid purification of a new P-I class metalloproteinase from Bothrops moojeni venom with antiplatelet activity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:352420. [PMID: 24982866 PMCID: PMC4058653 DOI: 10.1155/2014/352420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/01/2014] [Accepted: 05/12/2014] [Indexed: 11/25/2022]
Abstract
The present study aimed to evaluate the proteolytic and biological activities of a new metalloproteinase from B. moojeni venom. The purification of BmooMPα-II was carried out through two chromatographic steps (ion-exchange and affinity). BmooMPα-II is a monomeric protein with an apparent molecular mass of 22.5 kDa on SDS-PAGE 14% under nonreducing conditions. The N-terminal sequence (FSPRYIELVVVADHGMFTKYKSNLN) revealed homology with other snake venom metalloproteinases, mainly among P-I class. BmooMPα-II cleaves Aα-chain of fibrinogen followed by Bβ-chain, and does not show any effect on the γ-chain. Its optimum temperature and pH for the fibrinogenolytic activity were 30–50°C and pH 8, respectively. The inhibitory effects of EDTA and 1,10-phenantroline on the fibrinogenolytic activity suggest that BmooMPα-II is a metalloproteinase. This proteinase was devoid of haemorrhagic, coagulant, or anticoagulant activities. BmooMPα-II caused morphological alterations in liver, lung, kidney, and muscle of Swiss mice. The enzymatically active protein yet inhibited collagen, ADP, and ristocetin-induced platelet aggregation in a concentration-dependent manner. Our results suggest that BmooMPα-II contributes to the toxic effect of the envenomation and that more investigations to elucidate the mechanisms of inhibition of platelet aggregation may contribute to the studies of snake venom on thrombotic disorders.
Collapse
|