1
|
Sadat Razavi Z, Sina Alizadeh S, Sadat Razavi F, Souri M, Soltani M. Advancing neurological disorders therapies: Organic nanoparticles as a key to blood-brain barrier penetration. Int J Pharm 2025; 670:125186. [PMID: 39788400 DOI: 10.1016/j.ijpharm.2025.125186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
The blood-brain barrier (BBB) plays a vital role in protecting the central nervous system (CNS) by preventing the entry of harmful pathogens from the bloodstream. However, this barrier also presents a significant obstacle when it comes to delivering drugs for the treatment of neurodegenerative diseases and brain cancer. Recent breakthroughs in nanotechnology have paved the way for the creation of a wide range of nanoparticles (NPs) that can serve as carriers for diagnosis and therapy. Regarding their promising properties, organic NPs have the potential to be used as effective carriers for drug delivery across the BBB based on recent advancements. These remarkable NPs have the ability to penetrate the BBB using various mechanisms. This review offers a comprehensive examination of the intricate structure and distinct properties of the BBB, emphasizing its crucial function in preserving brain balance and regulating the transport of ions and molecules. The disruption of the BBB in conditions such as stroke, Alzheimer's disease, and Parkinson's disease highlights the importance of developing creative approaches for delivering drugs. Through the encapsulation of therapeutic molecules and the precise targeting of transport processes in the brain vasculature, organic NP formulations present a hopeful strategy to improve drug transport across the BBB. We explore the changes in properties of the BBB in various pathological conditions and investigate the factors that affect the successful delivery of organic NPs into the brain. In addition, we explore the most promising delivery systems associated with NPs that have shown positive results in treating neurodegenerative and ischemic disorders. This review opens up new possibilities for nanotechnology-based therapies in cerebral diseases.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | | - Fateme Sadat Razavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada; Centre for Sustainable Business, International Business University, Toronto, Canada.
| |
Collapse
|
2
|
Ramírez-López P, Martínez C, Merchán A, Perona A, Hernaiz MJ. Expanding the synthesis of a library of potent glucuronic acid glycodendrons for Dengue virus inhibition. Bioorg Chem 2023; 141:106913. [PMID: 37852115 DOI: 10.1016/j.bioorg.2023.106913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Multivalent glycodendrons are valuable tools to mimic many structural and functional features of cell-surface glycoconjugates and its focal position scaffolds represent important components to increase specificity and affinity. Previous work in our group described the preparation of a tetravalent glucuronic acid dendron that binds with good affinity to Dengue virus envelope protein (KD = 22 μM). Herein, the chemical synthesis and binding analysis of a new library of potent glucuronic acid dendrons bearing different functional group at the focal position and different level of multivalency are described. Their chemical synthesis was performed sequentially in three stages and with good yields. Namely a) the chemical synthesis of the oligo and polyalkynyl scaffolds, b) assembling with fully protected glucuronic acid-based azide units by using a microwave assisted copper-catalysed azide-alkyne cycloaddition reaction and c) sequential deprotection of hydroxyl and carboxylic acid groups. Surface Plasmon Resonance studies have demonstrated that the valency and the focal position functional group exert influence on the interaction with Dengue virus envelope protein. Molecular modelling studies were carried out in order to understand the binding observed. This work reports an efficient glycodendrons chemical synthesis that provides appropriate focal position functional group and multivalence, that offer an easy and versatile strategy to find new active compounds against Dengue virus.
Collapse
Affiliation(s)
- Pedro Ramírez-López
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - Carlos Martínez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - Alejandro Merchán
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - Almudena Perona
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - María J Hernaiz
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain.
| |
Collapse
|
3
|
Bomfim BCM, Azevedo-Silva J, Caminha G, Santos JPR, Pelajo-Machado M, de Paula Ayres-Silva J. Lectin-based carbohydrate profile of megakaryocytes in murine fetal liver during development. Sci Rep 2023; 13:6729. [PMID: 37185919 PMCID: PMC10130079 DOI: 10.1038/s41598-023-32863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Hematopoiesis is the process by which blood cells are generated. During embryonic development, these cells migrate through different organs until they reach the bone marrow, their definitive place in adulthood. Around E10.5, the fetal liver starts budding from the gut, where first hematopoietic cells arrive and expand. Hematopoietic cell migration occurs through cytokine stimulation, receptor expression, and glycosylation patterns on the cell surface. In addition, carbohydrates can modulate different cell activation states. For this reason, we aimed to characterize and quantify fetal megakaryocytic cells in mouse fetal liver according to their glycan residues at different gestational ages through lectins. Mouse fetuses between E11.5 and E18.5 were formalin-fixed and, paraffin-embedded, for immunofluorescence analysis using confocal microscopy. The results showed that the following sugar residues were expressed in proliferating and differentiating megakaryocytes in the fetal liver at different gestational ages: α-mannose, α-glucose, galactose, GlcNAc, and two types of complex oligosaccharides. Megakaryocytes also showed three proliferation waves during liver development at E12.5, E14.5, and E18.5. Additionally, the lectins that exhibited high and specific pattern intensities at liver capsules and vessels were shown to be a less time-consuming and robust alternative alternative to conventional antibodies for displaying liver structures such as capsules and vessels, as well as for megakaryocyte differentiation in the fetal liver.
Collapse
Affiliation(s)
| | - Jessyca Azevedo-Silva
- Laboratory of Pathology, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Giulia Caminha
- Laboratory of Pathology, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | | | - Marcelo Pelajo-Machado
- Laboratory of Pathology, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | | |
Collapse
|
4
|
Kaurav M, Ruhi S, Al-Goshae HA, Jeppu AK, Ramachandran D, Sahu RK, Sarkar AK, Khan J, Ashif Ikbal AM. Dendrimer: An update on recent developments and future opportunities for the brain tumors diagnosis and treatment. Front Pharmacol 2023; 14:1159131. [PMID: 37006997 PMCID: PMC10060650 DOI: 10.3389/fphar.2023.1159131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
A brain tumor is an uncontrolled cell proliferation, a mass of tissue composed of cells that grow and divide abnormally and appear to be uncontrollable by the processes that normally control normal cells. Approximately 25,690 primary malignant brain tumors are discovered each year, 70% of which originate in glial cells. It has been observed that the blood-brain barrier (BBB) limits the distribution of drugs into the tumour environment, which complicates the oncological therapy of malignant brain tumours. Numerous studies have found that nanocarriers have demonstrated significant therapeutic efficacy in brain diseases. This review, based on a non-systematic search of the existing literature, provides an update on the existing knowledge of the types of dendrimers, synthesis methods, and mechanisms of action in relation to brain tumours. It also discusses the use of dendrimers in the diagnosis and treatment of brain tumours and the future possibilities of dendrimers. Dendrimers are of particular interest in the diagnosis and treatment of brain tumours because they can transport biochemical agents across the BBB to the tumour and into the brain after systemic administration. Dendrimers are being used to develop novel therapeutics such as prolonged release of drugs, immunotherapy, and antineoplastic effects. The use of PAMAM, PPI, PLL and surface engineered dendrimers has proven revolutionary in the effective diagnosis and treatment of brain tumours.
Collapse
Affiliation(s)
- Monika Kaurav
- Department of Pharmaceutics, KIET Group of Institutions (KIET School of Pharmacy), Delhi NCR, Ghaziabad, India
- Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Sakina Ruhi
- Department of Biochemistry, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Husni Ahmed Al-Goshae
- Department of Anantomy, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Ashok Kumar Jeppu
- Department of Biochemistry, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Dhani Ramachandran
- Department of Pathology, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, India
- *Correspondence: Ram Kumar Sahu,
| | | | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, Assam, India
| |
Collapse
|
5
|
Chandra A, Bhoge PR, K R R, Shanthamurthy CD, Kikkeri R. Fluorescent glyco-gold nanocluster induced EGFR mediated targeting of cancer cells. Chem Commun (Camb) 2023; 59:1213-1216. [PMID: 36629520 DOI: 10.1039/d2cc06227e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A lot of attention has been focused on the functionalization of carbohydrate ligands on specific sizes and shapes of gold nanoparticles (AuNPs), where ultrasmall fluorescent AuNPs have not been well explored for direct imaging. Herein, we have engineered fluorescent gold nanoclusters with sulfated oligo-iduronic acid ligands (I34), which strongly bind to the HB-EGF receptor over FGF2, and regulate EGF receptor-mediated cancer cell homing in both two- and three-dimensional (2D and 3D) cell culture systems. These results offer a new practical and direct imaging tool for carbohydrate research.
Collapse
Affiliation(s)
- Ankita Chandra
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| | - Preeti Ravindra Bhoge
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| | - Remya K R
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| | - Chethan D Shanthamurthy
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| |
Collapse
|
6
|
Barchi JJ. Glycoconjugate Nanoparticle-Based Systems in Cancer Immunotherapy: Novel Designs and Recent Updates. Front Immunol 2022; 13:852147. [PMID: 35432351 PMCID: PMC9006936 DOI: 10.3389/fimmu.2022.852147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
For many years, cell-surface glycans (in particular, Tumor-Associated Carbohydrate Antigens, TACAs) have been the target of both passive and active anticancer immunotherapeutic design. Recent advances in immunotherapy as a treatment for a variety of malignancies has revolutionized anti-tumor treatment regimens. Checkpoint inhibitors, Chimeric Antigen Receptor T-cells, Oncolytic virus therapy, monoclonal antibodies and vaccines have been developed and many approvals have led to remarkable outcomes in a subset of patients. However, many of these therapies are very selective for specific patient populations and hence the search for improved therapeutics and refinement of techniques for delivery are ongoing and fervent research areas. Most of these agents are directed at protein/peptide epitopes, but glycans-based targets are gaining in popularity, and a handful of approved immunotherapies owe their activity to oligosaccharide targets. In addition, nanotechnology and nanoparticle-derived systems can help improve the delivery of these agents to specific organs and cell types based on tumor-selective approaches. This review will first outline some of the historical beginnings of this research area and subsequently concentrate on the last 5 years of work. Based on the progress in therapeutic design, predictions can be made as to what the future holds for increasing the percentage of positive patient outcomes for optimized systems.
Collapse
Affiliation(s)
- Joseph J. Barchi
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
7
|
Aries ML, Cloninger MJ. NMR Hydrophilic Metabolomic Analysis of Bacterial Resistance Pathways Using Multivalent Antimicrobials with Challenged and Unchallenged Wild Type and Mutated Gram-Positive Bacteria. Int J Mol Sci 2021; 22:ijms222413606. [PMID: 34948402 PMCID: PMC8715671 DOI: 10.3390/ijms222413606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022] Open
Abstract
Multivalent membrane disruptors are a relatively new antimicrobial scaffold that are difficult for bacteria to develop resistance to and can act on both Gram-positive and Gram-negative bacteria. Proton Nuclear Magnetic Resonance (1H NMR) metabolomics is an important method for studying resistance development in bacteria, since this is both a quantitative and qualitative method to study and identify phenotypes by changes in metabolic pathways. In this project, the metabolic differences between wild type Bacillus cereus (B. cereus) samples and B. cereus that was mutated through 33 growth cycles in a nonlethal dose of a multivalent antimicrobial agent were identified. For additional comparison, samples for analysis of the wild type and mutated strains of B. cereus were prepared in both challenged and unchallenged conditions. A C16-DABCO (1,4-diazabicyclo-2,2,2-octane) and mannose functionalized poly(amidoamine) dendrimer (DABCOMD) were used as the multivalent quaternary ammonium antimicrobial for this hydrophilic metabolic analysis. Overall, the study reported here indicates that B. cereus likely change their peptidoglycan layer to protect themselves from the highly positively charged DABCOMD. This membrane fortification most likely leads to the slow growth curve of the mutated, and especially the challenged mutant samples. The association of these sample types with metabolites associated with energy expenditure is attributed to the increased energy required for the membrane fortifications to occur as well as to the decreased diffusion of nutrients across the mutated membrane.
Collapse
|
8
|
Sharma R, Porterfield JE, An HT, Jimenez AS, Lee S, Kannan S, Sharma A, Kannan RM. Rationally Designed Galactose Dendrimer for Hepatocyte-Specific Targeting and Intracellular Drug Delivery for the Treatment of Liver Disorders. Biomacromolecules 2021; 22:3574-3589. [PMID: 34324818 DOI: 10.1021/acs.biomac.1c00649] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over two million people die of liver disorders every year globally. Hepatocytes are the key cells affected in several acute and chronic liver diseases. The current clinical outcomes of liver-targeted nanoparticles are limited, necessitating the need to develop smart hepatocyte-targeted drug delivery systems. Here, we present the rational design and development of a hepatocyte-targeting glycodendrimer (GAL-24) built from biocompatible building blocks, using expedite and facile chemical methodology. GAL-24 is designed to inherently target asialoglycoprotein receptor 1 (ASGP-R) on hepatocytes and shows significant accumulation in the liver (20% of injected dose), just 1 h after systemic administration. This is highly specific to hepatocytes, with over 80% of hepatocytes showing GAL-24-Cy5 signal at 24 h. GAL-24-Cy5 maintains hepatocyte-targeting capabilities in both a mouse model of severe acetaminophen poisoning-induced hepatic necrosis and a rat model of nonalcoholic steatohepatitis (NASH). This GAL-24 nanoplatform holds great promise for improved drug delivery to hepatocytes to combat many liver disorders.
Collapse
Affiliation(s)
- Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Joshua E Porterfield
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hyoung-Tae An
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Ambar Scarlet Jimenez
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Seulki Lee
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
| |
Collapse
|
9
|
Martins I, Tomás H, Lahoz F, Rodrigues J. Engineered Fluorescent Carbon Dots and G4-G6 PAMAM Dendrimer Nanohybrids for Bioimaging and Gene Delivery. Biomacromolecules 2021. [DOI: https:/doi.org/10.1021/acs.biomac.1c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Ivo Martins
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Helena Tomás
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Fernando Lahoz
- Departamento de Física, IUdEA, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, 710072 Xi’an, China
| |
Collapse
|
10
|
Martins I, Tomás H, Lahoz F, Rodrigues J. Engineered Fluorescent Carbon Dots and G4-G6 PAMAM Dendrimer Nanohybrids for Bioimaging and Gene Delivery. Biomacromolecules 2021; 22:2436-2450. [PMID: 34009977 DOI: 10.1021/acs.biomac.1c00232] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Carbon dots (CDs) and G4-G6 (polyamidoamine)PAMAM-NH2 dendrimers were self-assembled to produce CDs@PAMAM nanohybrids for transfection and bioimaging purposes. CDs were synthesized by the hydrothermal method, using ascorbic acid as a starting precursor and characterized by transmission electron microscopy, UV-Vis, and fluorescence (in solution and solid-state) techniques. CDs were electrostatically combined with PAMAM dendrimers at room temperature, and the UV-Vis, fluorescence, and NMR spectroscopies were used to confirm the self-assembly. When compared to pristine CDs, nanohybrids were more photostable, resisting high acidic and basic pH. Moreover, they were considerably internalized by cells, as assessed by flow cytometry and fluorescence microscopy, and, when excited, displayed multi-color emission easily quantified and visualized. These nanoscale hybrids, coined hybridplexes, can condense pDNA and transfecting cells successfully, particularly the G5 CDs@PAMAM nanohybrids. In summary, CDs prepared in mild and smooth lab conditions, showing good optical properties, were used to prepare elegantly CDs@PAMAM nanohybrids with promising biomedical applications.
Collapse
Affiliation(s)
- Ivo Martins
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Helena Tomás
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Fernando Lahoz
- Departamento de Física, IUdEA, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, 710072 Xi'an, China
| |
Collapse
|
11
|
Martin H, Goyard D, Margalit A, Doherty K, Renaudet O, Kavanagh K, Velasco-Torrijos T. Multivalent Presentations of Glycomimetic Inhibitor of the Adhesion of Fungal Pathogen Candida albicans to Human Buccal Epithelial Cells. Bioconjug Chem 2021; 32:971-982. [PMID: 33887134 PMCID: PMC8154258 DOI: 10.1021/acs.bioconjchem.1c00115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/08/2021] [Indexed: 12/14/2022]
Abstract
Candida albicans causes some of the most prevalent hospital-acquired fungal infections, particularly threatening for immunocompromised patients. C. albicans strongly adheres to the surface of epithelial cells so that subsequent colonization and biofilm formation can take place. Divalent galactoside glycomimetic 1 was found to be a potent inhibitor of the adhesion of C. albicans to buccal epithelial cells. In this work, we explore the effect of multivalent presentations of glycomimetic 1 on its ability to inhibit yeast adhesion and biofilm formation. Tetra-, hexa-, and hexadecavalent displays of compound 1 were built on RAFT cyclopeptide- and polylysine-based scaffolds with a highly efficient and modular synthesis. Biological evaluation revealed that the scaffold choice significantly influences the activity of the lower valency conjugates, with compound 16, constructed on a tetravalent polylysine scaffold, found to inhibit the adhesion of C. albicans to human buccal epithelial cells more effectively than the glycomimetic 1; however, the latter performed better in the biofilm reduction assays. Interestingly, the higher valency glycoconjugates did not outperform the anti-adhesion activity of the original compound 1, and no significant effect of the core scaffold could be appreciated. SEM images of C. albicans cells treated with compounds 1, 14, and 16 revealed significant differences in the aggregation patterns of the yeast cells.
Collapse
Affiliation(s)
- Harlei Martin
- Department
of Chemistry, Maynooth University, Maynooth, W23VP22, Co. Kildare, Ireland
| | - David Goyard
- DCM,
UMR 5250, Université Grenoble Alpes,
CNRS, 38000 Grenoble, France
| | - Anatte Margalit
- Department
of Biology, Maynooth University, Maynooth, W23VP22, Co. Kildare, Ireland
| | - Kyle Doherty
- Department
of Chemistry, Maynooth University, Maynooth, W23VP22, Co. Kildare, Ireland
| | - Olivier Renaudet
- DCM,
UMR 5250, Université Grenoble Alpes,
CNRS, 38000 Grenoble, France
| | - Kevin Kavanagh
- Department
of Biology, Maynooth University, Maynooth, W23VP22, Co. Kildare, Ireland
- The
Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23VP22, Co.
Kildare, Ireland
| | - Trinidad Velasco-Torrijos
- Department
of Chemistry, Maynooth University, Maynooth, W23VP22, Co. Kildare, Ireland
- The
Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23VP22, Co.
Kildare, Ireland
| |
Collapse
|
12
|
Martins I, Tomás H, Lahoz F, Rodrigues J. Engineered Fluorescent Carbon Dots and G4-G6 PAMAM Dendrimer Nanohybrids for Bioimaging and Gene Delivery. Biomacromolecules 2021. [DOI: https://doi.org/10.1021/acs.biomac.1c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ivo Martins
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Helena Tomás
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Fernando Lahoz
- Departamento de Física, IUdEA, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, 710072 Xi’an, China
| |
Collapse
|
13
|
Mousavifar L, Roy R. Design, Synthetic Strategies, and Therapeutic Applications of Heterofunctional Glycodendrimers. Molecules 2021; 26:2428. [PMID: 33921945 PMCID: PMC8122629 DOI: 10.3390/molecules26092428] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Glycodendrimers have attracted considerable interest in the field of dendrimer sciences owing to their plethora of implications in biomedical applications. This is primarily due to the fact that cell surfaces expose a wide range of highly diversified glycan architectures varying by the nature of the sugars, their number, and their natural multiantennary structures. This particular situation has led to cancer cell metastasis, pathogen recognition and adhesion, and immune cell communications that are implicated in vaccine development. The diverse nature and complexity of multivalent carbohydrate-protein interactions have been the impetus toward the syntheses of glycodendrimers. Since their inception in 1993, chemical strategies toward glycodendrimers have constantly evolved into highly sophisticated methodologies. This review constitutes the first part of a series of papers dedicated to the design, synthesis, and biological applications of heterofunctional glycodendrimers. Herein, we highlight the most common synthetic approaches toward these complex molecular architectures and present modern applications in nanomolecular therapeutics and synthetic vaccines.
Collapse
Affiliation(s)
| | - René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada;
| |
Collapse
|
14
|
Torres-Pérez SA, Torres-Pérez CE, Pedraza-Escalona M, Pérez-Tapia SM, Ramón-Gallegos E. Glycosylated Nanoparticles for Cancer-Targeted Drug Delivery. Front Oncol 2020; 10:605037. [PMID: 33330106 PMCID: PMC7735155 DOI: 10.3389/fonc.2020.605037] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Nanoparticles (NPs) are novel platforms that can carry both cancer-targeting molecules and drugs to avoid severe side effects due to nonspecific drug delivery in standard chemotherapy treatments. Cancer cells are characterized by abnormal membranes, metabolic changes, the presence of lectin receptors, glucose transporters (GLUT) overexpression, and glycosylation of immune receptors of programmed death on cell surfaces. These characteristics have led to the development of several strategies for cancer therapy, including a large number of carbohydrate-modified NPs, which have become desirable for use in cell-selective drug delivery systems because they increase nanoparticle-cell interactions and uptake of carried drugs. Currently, the potential of NP glycosylation to enhance the safety and efficacy of carried therapeutic antitumor agents has been widely acknowledged, and much information is accumulating in this field. This review seeks to highlight recent advances in NP stabilization, toxicity reduction, and pharmacokinetic improvement and the promising potential of NP glycosylation from the perspective of molecular mechanisms described for drug delivery systems for cancer therapy. From preclinical proof-of-concept to demonstration of therapeutic value in the clinic, the challenges and opportunities presented by glycosylated NPs, with a focus on their applicability in the development of nanodrugs, are discussed in this review.
Collapse
Affiliation(s)
- Sergio Andrés Torres-Pérez
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Mexico City, Mexico
| | - Cindy Estefani Torres-Pérez
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Mexico City, Mexico
| | - Martha Pedraza-Escalona
- CONACYT-UDIBI-ENCB-Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Mexico City, Mexico
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eva Ramón-Gallegos
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Mexico City, Mexico
| |
Collapse
|
15
|
Moffett S, Shiao TC, Mousavifar L, Mignani S, Roy R. Aberrant glycosylation patterns on cancer cells: Therapeutic opportunities for glycodendrimers/metallodendrimers oncology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1659. [PMID: 32776710 DOI: 10.1002/wnan.1659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 01/29/2023]
Abstract
Despite exciting discoveries and progresses in drug design against cancer, its cure is still rather elusive and remains one of the humanities major challenges in health care. The safety profiles of common small molecule anti-cancer therapeutics are less than at acceptable levels and limiting deleterious side-effects have to be urgently addressed. This is mainly caused by their incapacity to differentiate healthy cells from cancer cells; hence, the use of high dosage becomes necessary. One possible solution to improve the therapeutic windows of anti-cancer agents undoubtedly resides in modern nanotechnology. This review presents a discussion concerning multivalent carbohydrate-protein interactions as this topic pertains to the fundamental aspects that lead glycoscientists to tackle glyconanoparticles. The second section describes the detailed properties of cancer cells and how their aberrant glycan surfaces differ from those of healthy cells. The third section briefly describes the immune systems, both innate and adaptative, because the numerous displays of cell surface protein receptors necessitate to be addressed from the multivalent angles, a strength full characteristic of nanoparticles. The next chapter presents recent advances in glyconanotechnologies, including glycodendrimers in particular, as they apply to glycobiology and carbohydrate-based cancer vaccines. This was followed by an overview of metallodendrimers and how this rapidly evolving field may contribute to our arsenal of therapeutic tools to fight cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | | | | | | | - René Roy
- Glycovax Pharma Inc, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Weiyue S, Ying L, Kanamoto T, Asai D, Takemura H, Nakashima H, Miyazaki K, Yoshida T. Elucidation of anti-HIV mechanism of sulfated cellobiose-polylysine dendrimers. Carbohydr Res 2020; 495:108084. [PMID: 32658833 DOI: 10.1016/j.carres.2020.108084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 11/24/2022]
Abstract
Three new spherical sulfated cellobiose-polylysine dendrimers of increasing generations bearing negatively charged sulfate groups were prepared by sulfating the corresponding cellobiose-polylysine dendrimers. The first, second, and third-generation derivatives exhibited potent anti-HIV activity with EC50 values of 3.7, 0.6, and 1.5 μg/mL, respectively, in constant to sulfated oligosaccharides with low anti-HIV activity, while the second-generation sulfated dendrimer was the most active. Surface plasmon resonance measurements with poly-l-lysine bearing positively charged amino acids as a model of the HIV surface glycoprotein gp120, indicated that the second-generation dendrimer had the lowest dissociation constant (KD = 1.86 × 10-12 M). Both the particle size and ζ potential increased in the presence of poly-l-lysine. It was proven that the moderate distance between the terminal sulfated cellobiose units in the second-generation dendrimer favored the high anti-HIV activity, owing to the electrostatic interactions developed due to the cluster effect.
Collapse
Affiliation(s)
- Song Weiyue
- Department of Bio and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090-8507, Japan
| | - Li Ying
- Department of Bio and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090-8507, Japan
| | - Taisei Kanamoto
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Daisuke Asai
- St. Marianna University School of Medicine, Miyamae-ku, Kawasaki, 216-8511, Japan
| | - Hiromu Takemura
- St. Marianna University School of Medicine, Miyamae-ku, Kawasaki, 216-8511, Japan
| | - Hideki Nakashima
- St. Marianna University School of Medicine, Miyamae-ku, Kawasaki, 216-8511, Japan
| | - Kensuke Miyazaki
- Department of Bio and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090-8507, Japan
| | - Takashi Yoshida
- Department of Bio and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090-8507, Japan.
| |
Collapse
|
17
|
Yousefi M, Narmani A, Jafari SM. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv Colloid Interface Sci 2020; 278:102125. [PMID: 32109595 DOI: 10.1016/j.cis.2020.102125] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 02/09/2023]
Abstract
The genesis of dendrimers can be considered as a revolution in nano-scaled bioactive delivery systems. These structures possess a unique potential in encapsulating/entrapping bioactive ingredients due to their tree-like nature. Therefore, they could swiftly obtain a valuable statue in nutraceutical, pharmaceutical and medical sciences. Phytochemicals, as a large proportion of bioactives, have been studied and used by scholars in several fields of pharmacology, medical, food, and cosmetic for many years. But, the solubility, stability, and bioavailability issues have always been recognized as limiting factors in their application. Therefore, the main aim of this study is representing the use of dendrimers as novel nanocarriers for phytochemical bioactive compounds to deal with these problems. Hence, after a brief review of phytochemical ingredients, the text is commenced with a detailed explanation of dendrimers, including definitions, types, generations, synthesizing methods, and safety issues; then is continued with demonstration of their applications in encapsulation of phytochemical bioactive compounds and their active/passive delivery by dendrimers. Dendrimers provide a vast and appropriate surface to entrap the targeted phytochemical bioactive ingredients. Several parameters can affect the yield of nanoencapsulation by dendrimers, including their generation, type of end groups, surface charge, core structure, pH, and ambient factors. Another important issue of dendrimers is related to their toxicity. Cationic dendrimers, particularly PAMAM can be toxic to body cells through attaching to the cell membranes and disturbing their functions. However, a number of solutions have been suggested to decrease their toxicity.
Collapse
|
18
|
García‐Oliva C, Cabanillas AH, Perona A, Hoyos P, Rumbero Á, Hernáiz MJ. Efficient Synthesis of Muramic and Glucuronic Acid Glycodendrimers as Dengue Virus Antagonists. Chemistry 2020; 26:1588-1596. [DOI: 10.1002/chem.201903788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/17/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Cecilia García‐Oliva
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| | | | - Almudena Perona
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| | - Pilar Hoyos
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| | - Ángel Rumbero
- Departamento de Química OrgánicaUniversidad Autónoma de Madrid 28049 Madrid Spain
| | - María J. Hernáiz
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| |
Collapse
|
19
|
Pawar SV, Upadhyay PK, Burade S, Kumbhar N, Patil R, Dhavale DD. Synthesis and anti-leishmanial activity of TRIS-glycine-β-alanine dipeptidic triazole dendron coated with nonameric mannoside glycocluster. Carbohydr Res 2019; 485:107815. [DOI: 10.1016/j.carres.2019.107815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
|
20
|
Fernández MA, Silva OF, Vico RV, de Rossi RH. Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydr Res 2019; 480:12-34. [PMID: 31158527 DOI: 10.1016/j.carres.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Cyclodextrins (CDs) are a family of biodegradable cyclic hydrocarbons composed of α-(1,4) linked glucopyranose subunits, the more common containing 6, 7 or 8 glucose units are named α, β and γ-cyclodextrins respectively. Since the discovery of CDs, they have attracted interest among scientists and the first studies were about the properties of the native compounds and in particular their use as catalysts of organic reactions. Characteristics features of different types of cyclodextrins stimulated investigation in different areas of research, due to its non-toxic and non-inmunogenic properties and also to the development of an improved industrial production. In this way, many materials with important properties have been developed. This mini-review will focus on chemical systems that use cyclodextrins, whatever linked covalently or mediated by the non covalent interactions, to build complex systems developed mainly during the last five years.
Collapse
Affiliation(s)
- Mariana A Fernández
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - O Fernando Silva
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Raquel V Vico
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Rita H de Rossi
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
21
|
Mignani S, Rodrigues J, Tomas H, Roy R, Shi X, Majoral JP. Bench-to-bedside translation of dendrimers: Reality or utopia? A concise analysis. Adv Drug Deliv Rev 2018; 136-137:73-81. [PMID: 29155170 DOI: 10.1016/j.addr.2017.11.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 02/08/2023]
Abstract
Nanomedicine, which is an application of nanotechnologies in healthcare is developed to improve the treatments and lives of patients suffering from a range of disorders and to increase the successes of drug candidates. Within the nanotechnology universe, the remarkable unique and tunable properties of dendrimers have made them promising tools for diverse biomedical applications such as drug delivery, gene therapy and diagnostic. Up-to-date, very few dendrimers has yet gained regulatory approval for systemic administration, why? In this critical review, we briefly focus on the list of desired basic dendrimer requirements for decision-making purpose by the scientists (go/no-go decision), in early development stages, to become clinical candidates, and to move towards Investigational New Drugs (IND) application submission. In addition, the successful translation between research and clinic should be performed by the implementation of a simple roadmap to jump the 'valley of death' successfully.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Helena Tomas
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - René Roy
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec H3J 1S6, Canada
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP, 44099, 31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex, France.
| |
Collapse
|
22
|
Ennist JH, Termuehlen HR, Bernhard SP, Fricke MS, Cloninger MJ. Chemoenzymatic Synthesis of Galectin Binding Glycopolymers. Bioconjug Chem 2018; 29:4030-4039. [DOI: 10.1021/acs.bioconjchem.8b00599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jessica H. Ennist
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Henry R. Termuehlen
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Samuel P. Bernhard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Mackenzie S. Fricke
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Mary J. Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
23
|
Baier M, Giesler M, Hartmann L. Split-and-Combine Approach Towards Branched Precision Glycomacromolecules and Their Lectin Binding Behavior. Chemistry 2018; 24:1619-1630. [DOI: 10.1002/chem.201704179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Mischa Baier
- Institute of Organic and Macromolecular Chemistry; Heinrich-Heine-University Duesseldorf; Universitaetsstraße 1 40225 Duesseldorf Germany
| | - Markus Giesler
- Institute of Organic and Macromolecular Chemistry; Heinrich-Heine-University Duesseldorf; Universitaetsstraße 1 40225 Duesseldorf Germany
| | - Laura Hartmann
- Institute of Organic and Macromolecular Chemistry; Heinrich-Heine-University Duesseldorf; Universitaetsstraße 1 40225 Duesseldorf Germany
| |
Collapse
|
24
|
Latxague L, Gaubert A, Barthélémy P. Recent Advances in the Chemistry of Glycoconjugate Amphiphiles. Molecules 2018; 23:E89. [PMID: 29301326 PMCID: PMC6017060 DOI: 10.3390/molecules23010089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 11/23/2022] Open
Abstract
Glyconanoparticles essentially result from the (covalent or noncovalent) association of nanometer-scale objects with carbohydrates. Such glyconanoparticles can take many different forms and this mini review will focus only on soft materials (colloids, liposomes, gels etc.) with a special emphasis on glycolipid-derived nanomaterials and the chemistry involved for their synthesis. Also this contribution presents Low Molecular Weight Gels (LMWGs) stabilized by glycoconjugate amphiphiles. Such soft materials are likely to be of interest for different biomedical applications.
Collapse
Affiliation(s)
- Laurent Latxague
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Alexandra Gaubert
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Philippe Barthélémy
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, F-33000 Bordeaux, France.
| |
Collapse
|
25
|
Bagul RS, Hosseini MM, Shiao TC, Roy R. “Onion peel” glycodendrimer syntheses using mixed triazine and cyclotriphosphazene scaffolds. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An expeditious synthetic protocol for the construction of glycodendrimers is illustrated using the newly discovered “onion peel” strategy. The onion peel approach and orthogonal coupling strategies were accomplished with rationally design sequential modifications of cyanuric acid. Carefully chosen building blocks and their effective attachment by chemoselective atom economical click reactions, namely Cu (I) azide–alkyne cycloaddition reaction (CuAAC) and photocatalyzed thiol-ene reaction (TEC), allowed rapid build-up of glycodendrimers in contrast to traditional dendrimers syntheses that are based on the repetitive use of identical building blocks to form each layer. The newly formed glycodendrimers were evaluated for their capacity to cross-link carbohydrate-lectin interactions using dynamic light scattering (DLS). Rapid increase in particle size was observed as a function of time when compared to their monomer counterparts resulting from the multivalent lectin cross-linking ability of the new glycodendrimers.
Collapse
Affiliation(s)
- Rahul S. Bagul
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Maryam M. Hosseini
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Tze Chieh Shiao
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
| | - René Roy
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
26
|
Santos S, Gonzaga R, Silva J, Savino D, Prieto D, Shikay J, Silva R, Paulo L, Ferreira E, Giarolla J. Peptide dendrimers: drug/gene delivery and other approaches. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0242] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dendrimers are versatile hyperbranched molecules, which have deserved attention especially for their potential in many applications, including biological. Peptide dendrimers comprise interesting classes of dendrimers, and their use has been emphasized as a drug/bioactive compound delivery system, mostly in the antineoplastic area. The bioactive molecules can be covalently linked or entrapped inside the peptide derivative. Self-assembled nanocarriers are a recent trend in the design of potential delivery systems, and pH-sensitive carriers, one of their methods, have been designed to control their systems. In addition, the use of targeting peptides or other specific groups that direct the drug/bioactive compounds to specific organs is an important trend in the search for better drug delivery systems. Recent examples have been given in the literature, showing that gene delivery as another important peptide dendrimer application. It is worth emphasizing that some peptide dendrimers show activity per se, without bioactive compounds. Immune compounds and vaccines are presented herein, as well as uses of other peptide dendrimers are briefly discussed in this review, which encompasses around 10 years of work.
Collapse
Affiliation(s)
- S.S. Santos
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| | - R.V. Gonzaga
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| | - J.V. Silva
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| | - D.F. Savino
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| | - D. Prieto
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| | - J.M. Shikay
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| | - R.S. Silva
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| | - L.H.A. Paulo
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| | - E.I. Ferreira
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| | - J. Giarolla
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| |
Collapse
|
27
|
Carabineiro SAC. Applications of Gold Nanoparticles in Nanomedicine: Recent Advances in Vaccines. Molecules 2017; 22:E857. [PMID: 28531163 PMCID: PMC6154615 DOI: 10.3390/molecules22050857] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 11/20/2022] Open
Abstract
Nowadays, gold is used in (nano-)medicine, usually in the form of nanoparticles, due to the solid proofs given of its therapeutic effects on several diseases. Gold also plays an important role in the vaccine field as an adjuvant and a carrier, reducing toxicity, enhancing immunogenic activity, and providing stability in storage. An even brighter golden future is expected for gold applications in this area.
Collapse
Affiliation(s)
- Sónia Alexandra Correia Carabineiro
- Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE-LCM, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal.
| |
Collapse
|
28
|
Khatun F, Stephenson RJ, Toth I. An Overview of Structural Features of Antibacterial Glycoconjugate Vaccines That Influence Their Immunogenicity. Chemistry 2017; 23:4233-4254. [PMID: 28097690 DOI: 10.1002/chem.201603599] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 12/13/2022]
Abstract
Bacterial cell-surface-derived or mimicked carbohydrate moieties that act as protective antigens are used in the development of antibacterial glycoconjugate vaccines. The carbohydrate antigen must have a minimum length or size to maintain the conformational structure of the antigenic epitope(s). The presence or absence of O-acetate, phosphate, glycerol phosphate and pyruvate ketal plays a vital role in defining the immunogenicity of the carbohydrate antigen. The nature of the carrier protein, spacer and conjugation pattern used to develop the glycoconjugate vaccine also defines its overall spatial orientation which in turn affects its avidity and selectivity of interaction with the desired target(s). In addition, the ratio of carbohydrate to protein in glycoconjugate vaccines also makes an important contribution in determining the optimum immunological response. This Review article presents the importance of these variables in the development of antibacterial glycoconjugate vaccines and their effects on immune efficacy.
Collapse
Affiliation(s)
- Farjana Khatun
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,School of Pharmacy, Woolloongabba, The University of Queensland, QLD, Australia.,Institute for Molecular Bioscience, St. Lucia, The University of Queensland, QLD, Australia
| |
Collapse
|
29
|
Kannan A, Saravanan V, Rajakumar P. Synthesis, Photophysical, Electrochemical Studies, and Antioxidant Properties of Fluorescein-Linked Glycodendrimers. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ayyavoo Kannan
- Department of Organic Chemistry; University of Madras; Guindy Campus Chennai 600 025 India
| | - Velautham Saravanan
- Department of Organic Chemistry; University of Madras; Guindy Campus Chennai 600 025 India
| | - Perumal Rajakumar
- Department of Organic Chemistry; University of Madras; Guindy Campus Chennai 600 025 India
| |
Collapse
|
30
|
Hockl PF, Wolosiuk A, Pérez-Sáez JM, Bordoni AV, Croci DO, Toum-Terrones Y, Soler-Illia GJAA, Rabinovich GA. Glyco-nano-oncology: Novel therapeutic opportunities by combining small and sweet. Pharmacol Res 2016; 109:45-54. [PMID: 26855319 DOI: 10.1016/j.phrs.2016.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/28/2022]
Abstract
Recent efforts toward defining the molecular features of the tumor microenvironment have revealed dramatic changes in the expression of glycan-related genes including glycosyltransferases and glycosidases. These changes affect glycosylation of proteins and lipids not only in cancer cells themselves, but also in cancer associated-stromal, endothelial and immune cells. These glycan alterations including increased frequency of β1,6-branched N-glycans and bisecting N-glycans, overexpression of tumor-associated mucins, preferred expression of T, Tn and sialyl-Tn antigen and altered surface sialylation, may contribute to tumor progression by masking or unmasking specific ligands for endogenous lectins, including members of the C-type lectin, siglec and galectin families. Differential expression of glycans or glycan-binding proteins could be capitalized for the identification of novel biomarkers and might provide novel opportunities for therapeutic intervention. This review focuses on the biological relevance of lectin-glycan interactions in the tumor microenvironment (mainly illustrated by the immunosuppressive and pro-angiogenic activities of galectin-1) and the design of functionalized nanoparticles for pharmacological delivery of multimeric glycans, lectins or selective inhibitors of lectin-glycan interactions with antitumor activity.
Collapse
Affiliation(s)
- Pablo F Hockl
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Alejandro Wolosiuk
- Gerencia Química, Centro Atómico Constituyentes (CAC), Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, 1650 San Martín, Argentina
| | - Juan M Pérez-Sáez
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Andrea V Bordoni
- Gerencia Química, Centro Atómico Constituyentes (CAC), Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, 1650 San Martín, Argentina
| | - Diego O Croci
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina; Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de correo 56, 5500 Mendoza, Argentina
| | - Yamili Toum-Terrones
- Gerencia Química, Centro Atómico Constituyentes (CAC), Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, 1650 San Martín, Argentina
| | - Galo J A A Soler-Illia
- Instituto de Nanosistemas, Universidad Nacional de General San Martín, Av. 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina.
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina.
| |
Collapse
|
31
|
Delbianco M, Bharate P, Varela-Aramburu S, Seeberger PH. Carbohydrates in Supramolecular Chemistry. Chem Rev 2015; 116:1693-752. [PMID: 26702928 DOI: 10.1021/acs.chemrev.5b00516] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.
Collapse
Affiliation(s)
- Martina Delbianco
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Priya Bharate
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Silvia Varela-Aramburu
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
32
|
Abbassi L, Chabre YM, Kottari N, Arnold AA, André S, Josserand J, Gabius HJ, Roy R. Multifaceted glycodendrimers with programmable bioactivity through convergent, divergent, and accelerated approaches using polyfunctional cyclotriphosphazenes. Polym Chem 2015. [DOI: 10.1039/c5py01283j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cyclotriphosphazene-based platform facilitates versatile synthesis of glycodendrimers active as inhibitors of two biomedically relevant lectins.
Collapse
Affiliation(s)
- Leïla Abbassi
- Pharmaqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal
- Canada
| | - Yoann M. Chabre
- Pharmaqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal
- Canada
| | - Naresh Kottari
- Pharmaqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal
- Canada
| | - Alexandre A. Arnold
- Pharmaqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal
- Canada
| | - Sabine André
- Institute of Physiological Chemistry
- Faculty of Veterinary Medicine
- Ludwig-Maximilians-University
- 80539 Munich
- Germany
| | - Johan Josserand
- Pharmaqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal
- Canada
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry
- Faculty of Veterinary Medicine
- Ludwig-Maximilians-University
- 80539 Munich
- Germany
| | - René Roy
- Pharmaqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal
- Canada
| |
Collapse
|
33
|
Mignani S, Bryszewska M, Klajnert-Maculewicz B, Zablocka M, Majoral JP. Advances in combination therapies based on nanoparticles for efficacious cancer treatment: an analytical report. Biomacromolecules 2014; 16:1-27. [PMID: 25426779 DOI: 10.1021/bm501285t] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The main objective of nanomedicine research is the development of nanoparticles as drug delivery systems or drugs per se to tackle diseases as cancer, which are a leading cause of death with developed nations. Targeted treatments against solid tumors generally lead to dramatic regressions, but, unfortunately, the responses are often short-lived due to resistant cancer cells. In addition, one of the major challenges of combination drug therapy (called "cocktail") is the crucial optimization of different drug parameters. This issue can be solved using combination nanotherapy. Nanoparticles developed in oncology based on combination nanotherapy are either (a) those designed to combat multidrug resistance or (b) those used to circumvent resistance to clinical cancer drugs. This review provides an overview of the different nanoparticles currently used in clinical treatments in oncology. We analyze in detail the development of combinatorial nanoparticles including dendrimers for dual drug delivery via two strategic approaches: (a) use of chemotherapeutics and chemosensitizers to combat multidrug resistance and (b) use of multiple cytotoxic drugs. Finally, in this review, we discuss the challenges, clinical outlook, and perspectives of the nanoparticle-based combination therapy in cancer.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie pharmacologiques et toxicologique, 45, rue des Saints Pères, 75006 Paris, France
| | | | | | | | | |
Collapse
|
34
|
Demian WLL, Kottari N, Shiao TC, Randell E, Roy R, Banoub JH. Direct targeted glycation of the free sulfhydryl group of cysteine residue (Cys-34) of BSA. Mapping of the glycation sites of the anti-tumor Thomsen-Friedenreich neoglycoconjugate vaccine prepared by Michael addition reaction. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:1223-1233. [PMID: 25476939 DOI: 10.1002/jms.3448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/22/2014] [Indexed: 06/04/2023]
Abstract
We present in this manuscript the characterization of the exact glycation sites of the Thomsen-Friedenreich antigen-BSA vaccine (TF antigen:BSA) prepared using a Michael addition reaction between the saccharide antigen as an electrophilic acceptor and the nucleophilic thiol and L-Lysine ε-amino groups of BSA using different ligation conditions. Matrix laser desorption ionization time-of-flight mass spectrometry of the neoglycoconjugates prepared with TF antigen:protein ratios of 2:1 and 8:1, allowed to observe, respectively, the protonated molecules for each neoglycoconjugates: [M + H](+) at m/z 67,599 and 70,905. The measurements of these molecular weights allowed us to confirm exactly the carbohydrate:protein ratios of these two synthetic vaccines. These were found to be closely formed by a TF antigen:BSA ratios of 2:1 and 8:1, respectively. Trypsin digestion and liquid chromatography coupled with electrospray ionization mass spectrometry allowed us to identify the series of released glycopeptide and peptide fragments. De novo sequencing affected by low-energy collision dissociation tandem mass spectrometry was then employed to unravel the precise glycation sites of these neoglycoconjugate vaccines. Finally, we identified, respectively, three diagnostic and characteristic glycated peptides for the synthetic glycoconjugate possessing a TF antigen:BSA ratio 2:1, whereas we have identified for the synthetic glycoconjugate having a TF:BSA ratio 8:1 a series of 14 glycated peptides. The net increase in the occupancy sites of these neoglycoconjugates was caused by the large number of glycoforms produced during the chemical ligation of the synthetic carbohydrate antigen onto the protein carrier.
Collapse
Affiliation(s)
- Wael L L Demian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's Newfoundland, A1B 3X9, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Gatard S, Salmon L, Deraedt C, Ruiz J, Astruc D, Bouquillon S. Palladium Nanoparticles Stabilized by Glycodendrimers and Their Application in Catalysis. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402457] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Sharma R, Naresh K, Chabre YM, Rej R, Saadeh NK, Roy R. “Onion peel” dendrimers: a straightforward synthetic approach towards highly diversified architectures. Polym Chem 2014. [DOI: 10.1039/c4py00218k] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report herein a novel “onion peel strategy” for the divergent construction of glycodendrimers using different building blocks at each layer of the dendritic growth.
Collapse
Affiliation(s)
- Rishi Sharma
- Pharmaqam and Nanoqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal, Canada
| | - Kottari Naresh
- Pharmaqam and Nanoqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal, Canada
| | - Yoann M. Chabre
- Pharmaqam and Nanoqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal, Canada
| | - Rabindra Rej
- Pharmaqam and Nanoqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal, Canada
| | | | - René Roy
- Pharmaqam and Nanoqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal, Canada
| |
Collapse
|