1
|
Panou T, Gouveri E, Popovic DS, Papanas N. Amylin analogs for the treatment of obesity without diabetes: present and future. Expert Rev Clin Pharmacol 2024; 17:1-9. [PMID: 39317404 DOI: 10.1080/17512433.2024.2409403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Obesity is a pandemic, linked with increased morbidity including diabetes mellitus (DM) and certain cancer types. Amylin is a major regulatory hormone for satiation and food intake perception in humans. Amylin analogs (pramlintide and cagrilintide) are emerging as promising anti-obesity agents in non-DM subjects. AREAS COVERED Pramlintide, the first amylin analog, initially used for the treatment of both type 1 and type 2 DM, has demonstrated weight-lowering action. Clinical trials confirmed a weight loss exceeding 3% in the study period without major untoward effects, which was maintained beyond the follow-up period. Recently, cagrilintide, a long-lasting synthetic amylin analog has been introduced. Cagrilintide has achieved adequate weight loss, reaching even more than 10% of the total weight in early clinical trials. However, adverse gastrointestinal effects, particularly nausea, were more frequent compared with pramlintide. Clinical trials have also confirmed the effectiveness of cagrilintide in comparison with glucagon-like peptide 1 receptor agonists. EXPERT OPINION Amylin analogs will certainly enrich the growing therapeutic armamentarium aimed at tackling obesity. The most exciting future research venue could be the development of their combinations with other weight-lowering drugs, especially dual and triple incretin-based co-agonists, thus potentially providing massive weight-loss effects.
Collapse
Affiliation(s)
- Theodoros Panou
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Evanthia Gouveri
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Djordje S Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
- Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Nikolaos Papanas
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| |
Collapse
|
2
|
Andreassen KV, Larsen AT, Sonne N, Mohamed KE, Karsdal MA, Henriksen K. KBP-066A, a long-acting dual amylin and calcitonin receptor agonist, induces weight loss and improves glycemic control in obese and diabetic rats. Mol Metab 2021; 53:101282. [PMID: 34214708 PMCID: PMC8313742 DOI: 10.1016/j.molmet.2021.101282] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Objective Dual amylin and calcitonin receptor agonists (DACRAs) are novel therapeutic agents that not only improve insulin sensitivity but also work as an adjunct to established T2DM therapies. DACRAs are currently administered once daily, though it is unknown whether DACRAs with increased plasma half-life can be developed as a once-weekly therapy. Methods The in vitro potencies of the KBP-066A and KBP-066 (non-acylated) were assessed using reporter assays. Acylation functionality was investigated by a combination of pharmacokinetics and acute food intake in rats. in vivo efficacies were investigated head-to-head in obese (HFD) and T2D (ZDF) models. Results In in vitro, KBP-066A activated the CTR and AMY-R potently, with no off-target activity. Acylation functionality was confirmed by acute tests, as KBP-066A demonstrated a prolonged PK and PD response compared to KBP-066. Both compounds induced potent and dose-dependent weight loss in the HFD rat model. In ZDF rats, fasting blood glucose/fasting insulin levels (tAUC) were reduced by 39%/50% and 36%/47% for KBP-066 and KBP-066A, respectively. This effect resulted in a 31% and 46% vehicle-corrected reduction in HbA1c at the end of the study for KBP-066 and KBP-066A, respectively. Conclusions Here, we present pre-clinical data on an acylated DACRA, KBP-066A. The in vivo efficacy of KBP-066A is significantly improved compared to its non-acylated variant regarding weight loss and glycemic control in obese (HFD) and obese diabetic rats (ZDF). This compendium of pre-clinical studies highlights KBP-066A as a promising, once-weekly therapeutic agent for treating T2DM and obesity. DACRAs are promising once daily therapeutic candidates for metabolic diseases. We here present a novel DACRA called KBP-066A optimized for weekly delivery. KBP-066A potently reduced appetite and body weight in obese rats. More importantly, KBP-066A was superior to the corresponding daily DACRA in terms of glucose control. KBP-066A is a novel promising therapy for metabolic diseases.
Collapse
Affiliation(s)
| | - A T Larsen
- Nordic Bioscience A/S, Herlev, DK-2730, Denmark
| | - N Sonne
- Nordic Bioscience A/S, Herlev, DK-2730, Denmark
| | - K E Mohamed
- Nordic Bioscience A/S, Herlev, DK-2730, Denmark
| | - M A Karsdal
- Nordic Bioscience A/S, Herlev, DK-2730, Denmark; KeyBioscience AG, Stans, Switzerland
| | - K Henriksen
- Nordic Bioscience A/S, Herlev, DK-2730, Denmark; KeyBioscience AG, Stans, Switzerland.
| |
Collapse
|
3
|
Barbonta DH, Loughlan CW, Dickerson JEC, Baicus C. Pramlintide for diabetes mellitus. Hippokratia 2015. [DOI: 10.1002/14651858.cd008383.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Diana Hortensia Barbonta
- Emergency Hospital Alba; Endocrinology, Diabetes and Metabolic Disorders Department; 23, 1989 Revolutiei Blvd. Alba-Iulia Transylvania Romania 510053
| | | | - JE Claire Dickerson
- University of Hertfordshire; School of Education; de Havilland Campus Hatfield Hertfordshire UK AL10 9AB
| | | |
Collapse
|
4
|
Abstract
Diabet. Med. 27, 1335-1340 (2010) ABSTRACT: There is a vast amount of new medical information published on diabetes each year; the number of systematic reviews on diabetes is also increasing rapidly. It is therefore difficult for clinicians keep up to date with the new evidence. It is suggested that reading the full National Institute for Clinical Excellence (NICE) guidelines on diabetes will bring you up to date with information as at the date of the evidence cut-off, which is usually approximately 1 year before publication. Also regularly visiting 'NHS Evidence--diabetes', an online resource that offers a foraging service, surveying the literature and alerting clinicians to all the new important and useful information, enables the busy clinician to manage information overload and help keep up to date.
Collapse
Affiliation(s)
- R Gadsby
- NHS Evidence-diabetes Warwick Medical School, University of Warwick, Coventry, UK.
| | | | | |
Collapse
|
5
|
Akkati S, Sam KG, Tungha G. Emergence of promising therapies in diabetes mellitus. J Clin Pharmacol 2010; 51:796-804. [PMID: 20705952 DOI: 10.1177/0091270010376972] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Diabetes mellitus (DM) results from defects in insulin secretion (type 1) or insulin resistance (type 2). Insulin is used to manage type 1 DM, and oral hypoglycemic agents are used to manage type 2 DM. These therapies are inconsistent in maintaining glycemic control and cause some severe adverse effects such as undue weight gain and hypoglycemia. New and appropriate therapies are needed to overcome these problems. Drugs that are in the pipeline include oral insulins for type 1 DM and incretin mimetics, incretin enhancers, gastric inhibitory peptides, amylin analogues, peroxisome proliferator-activated receptor-α/γ ligands, sodium-dependent glucose transporter inhibitors, and fructose 1,6-bisphosphatase inhibitors for type 2 DM. This article describes the mechanisms of action and relative advantages and disadvantages of the promising therapies.
Collapse
Affiliation(s)
- Sindhu Akkati
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India 576104, USA.
| | | | | |
Collapse
|
6
|
Corsino L, Cox ME, Rowel J, Green JB. Present and Prospective Pharmacotherapy for the Management of Patients with Type 2 Diabetes. CLINICAL MEDICINE. THERAPEUTICS 2009; 1:1103-1119. [PMID: 22539875 PMCID: PMC3335272 DOI: 10.4137/cmt.s2109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Diabetes Mellitus is a chronic condition prevalent worldwide. Type 2 diabetes is the most common form of diabetes, comprising 90% to 95% of all cases. Over the last few decades, the importance of glycemic control and its impact on prevention of diabetes-related complications has been documented in multiple clinical trials. As most patients with type 2 diabetes will require pharmacologic intervention to achieve and maintain appropriate glycemic control, new medications targeting different aspects of the pathophysiology of type 2 diabetes have been a significant focus of research and development. During the last decade, multiple new medications for diabetes management have become available: these medications have novel mechanisms of action, differences in effectiveness, and varying side effect profiles which will be reviewed in this article. Some of these newer medications, such as the GLP-1 analogues and DPP-4 inhibitors, have become widely accepted as therapeutic options for the management of type 2 diabetes.Additional classes of glucose-lowering medications are expected to become available in the near future. This manuscript will summarize available data regarding these newer and prospective medications for the management of type 2 diabetes.
Collapse
Affiliation(s)
- Leonor Corsino
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition. Duke University Medical Center, Durham, North Carolina, United States of America (USA)
| | - Mary Elizabeth Cox
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition. Duke University Medical Center, Durham, North Carolina, United States of America (USA)
| | - Jennifer Rowel
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition. Duke University Medical Center, Durham, North Carolina, United States of America (USA)
| | - Jennifer B. Green
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition. Duke University Medical Center, Durham, North Carolina, United States of America (USA)
| |
Collapse
|
7
|
Linnebjerg H, Park S, Kothare PA, Trautmann ME, Mace K, Fineman M, Wilding I, Nauck M, Horowitz M. Effect of exenatide on gastric emptying and relationship to postprandial glycemia in type 2 diabetes. REGULATORY PEPTIDES 2008; 151:123-129. [PMID: 18675854 DOI: 10.1016/j.regpep.2008.07.003] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 05/22/2008] [Accepted: 07/02/2008] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To evaluate the effect of exenatide on gastric emptying (GE) in type 2 diabetes using scintigraphy. METHODS Seventeen subjects with type 2 diabetes participated in a randomized, single-blind, 3-period, crossover study. In each 5-day period, 5 or 10 microg exenatide or placebo was administered subcutaneously BID. Oral antidiabetic treatments were continued. The presence of cardiac autonomic neuropathy was assessed during screening. On day 5, after the morning dose, subjects consumed a 450-kcal breakfast containing (99m)Tc-labeled eggs and (111)In-labeled water, and GE was measured by scintigraphy. Plasma glucose and insulin, perceptions of appetite, and plasma exenatide were also quantified. RESULTS Exenatide slowed GE of both solid and liquid meal components [solid (T(50)(90% confidence interval [CI]); placebo, 60(50-70) min; 5 microg exenatide, 111(94-132) min; 10 microg exenatide, 169(143-201) min; both P<0.01); liquid (T(50)(90% CI), placebo, 34(25-46) min; 5 microg exenatide, 87(65-117) min; 10 microg exenatide, 114(85-154) min; both P<0.01)]. GE was not different between subjects with cardiac autonomic neuropathy (n=7), compared with those without (n=10) (P>/=0.68). Exenatide reduced postprandial glucose (area under the curve [AUC((0-6 h))]) by 69-76% and peak insulin (C(max)) by 84-86% compared with placebo. There was an inverse relationship between the postprandial rise in glucose (AUC((0-3 h))) and GE (solid T(50), r=-0.49, P<0.001). CONCLUSIONS Exenatide slows GE substantially in type 2 diabetes, which could be an important mechanism contributing to the beneficial effect of exenatide on postprandial glycemia.
Collapse
Affiliation(s)
- Helle Linnebjerg
- Lilly Research Centre, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, GU20 6PH, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hoogwerf BJ, Doshi KB, Diab D. Pramlintide, the synthetic analogue of amylin: physiology, pathophysiology, and effects on glycemic control, body weight, and selected biomarkers of vascular risk. Vasc Health Risk Manag 2008; 4:355-62. [PMID: 18561511 PMCID: PMC2496974 DOI: 10.2147/vhrm.s1978] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pramlintide is a synthetic version of the naturally occurring pancreatic peptide called amylin. Amylin and pramlintide have similar effects on lowering postprandial glucose, lowering postprandial glucagon and delaying gastric emptying. Pramlintide use in type 1 and insulin requiring type 2 diabetes mellitus (DM) is associated with modest reductions in HbA1c often accompanied by weight loss. Limited data show a neutral effect on blood pressure. Small studies suggest small reductions in LDL-cholesterol in type 2 DM and modest reductions in triglycerides in type 1 DM. Markers of oxidation are also reduced in conjunction with reductions in postprandial glucose. Nausea is the most common side effect. These data indicate that pramlintide has a role in glycemic control of both type 1 and type 2 DM. Pramlintide use is associated with favorable effects on weight, lipids and other biomarkers for atherosclerotic disease.
Collapse
Affiliation(s)
- Byron J Hoogwerf
- Department of Endocrinology, Diabetes and Metabolism, Cleveland Clinic Foundation, Cleveland, USA.
| | | | | |
Collapse
|
9
|
Perkins JM, Davis SN. The Rationale for Prandial Glycemic Control in Diabetes Mellitus. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1557-0843(07)80016-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|