1
|
Esman A, Salamaikina S, Kirichenko A, Vinokurov M, Fomina D, Sikamov K, Syrkina A, Pokrovskaya A, Akimkin V. Promoter Methylation of HIV Coreceptor-Related Genes CCR5 and CXCR4: Original Research. Viruses 2025; 17:465. [PMID: 40284908 PMCID: PMC12030890 DOI: 10.3390/v17040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 04/29/2025] Open
Abstract
The persistence of human immunodeficiency virus (HIV) within viral reservoirs poses significant challenges to eradication efforts. Epigenetic alterations, including DNA methylation, are potential factors influencing the latency and persistence of HIV. This study details the development and application of techniques to assess CpG methylation in the promoter regions of the CCR5 and CXCR4 genes, which are key HIV-1 coreceptors. Using both Sanger sequencing and pyrosequencing methods, we examined 51 biological samples from 17 people living with HIV at three time points: baseline (week 0) and post-antiretroviral therapy (ART) at weeks 24 and 48. Our results revealed that CXCR4 promoter CpG sites were largely unmethylated, while CCR5 promoter CpGs exhibited significant variability in methylation levels. Specifically, CCR5 CpG 1 showed a significant decrease in methylation from week 0 to week 48, while CXCR4 CpG 3 displayed a significant decrease between week 0 and week 24. These differences were statistically significant when compared with non-HIV-infected controls. These findings demonstrate distinct methylation patterns between CCR5 and CXCR4 promoters in people living with HIV over time, suggesting that epigenetic modifications may play a role in regulating the persistence of HIV-1. Our techniques provide a reliable framework for assessing gene promoter methylation and could be applied in further research on the epigenetics of HIV.
Collapse
Affiliation(s)
- Anna Esman
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Svetlana Salamaikina
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Alina Kirichenko
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Michael Vinokurov
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Darya Fomina
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Central Research Institute of Epidemiology, 111123 Moscow, Russia
- State Research Center—Burnazyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Kirill Sikamov
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Arina Syrkina
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Anastasia Pokrovskaya
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Central Research Institute of Epidemiology, 111123 Moscow, Russia
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Vasily Akimkin
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| |
Collapse
|
2
|
Harms M, Smith N, Han M, Groß R, von Maltitz P, Stürzel C, Ruiz-Blanco YB, Almeida-Hernández Y, Rodriguez-Alfonso A, Cathelin D, Caspar B, Tahar B, Sayettat S, Bekaddour N, Vanshylla K, Kleipass F, Wiese S, Ständker L, Klein F, Lagane B, Boonen A, Schols D, Benichou S, Sanchez-Garcia E, Herbeuval JP, Münch J. Spermine and spermidine bind CXCR4 and inhibit CXCR4- but not CCR5-tropic HIV-1 infection. SCIENCE ADVANCES 2023; 9:eadf8251. [PMID: 37406129 DOI: 10.1126/sciadv.adf8251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/01/2023] [Indexed: 07/07/2023]
Abstract
Semen is an important vector for sexual HIV-1 transmission. Although CXCR4-tropic (X4) HIV-1 may be present in semen, almost exclusively CCR5-tropic (R5) HIV-1 causes systemic infection after sexual intercourse. To identify factors that may limit sexual X4-HIV-1 transmission, we generated a seminal fluid-derived compound library and screened it for antiviral agents. We identified four adjacent fractions that blocked X4-HIV-1 but not R5-HIV-1 and found that they all contained spermine and spermidine, abundant polyamines in semen. We showed that spermine, which is present in semen at concentrations up to 14 mM, binds CXCR4 and selectively inhibits cell-free and cell-associated X4-HIV-1 infection of cell lines and primary target cells at micromolar concentrations. Our findings suggest that seminal spermine restricts sexual X4-HIV-1 transmission.
Collapse
Affiliation(s)
- Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Nikaïa Smith
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, 75014 Paris, France
| | - Mingyu Han
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, 75014 Paris, France
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christina Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Yasser Almeida-Hernández
- Computational Bioengineering, Department of Biochemical and Chemical Engineering, Emil-Figge Str. 66., 44227 Dortmund, Germany
| | - Armando Rodriguez-Alfonso
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics, Ulm University, 89081 Ulm, Germany
| | - Dominique Cathelin
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Paris, France
| | - Birgit Caspar
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Paris, France
| | - Bouceba Tahar
- Sorbonne University, CNRS, Institut de Biologie Paris-Seine (IBPS), Protein Engineering Platform, Molecular Interaction Service, F-75252 Paris, France
| | - Sophie Sayettat
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, 75014 Paris, France
| | - Nassima Bekaddour
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Paris, France
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Franziska Kleipass
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, 89081 Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research (DZIF), Partner site Bonn-Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Bernard Lagane
- Infinity, Université de Toulouse, CNRS, INSERM, Toulouse, France
| | - Arnaud Boonen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, P.O. Box 1030, 3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, P.O. Box 1030, 3000 Leuven, Belgium
| | - Serge Benichou
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, 75014 Paris, France
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
- Computational Bioengineering, Department of Biochemical and Chemical Engineering, Emil-Figge Str. 66., 44227 Dortmund, Germany
| | - Jean-Philippe Herbeuval
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Paris, France
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
3
|
Zipp F, Bittner S, Schafer DP. Cytokines as emerging regulators of central nervous system synapses. Immunity 2023; 56:914-925. [PMID: 37163992 PMCID: PMC10233069 DOI: 10.1016/j.immuni.2023.04.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 05/12/2023]
Abstract
Cytokines are key messengers by which immune cells communicate, and they drive many physiological processes, including immune and inflammatory responses. Early discoveries demonstrated that cytokines, such as the interleukin family members and TNF-α, regulate synaptic scaling and plasticity. Still, we continue to learn more about how these traditional immune system cytokines affect neuronal structure and function. Different cytokines shape synaptic function on multiple levels ranging from fine-tuning neurotransmission, to regulating synapse number, to impacting global neuronal networks and complex behavior. These recent findings have cultivated an exciting and growing field centered on the importance of immune system cytokines for regulating synapse and neural network structure and function. Here, we highlight the latest findings related to cytokines in the central nervous system and their regulation of synapse structure and function. Moreover, we explore how these mechanisms are becoming increasingly important to consider in diseases-especially those with a large neuroinflammatory component.
Collapse
Affiliation(s)
- Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
4
|
Kurkin AV, Curreli F, Iusupov IR, Spiridonov EA, Ahmed S, Markov PO, Manasova EV, Altieri A, Debnath AK. Design, Synthesis, and Antiviral Activity of the Thiazole Positional Isomers of a Potent HIV-1 Entry Inhibitor NBD-14270. ChemMedChem 2022; 17:e202200344. [PMID: 36097139 DOI: 10.1002/cmdc.202200344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Indexed: 01/14/2023]
Abstract
The envelope glycoprotein gp120 of human immunodeficiency virus type 1 (HIV-1) plays a critical role in virus entry to the cells by binding to the host cellular protein CD4. Earlier, we reported the design and discovery of a series of highly potent small-molecule entry antagonists containing a thiazole ring (Scaffold A). Since this thiazole ring connected with an ethyl amide linkage represents the molecule's flexible part, we decided to explore substituting Scaffold A with two other positional isomers of the thiazole ring (Scaffold B and C) to evaluate their effect on the antiviral potency and cellular toxicity. Here we report the novel synthesis of two sets of positional thiazole isomers of the NBD-14270 by retrosynthetic analysis approach, their anti-HIV-1 activity, cellular toxicity, and structure-activity relationships. The study revealed that Scaffold A provided the best HIV-1 inhibitors with higher potency and better selectivity index (SI).
Collapse
Affiliation(s)
| | - Francesca Curreli
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Ildar R Iusupov
- EDASA Scientific srls, Via Stingi 37, 66050, San Salvo (CH), Italy
| | | | - Shahad Ahmed
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Pavel O Markov
- EDASA Scientific srls, Via Stingi 37, 66050, San Salvo (CH), Italy
| | | | - Andrea Altieri
- EDASA Scientific srls, Via Stingi 37, 66050, San Salvo (CH), Italy
| | - Asim K Debnath
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| |
Collapse
|
5
|
Rani P, Kapoor B, Gulati M, Atanasov AG, Alzahrani Q, Gupta R. Antimicrobial peptides: A plausible approach for COVID-19 treatment. Expert Opin Drug Discov 2022; 17:473-487. [PMID: 35255763 PMCID: PMC8935455 DOI: 10.1080/17460441.2022.2050693] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19), which emerged as a major public health threat, has affected >400 million people globally leading to >5 million mortalities to date. Treatments of COVID-19 are still to be developed as the available therapeutic approaches are not able to combat the virus causing the disease (severe acute respiratory syndrome coronavirus-2; SARS-CoV-2) satisfactorily. However, antiviral peptides (AVPs) have demonstrated prophylactic and therapeutic effects against many coronaviruses (CoVs). AREAS COVERED This review critically discusses various types of AVPs evaluated for the treatment of COVID-19 along with their mechanisms of action. Furthermore, the peptides inhibiting the entry of the virus by targeting its binding to angiotensin-converting enzyme 2 (ACE2) or integrins, fusion mechanism as well as activation of proteolytic enzymes (cathepsin L, transmembrane serine protease 2 (TMPRSS2), or furin) are also discussed. EXPERT OPINION Although extensively investigated, successful treatment of COVID-19 is still a challenge due to emergence of virus mutants. Antiviral peptides are anticipated to be blockbuster drugs for the management of this serious infection because of their formulation and therapeutic advantages. Although they may act on different pathways, AVPs having a multi-targeted approach are considered to have the upper hand in the management of this infection.
Collapse
Affiliation(s)
- Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Qushmua Alzahrani
- Department of Pharmacy/Nursing/Medicine Health and Environment, University of the Region of Joinville (UNIVILLE) volunteer researcher, Joinville, Brazil
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
6
|
Blockade of Autocrine CCL5 Responses Inhibits Zika Virus Persistence and Spread in Human Brain Microvascular Endothelial Cells. mBio 2021; 12:e0196221. [PMID: 34399621 PMCID: PMC8406327 DOI: 10.1128/mbio.01962-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is a neurovirulent flavivirus that uniquely causes fetal microcephaly, is sexually transmitted, and persists in patients for up to 6 months. ZIKV persistently infects human brain microvascular endothelial cells (hBMECs) that form the blood-brain barrier (BBB) and enables viral spread to neuronal compartments. We found that CCL5, a chemokine with prosurvival effects on immune cells, was highly secreted by ZIKV-infected hBMECs. Although roles for CCL5 in endothelial cell (EC) survival remain unknown, the presence of the CCL5 receptors CCR3 and CCR5 on ECs suggested that CCL5 could promote ZIKV persistence in hBMECs. We found that exogenous CCL5 induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in hBMECs and that ERK1/2 cell survival signaling was similarly activated by ZIKV infection. Neutralizing antibodies to CCL5, CCR3, or CCR5 inhibited persistent ZIKV infection of hBMECs. While knockout (KO) of CCL5 failed to prevent ZIKV infection of hBMECs, at 3 days postinfection (dpi), we observed a >90% reduction in ZIKV-infected CCL5-KO hBMECs and a multilog reduction in ZIKV titers. In contrast, the addition of CCL5 to CCL5-KO hBMECs dose-dependently rescued ZIKV persistence in hBMECs. Inhibiting CCL5 responses using CCR3 (UCB35625) and CCR5 (maraviroc) receptor antagonists reduced the number of ZIKV-infected hBMECs and ZIKV titers (50% inhibitory concentrations [IC50s] of 2.5 to 12 μM), without cytotoxicity (50% cytotoxic concentration [CC50] of >80 μM). These findings demonstrate that ZIKV-induced CCL5 directs autocrine CCR3/CCR5 activation of ERK1/2 survival responses that are required for ZIKV to persistently infect hBMECs. Our results establish roles for CCL5 in ZIKV persistence and suggest the potential for CCL5 receptor antagonists to therapeutically inhibit ZIKV spread and neurovirulence.
Collapse
|
7
|
Curreli F, Ahmed S, Benedict Victor SM, Iusupov IR, Spiridonov EA, Belov DS, Altieri A, Kurkin AV, Debnath AK. Design, synthesis, and antiviral activity of a series of CD4-mimetic small-molecule HIV-1 entry inhibitors. Bioorg Med Chem 2021; 32:116000. [PMID: 33461144 DOI: 10.1016/j.bmc.2021.116000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/31/2020] [Indexed: 11/28/2022]
Abstract
We presented our continuing stride to optimize the second-generation NBD entry antagonist targeted to the Phe43 cavity of HIV-1 gp120. We have synthesized thirty-eight new and novel analogs of NBD-14136, earlier designed based on a CH2OH "positional switch" hypothesis, and derived a comprehensive SAR. The antiviral data confirmed that the linear alcohol towards the "N" (C4) of the thiazole ring yielded more active inhibitors than those towards the "S" (C5) of the thiazole ring. The best inhibitor, NBD-14273 (compound 13), showed both improved antiviral activity and selectivity index (SI) against HIV-1HXB2 compared to NBD-14136. We also tested NBD-14273 against a large panel of 50 HIV-1 Env-pseudotyped viruses representing clinical isolates of diverse subtypes. The overall mean data indicate that antiviral potency against these isolates improved by ~3-fold, and SI also improved ~3-fold compared to NBD-14136. This new and novel inhibitor is expected to pave the way for further optimization to a more potent and clinically relevant inhibitor against HIV-1.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Shahad Ahmed
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Sofia M Benedict Victor
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Ildar R Iusupov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Evgeny A Spiridonov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Asim K Debnath
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA.
| |
Collapse
|
8
|
Ping S, Qiu X, Kyle M, Zhao LR. Brain-derived CCR5 Contributes to Neuroprotection and Brain Repair after Experimental Stroke. Aging Dis 2021; 12:72-92. [PMID: 33532129 PMCID: PMC7801286 DOI: 10.14336/ad.2020.0406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/06/2020] [Indexed: 02/04/2023] Open
Abstract
Chemokine (C-C motif) receptor 5 (CCR5) is expressed not only in the immune cells but also in cerebral cells such as neurons, glia, and vascular cells. Stroke triggers high expression of CCR5 in the brain. However, the role of CCR5 in stroke remains unclear. In this study, using bone marrow chimeras we have determined the involvement of brain-derived or bone marrow-derived CCR5 in neuroprotection and brain repair after experimental stroke. CCR5-/- mice that received either wild-type (WT) or CCR5-/- bone marrow transplantation showed larger infarction sizes than the WT mice that received either WT or CCR5-/- bone marrow transplantation in both the acute (48h) and subacute (2 months) phases after cerebral cortical ischemia, suggesting that the lack of CCR5 in the brain leads to severe brain damage after stroke. However, the lack of CCR5 in the bone marrow-derived cells did not affect infarction size. The impairments of somatosensory-motor function and motor coordination were exacerbated in the mice lacking CCR5 in the brain. At 2 months post-stroke, increased degenerative neurons, decreased dendrites and synapses, decreased Iba1+ microglia/ macrophages, reduced myelination and CNPase+ oligodendrocytes in the peri-infarct cortex were observed in the mice lacking CCR5 in the brain. These pathological changes are significantly correlated with the increased infarction size and exacerbated neurological deficits. These data suggest that brain-derived CCR5 plays a key role in neuroprotection and brain repair in the subacute phase of stroke. This study reveals a novel role of CCR5 in stroke, which sheds new light on post-stroke pathomechanism.
Collapse
Affiliation(s)
- Suning Ping
- Department of Neurosurgery, State University of New York Upstate Medical University, New York, USA
| | - Xuecheng Qiu
- Department of Neurosurgery, State University of New York Upstate Medical University, New York, USA
| | - Michele Kyle
- Department of Neurosurgery, State University of New York Upstate Medical University, New York, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, New York, USA
| |
Collapse
|
9
|
Ma Y, Zhang L, Qin C. The first genetically gene-edited babies: It's "irresponsible and too early". Animal Model Exp Med 2019; 2:1-4. [PMID: 31016280 PMCID: PMC6431114 DOI: 10.1002/ame2.12052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A scientist, Jiankui He of Southern University of Science and Technology of China, recently claimed at the Second International Summit on Human Genome Editing in Hong Kong on 29 November that he has created the world's first genetically altered babies using CRISPR. This announcement sparked controversy and criticism. The newly developed CRISPR/Cas9 technique has been applied to genetic modification of many kinds of animals. However, the technique is still in its infancy and many questions remain to be answered before it can be used for clinical purposes, especially for reproductive purposes.
Collapse
Affiliation(s)
- Yuanwu Ma
- Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Institute of Laboratory Animal SciencePeking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| | - Lianfeng Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencePeking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Institute of Laboratory Animal SciencePeking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious DiseasesBeijingChina
| |
Collapse
|
10
|
Mediouni S, Jablonski JA, Tsuda S, Richard A, Kessing C, Andrade MV, Biswas A, Even Y, Tellinghuisen T, Choe H, Cameron M, Stevenson M, Valente ST. Potent suppression of HIV-1 cell attachment by Kudzu root extract. Retrovirology 2018; 15:64. [PMID: 30236131 PMCID: PMC6149077 DOI: 10.1186/s12977-018-0446-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/10/2018] [Indexed: 01/02/2023] Open
Abstract
There is a constant need to improve antiretrovirals against HIV since therapy is limited by cost, side effects and the emergence of drug resistance. Kudzu is a climbing vine from which the root extract (Pueraria lobata), rich in isoflavones and saponins, has long been used in traditional Chinese medicine for a variety of purposes, from weight loss to alcoholism prevention. Here we show that Kudzu root extract significantly inhibits HIV-1 entry into cell lines, primary human CD4+T lymphocytes and macrophages, without cell-associated toxicity. Specifically, Kudzu inhibits the initial attachment of the viral particle to the cell surface, a mechanism that depends on the envelope glycoprotein gp120 but is independent from the HIV-1 cell receptor CD4 and co-receptors CXCR4/CCR5. This activity seems selective to lentiviruses since Kudzu inhibits HIV-2 and simian immunodeficiency virus, but does not interfere with Hepatitis C, Influenza, Zika Brazil and adenovirus infection. Importantly, depending on the dose, Kudzu can act synergistically or additively with the current antiretroviral cocktails against HIV-1 and can block viruses resistant to the fusion inhibitor Enfuvirtide. Together our results highlight Kudzu's root extract value as a supplement to current antiretroviral therapy against HIV.
Collapse
Affiliation(s)
- S Mediouni
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL, 33458, USA
| | - J A Jablonski
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL, 33458, USA
| | - S Tsuda
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL, 33458, USA
| | - A Richard
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL, 33458, USA
| | - C Kessing
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL, 33458, USA
| | - M V Andrade
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - A Biswas
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL, 33458, USA
| | - Y Even
- The Botanist's Beach Farm, Jupiter, FL, USA
| | - T Tellinghuisen
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL, 33458, USA.,Roche, Basel, Switzerland
| | - H Choe
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL, 33458, USA
| | - M Cameron
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, USA
| | - M Stevenson
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - S T Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL, 33458, USA.
| |
Collapse
|
11
|
Curreli F, Belov DS, Kwon YD, Ramesh R, Furimsky AM, O'Loughlin K, Byrge PC, Iyer LV, Mirsalis JC, Kurkin AV, Altieri A, Debnath AK. Structure-based lead optimization to improve antiviral potency and ADMET properties of phenyl-1H-pyrrole-carboxamide entry inhibitors targeted to HIV-1 gp120. Eur J Med Chem 2018; 154:367-391. [PMID: 29860061 PMCID: PMC5993640 DOI: 10.1016/j.ejmech.2018.04.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 11/20/2022]
Abstract
We are continuing our concerted effort to optimize our first lead entry antagonist, NBD-11021, which targets the Phe43 cavity of the HIV-1 envelope glycoprotein gp120, to improve antiviral potency and ADMET properties. In this report, we present a structure-based approach that helped us to generate working hypotheses to modify further a recently reported advanced lead entry antagonist, NBD-14107, which showed significant improvement in antiviral potency when tested in a single-cycle assay against a large panel of Env-pseudotyped viruses. We report here the synthesis of twenty-nine new compounds and evaluation of their antiviral activity in a single-cycle and multi-cycle assay to derive a comprehensive structure-activity relationship (SAR). We have selected three inhibitors with the high selectivity index for testing against a large panel of 55 Env-pseudotyped viruses representing a diverse set of clinical isolates of different subtypes. The antiviral activity of one of these potent inhibitors, 55 (NBD-14189), against some clinical isolates was as low as 63 nM. We determined the sensitivity of CD4-binding site mutated-pseudoviruses to these inhibitors to confirm that they target HIV-1 gp120. Furthermore, we assessed their ADMET properties and compared them to the clinical candidate attachment inhibitor, BMS-626529. The ADMET data indicate that some of these new inhibitors have comparable ADMET properties to BMS-626529 and can be optimized further to potential clinical candidates.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Young Do Kwon
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ranjith Ramesh
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Anna M Furimsky
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Kathleen O'Loughlin
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Patricia C Byrge
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Lalitha V Iyer
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Jon C Mirsalis
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Asim K Debnath
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA.
| |
Collapse
|
12
|
Curreli F, Kwon YD, Belov DS, Ramesh RR, Kurkin AV, Altieri A, Kwong PD, Debnath AK. Synthesis, Antiviral Potency, in Vitro ADMET, and X-ray Structure of Potent CD4 Mimics as Entry Inhibitors That Target the Phe43 Cavity of HIV-1 gp120. J Med Chem 2017; 60:3124-3153. [PMID: 28266845 DOI: 10.1021/acs.jmedchem.7b00179] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In our attempt to optimize the lead HIV-1 entry antagonist, NBD-11021, we present in this study the rational design and synthesis of 60 new analogues and determination of their antiviral activity in a single-cycle and a multicycle infection assay to derive a comprehensive structure-activity relationship (SAR). Two of these compounds, NBD-14088 and NBD-14107, showed significant improvement in antiviral activity compared to the lead entry antagonist in a single-cycle assay against a large panel of Env-pseudotyped viruses. The X-ray structure of a similar compound, NBD-14010, confirmed the binding mode of the newly designed compounds. The in vitro ADMET profiles of these compounds are comparable to that of the most potent attachment inhibitor BMS-626529, a prodrug of which is currently undergoing phase III clinical trials. The systematic study presented here is expected to pave the way for improving the potency, toxicity, and ADMET profile of this series of compounds with the potential to be moved to the early preclinical development.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center , 310 E 67th Street, New York, New York 10065, United States
| | - Young Do Kwon
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park, Moscow State University , Leninskie Gory, Bld. 75, 77-101b; 119992 Moscow, Russia
| | - Ranjith R Ramesh
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center , 310 E 67th Street, New York, New York 10065, United States
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park, Moscow State University , Leninskie Gory, Bld. 75, 77-101b; 119992 Moscow, Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park, Moscow State University , Leninskie Gory, Bld. 75, 77-101b; 119992 Moscow, Russia
| | - Peter D Kwong
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Asim K Debnath
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center , 310 E 67th Street, New York, New York 10065, United States
| |
Collapse
|
13
|
Zhou M, Greenhill S, Huang S, Silva TK, Sano Y, Wu S, Cai Y, Nagaoka Y, Sehgal M, Cai DJ, Lee YS, Fox K, Silva AJ. CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory. eLife 2016; 5. [PMID: 27996938 PMCID: PMC5213777 DOI: 10.7554/elife.20985] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/19/2016] [Indexed: 11/13/2022] Open
Abstract
Although the role of CCR5 in immunity and in HIV infection has been studied widely, its role in neuronal plasticity, learning and memory is not understood. Here, we report that decreasing the function of CCR5 increases MAPK/CREB signaling, long-term potentiation (LTP), and hippocampus-dependent memory in mice, while neuronal CCR5 overexpression caused memory deficits. Decreasing CCR5 function in mouse barrel cortex also resulted in enhanced spike timing dependent plasticity and consequently, dramatically accelerated experience-dependent plasticity. These results suggest that CCR5 is a powerful suppressor for plasticity and memory, and CCR5 over-activation by viral proteins may contribute to HIV-associated cognitive deficits. Consistent with this hypothesis, the HIV V3 peptide caused LTP, signaling and memory deficits that were prevented by Ccr5 knockout or knockdown. Overall, our results demonstrate that CCR5 plays an important role in neuroplasticity, learning and memory, and indicate that CCR5 has a role in the cognitive deficits caused by HIV.
Collapse
Affiliation(s)
- Miou Zhou
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Stuart Greenhill
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom.,School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Shan Huang
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Tawnie K Silva
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Yoshitake Sano
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | - Shumin Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
| | - Ying Cai
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Yoshiko Nagaoka
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
| | - Megha Sehgal
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Denise J Cai
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Yong-Seok Lee
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kevin Fox
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Alcino J Silva
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
14
|
Zhao Z, Martin C, Fan R, Bourne PE, Xie L. Drug repurposing to target Ebola virus replication and virulence using structural systems pharmacology. BMC Bioinformatics 2016; 17:90. [PMID: 26887654 PMCID: PMC4757998 DOI: 10.1186/s12859-016-0941-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 02/10/2016] [Indexed: 01/09/2023] Open
Abstract
Background The recent outbreak of Ebola has been cited as the largest in history. Despite this global health crisis, few drugs are available to efficiently treat Ebola infections. Drug repurposing provides a potentially efficient solution to accelerating the development of therapeutic approaches in response to Ebola outbreak. To identify such candidates, we use an integrated structural systems pharmacology pipeline which combines proteome-scale ligand binding site comparison, protein-ligand docking, and Molecular Dynamics (MD) simulation. Results One thousand seven hundred and sixty-six FDA-approved drugs and 259 experimental drugs were screened to identify those with the potential to inhibit the replication and virulence of Ebola, and to determine the binding modes with their respective targets. Initial screening has identified a number of promising hits. Notably, Indinavir; an HIV protease inhibitor, may be effective in reducing the virulence of Ebola. Additionally, an antifungal (Sinefungin) and several anti-viral drugs (e.g. Maraviroc, Abacavir, Telbivudine, and Cidofovir) may inhibit Ebola RNA-directed RNA polymerase through targeting the MTase domain. Conclusions Identification of safe drug candidates is a crucial first step toward the determination of timely and effective therapeutic approaches to address and mitigate the impact of the Ebola global crisis and future outbreaks of pathogenic diseases. Further in vitro and in vivo testing to evaluate the anti-Ebola activity of these drugs is warranted. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-0941-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zheng Zhao
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, P. R. China.,National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Che Martin
- The Graduate Center, The City University of New York, New York, USA
| | - Raymond Fan
- Department of Chemistry, Hunter College, The City University of New York, New York, USA
| | - Philip E Bourne
- Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Lei Xie
- The Graduate Center, The City University of New York, New York, USA. .,Department of Computer Science, Hunter College, The City University of New York, New York, USA.
| |
Collapse
|
15
|
Cashin K, Sterjovski J, Harvey KL, Ramsland PA, Churchill MJ, Gorry PR. Covariance of charged amino acids at positions 322 and 440 of HIV-1 Env contributes to coreceptor specificity of subtype B viruses, and can be used to improve the performance of V3 sequence-based coreceptor usage prediction algorithms. PLoS One 2014; 9:e109771. [PMID: 25313689 PMCID: PMC4196930 DOI: 10.1371/journal.pone.0109771] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/05/2014] [Indexed: 11/18/2022] Open
Abstract
The ability to determine coreceptor usage of patient-derived human immunodeficiency virus type 1 (HIV-1) strains is clinically important, particularly for the administration of the CCR5 antagonist maraviroc. The envelope glycoprotein (Env) determinants of coreceptor specificity lie primarily within the gp120 V3 loop region, although other Env determinants have been shown to influence gp120-coreceptor interactions. Here, we determined whether conserved amino acid alterations outside the V3 loop that contribute to coreceptor usage exist, and whether these alterations improve the performance of V3 sequence-based coreceptor usage prediction algorithms. We demonstrate a significant covariant association between charged amino acids at position 322 in V3 and position 440 in the C4 Env region that contributes to the specificity of HIV-1 subtype B strains for CCR5 or CXCR4. Specifically, positively charged Lys/Arg at position 322 and negatively charged Asp/Glu at position 440 occurred more frequently in CXCR4-using viruses, whereas negatively charged Asp/Glu at position 322 and positively charged Arg at position 440 occurred more frequently in R5 strains. In the context of CD4-bound gp120, structural models suggest that covariation of amino acids at Env positions 322 and 440 has the potential to alter electrostatic interactions that are formed between gp120 and charged amino acids in the CCR5 N-terminus. We further demonstrate that inclusion of a "440 rule" can improve the sensitivity of several V3 sequence-based genotypic algorithms for predicting coreceptor usage of subtype B HIV-1 strains, without compromising specificity, and significantly improves the AUROC of the geno2pheno algorithm when set to its recommended false positive rate of 5.75%. Together, our results provide further mechanistic insights into the intra-molecular interactions within Env that contribute to coreceptor specificity of subtype B HIV-1 strains, and demonstrate that incorporation of Env determinants outside V3 can improve the reliability of coreceptor usage prediction algorithms.
Collapse
Affiliation(s)
- Kieran Cashin
- Center for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | | | - Katherine L. Harvey
- Center for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Paul A. Ramsland
- Center for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Surgery (Austin Health), University of Melbourne, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
- School of Biomedical Sciences, CHIRI Biosciences, Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Melissa J. Churchill
- Center for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Microbiology, Monash University, Melbourne, Australia
- Department of Medicine, Monash University, Melbourne, Australia
| | - Paul R. Gorry
- Center for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
- Department of Infectious Diseases, Monash University, Melbourne, Australia
| |
Collapse
|
16
|
Markowitz M, Evering TH, Garmon D, Caskey M, La Mar M, Rodriguez K, Sahi V, Palmer S, Prada N, Mohri H. A randomized open-label study of 3- versus 5-drug combination antiretroviral therapy in newly HIV-1-infected individuals. J Acquir Immune Defic Syndr 2014; 66:140-7. [PMID: 24457632 PMCID: PMC4123437 DOI: 10.1097/qai.0000000000000111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND To understand whether combination antiretroviral therapy (cART) has been optimized, we asked whether 3-drug protease inhibitor (PI)-based cART intensified with raltegravir and maraviroc and initiated during early infection would improve outcomes when compared with similarly applied 3-drug PI-based cART. METHODS Forty newly HIV-1-infected patients were randomized 1:2 to receive 3-drug (N = 14) or 5-drug (N = 26) therapy. The primary end point was the percent of subjects with undetectable plasma viremia using standard reverse transcriptase-polymerase chain reaction and the single copy assay after 48 weeks. Secondary end points included levels of cell-associated HIV-1 DNA and RNA and levels of infectious virus in resting CD4 T cells at week 96 and quantitative and qualitative immunologic responses. RESULTS At 48 weeks, 34 subjects remained on study and are included in the as-treated analysis. Three of 11 (27.3%) in the 3-drug arm and 9 of 21 (42.9%) in the 5-drug arm had plasma HIV-1 RNA levels below detection by both standard reverse transcriptase-polymerase chain reaction and single copy assay (P = 0.46, Fisher exact test). No significant differences in absolute levels of proviral DNA or changes in cell-associated RNA were seen during 96 weeks of therapy. Mean levels of infectious HIV-1 in resting CD4 T cells at week 96 in 7 subjects treated with 3-drugs and 13 with 5-drugs were 0.67 and 0.71 infectious units per million, respectively (P = 0.81). No differences were seen in quantitative or qualitative immunologic determinations including markers of immune activation. CONCLUSIONS Intensified 5-drug cART initiated during early infection fails to significantly further impact virologic or immunologic responses beyond those achieved with standard 3-drug PI-based cART.
Collapse
Affiliation(s)
- Martin Markowitz
- *Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY; †The Rockefeller University, New York, NY; and ‡Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden (Dr Palmer is now with the Westmead Millennium Institute for Medical Research and University of Sydney, Westmead, New South Wales, Australia)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
HIV-1 induces cytoskeletal alterations and Rac1 activation during monocyte-blood-brain barrier interactions: modulatory role of CCR5. Retrovirology 2014; 11:20. [PMID: 24571616 PMCID: PMC4015682 DOI: 10.1186/1742-4690-11-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/07/2014] [Indexed: 01/06/2023] Open
Abstract
Background Most HIV strains that enter the brain are macrophage-tropic and use the CCR5 receptor to bind and infect target cells. Because the cytoskeleton is a network of protein filaments involved in cellular movement and migration, we investigated whether CCR5 and the cytoskeleton are involved in endothelial-mononuclear phagocytes interactions, adhesion, and HIV-1 infection. Results Using a cytoskeleton phospho-antibody microarray, we showed that after co-culture with human brain microvascular endothelial cells (HBMEC), HIV-1 infected monocytes increased expression and activation of cytoskeleton-associated proteins, including Rac1/cdc42 and cortactin, compared to non-infected monocytes co-cultured with HBMEC. Analysis of brain tissues from HIV-1-infected patients validated these findings, and showed transcriptional upregulation of Rac1 and cortactin, as well as increased activation of Rac1 in brain tissues of HIV-1-infected humans, compared to seronegative individuals and subjects with HIV-1-encephalitis. Confocal imaging showed that brain cells expressing phosphorylated Rac1 were mostly macrophages and blood vessels. CCR5 antagonists TAK-799 and maraviroc prevented HIV-induced upregulation and phosphorylation of cytoskeleton-associated proteins, prevented HIV-1 infection of macrophages, and diminished viral-induced adhesion of monocytes to HBMEC. Ingenuity pathway analysis suggests that during monocyte-endothelial interactions, HIV-1 alters protein expression and phosphorylation associated with integrin signaling, cellular morphology and cell movement, cellular assembly and organization, and post-translational modifications in monocytes. CCR5 antagonists prevented these HIV-1-induced alterations. Conclusions HIV-1 activates cytoskeletal proteins during monocyte-endothelial interactions and increase transcription and activation of Rac1 in brain tissues. In addition to preventing macrophage infection, CCR5 antagonists could diminish viral-induced alteration and phosphorylation of cytoskeletal proteins, monocyte adhesion to the brain endothelium and viral entry into the central nervous system.
Collapse
|
18
|
Nikolcheva T, Jäger S, Bush TA, Vargas G. Challenges in the development of companion diagnostics for neuropsychiatric disorders. Expert Rev Mol Diagn 2014; 11:829-37. [DOI: 10.1586/erm.11.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tania Nikolcheva
- Pharma Research and Early Development CNS Biomarkers Section, F. Hoffmann-La Roche, CH-4070 Basel, Switzerland
| | - Stephan Jäger
- Roche Diagnostics GmbH, DBB-L, Nonnenwald 2, 82377 Penzberg, Germany
| | - Theresa Ambrose Bush
- Roche Diagnostics, 9115 Hague Road, PO Box 50457, Indianapolis, IN 46250-0457, USA
| | - Gabriel Vargas
- Pharma Research and Early Development CNS Biomarkers Section, F. Hoffmann-La Roche, CH-4070 Basel, Switzerland
| |
Collapse
|
19
|
A vaccine against CCR5 protects a subset of macaques upon intravaginal challenge with simian immunodeficiency virus SIVmac251. J Virol 2013; 88:2011-24. [PMID: 24307581 DOI: 10.1128/jvi.02447-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
As an alternative to targeting human immunodeficiency virus (HIV), we have developed vaccines targeting CCR5, a self-protein critically involved in HIV replication and pathogenesis. By displaying peptides derived from CCR5 at high density on the surface of virus-like particles, we can efficiently induce high-titer IgG antibodies against this self-molecule. Here, we investigated whether prophylactic immunization of rhesus macaques with a particle-based vaccine targeting two regions of macaque CCR5 could prevent or suppress vaginal infection with highly virulent SIVmac251. Twelve macaques were vaccinated with a bacteriophage Qß-based vaccine targeting macaque CCR5 (Qß.CCR5). Six control animals were immunized with the Qß platform alone. All animals immunized with Qß.CCR5 developed high-titer anti-CCR5 antibody responses. Macaques were vaginally challenged with a high dose of SIVmac251. The mean peak viral RNA levels in the vaccinated groups were 30-fold lower than in the control group (10(6.8) versus 10(8.3) copies/ml plasma). Three of the 12 vaccinated macaques dramatically suppressed simian immunodeficiency virus (SIV) replication: peak viral loads were low (10(3) to 10(4) RNA copies/ml), and SIV RNA became undetectable from 6 weeks onward. No viral RNA or DNA could be detected in colon and lymph node biopsy specimens collected 13 months after challenge. In vivo depletion of CD8(+) cells failed to induce a viral rebound. However, once anti-CCR5 antibody responses had waned, the 3 animals became infected after intravaginal and/or intravenous rechallenge. In conclusion, vaccination against CCR5 was associated with dramatic suppression of virus replication in a subset (25%) of macaques. These data support further research of vaccination against CCR5 to combat HIV infection.
Collapse
|
20
|
Cashin K, Gray LR, Jakobsen MR, Sterjovski J, Churchill MJ, Gorry PR. CoRSeqV3-C: a novel HIV-1 subtype C specific V3 sequence based coreceptor usage prediction algorithm. Retrovirology 2013; 10:24. [PMID: 23446039 PMCID: PMC3599735 DOI: 10.1186/1742-4690-10-24] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/12/2013] [Indexed: 12/17/2022] Open
Abstract
Background The majority of HIV-1 subjects worldwide are infected with HIV-1 subtype C (C-HIV). Although C-HIV predominates in developing regions of the world such as Southern Africa and Central Asia, C-HIV is also spreading rapidly in countries with more developed economies and health care systems, whose populations are more likely to have access to wider treatment options, including the CCR5 antagonist maraviroc (MVC). The ability to reliably determine C-HIV coreceptor usage is therefore becoming increasingly more important. In silico V3 sequence based coreceptor usage prediction algorithms are a relatively rapid and cost effective method for determining HIV-1 coreceptor specificity. In this study, we elucidated the V3 sequence determinants of C-HIV coreceptor usage, and used this knowledge to develop and validate a novel, user friendly, and highly sensitive C-HIV specific coreceptor usage prediction algorithm. Results We characterized every phenotypically-verified C-HIV gp120 V3 sequence available in the Los Alamos HIV Database. Sequence analyses revealed that compared to R5 C-HIV V3 sequences, CXCR4-using C-HIV V3 sequences have significantly greater amino acid variability, increased net charge, increased amino acid length, increased frequency of insertions and substitutions within the GPGQ crown motif, and reduced frequency of glycosylation sites. Based on these findings, we developed a novel C-HIV specific coreceptor usage prediction algorithm (CoRSeqV3-C), which we show has superior sensitivity for determining CXCR4 usage by C-HIV strains compared to all other available algorithms and prediction rules, including Geno2pheno[coreceptor] and WebPSSMSINSI-C, which has been designed specifically for C-HIV. Conclusions CoRSeqV3-C is now openly available for public use at http://www.burnet.edu.au/coreceptor. Our results show that CoRSeqV3-C is the most sensitive V3 sequence based algorithm presently available for predicting CXCR4 usage of C-HIV strains, without compromising specificity. CoRSeqV3-C may be potentially useful for assisting clinicians to decide the best treatment options for patients with C-HIV infection, and will be helpful for basic studies of C-HIV pathogenesis.
Collapse
Affiliation(s)
- Kieran Cashin
- Center for Virology, Burnet Institute, 85 Commercial Rd, Melbourne 3004VIC, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Antibody conjugation approach enhances breadth and potency of neutralization of anti-HIV-1 antibodies and CD4-IgG. J Virol 2013; 87:4985-93. [PMID: 23427154 DOI: 10.1128/jvi.03146-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Broadly neutralizing antibodies PG9 and PG16 effectively neutralize 70 to 80% of circulating HIV-1 isolates. In this study, the neutralization abilities of PG9 and PG16 were further enhanced by bioconjugation with aplaviroc, a small-molecule inhibitor of virus entry into host cells. A novel air-stable diazonium hexafluorophosphate reagent that allows for rapid, tyrosine-selective functionalization of proteins and antibodies under mild conditions was used to prepare a series of aplaviroc-conjugated antibodies, including b12, 2G12, PG9, PG16, and CD4-IgG. The conjugated antibodies blocked HIV-1 entry through two mechanisms: by binding to the virus itself and by blocking the CCR5 receptor on host cells. Chemical modification did not significantly alter the potency of the parent antibodies against nonresistant HIV-1 strains. Conjugation did not alter the pharmacokinetics of a model IgG in blood. The PG9-aplaviroc conjugate was tested against a panel of 117 HIV-1 strains and was found to neutralize 100% of the viruses. PG9-aplaviroc conjugate IC50s were lower than those of PG9 in neutralization studies of 36 of the 117 HIV-1 strains. These results support this new approach to bispecific antibodies and offer a potential new strategy for combining HIV-1 therapies.
Collapse
|
22
|
Dimonte S, Babakir-Mina M, Mercurio F, Di Pinto D, Ceccherini-Silberstein F, Svicher V, Perno CF. Selected amino acid changes in HIV-1 subtype-C gp41 are associated with specific gp120(V3) signatures in the regulation of co-receptor usage. Virus Res 2012; 168:73-83. [PMID: 22732432 DOI: 10.1016/j.virusres.2012.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 11/18/2022]
Abstract
The majority of studies have characterized the tropism of HIV-1 subtype-B isolates, but little is known about the determinants of tropism in other subtypes. So, the goal of the present study was to genetically characterize the envelope of viral proteins in terms of co-receptor usage by analyzing 356 full-length env sequences derived from HIV-1 subtype-C infected individuals. The co-receptor usage of V3 sequences was inferred by using the Geno2Pheno and PSSM algorithms, and also analyzed to the "11/25 rule". All reported env sequences were also analyzed with regard to N-linked glycosylation sites, net charge and hydrophilicity, as well as the binomial correlation phi coefficient to assess covariation among gp120(V3) and gp41 signatures and the average linkage hierarchical agglomerative clustering were also performed. Among env sequences present in Los Alamos Database, 255 and 101 sequences predicted as CCR5 and CXCR4 were selected, respectively. The classical V3 signatures at positions 11 and 25, and other specific V3 and gp41 amino acid changes were found statistically associated with different co-receptor usage. Furthermore, several statistically significant associations between V3 and gp41 signatures were also observed. The dendrogram topology showed a cluster associated with CCR5-usage composed by five gp41 mutated positions, A22V, R133M, E136G, N140L, and N166Q that clustered with T2V(V3) and G24T(V3) (bootstrap=1). Conversely, a heterogeneous cluster with CXCR4-usage, involving S11GR(V3), 13-14insIG/LG(V3), P16RQ(V3), Q18KR(V3), F20ILV(V3), D25KRQ(V3), Q32KR(V3) along with A30T(gp41), S107N(gp41), D148E(gp41), A189S(gp41) was identified (bootstrap=0.86). Our results show that as observed for HIV-1 subtype-B, also in subtype-C specific and different gp41 and gp120V3 amino acid changes are associated individually or together with CXCR4 and/or CCR5 usage. These findings strengthen previous observations that determinants of tropism may also reside in the gp41 protein.
Collapse
Affiliation(s)
- Salvatore Dimonte
- University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Kothandan G, Gadhe CG, Cho SJ. Structural insights from binding poses of CCR2 and CCR5 with clinically important antagonists: a combined in silico study. PLoS One 2012; 7:e32864. [PMID: 22479344 PMCID: PMC3314010 DOI: 10.1371/journal.pone.0032864] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/31/2012] [Indexed: 11/19/2022] Open
Abstract
Chemokine receptors are G protein-coupled receptors that contain seven transmembrane domains. In particular, CCR2 and CCR5 and their ligands have been implicated in the pathophysiology of a number of diseases, including rheumatoid arthritis and multiple sclerosis. Based on their roles in disease, they have been attractive targets for the pharmaceutical industry, and furthermore, targeting both CCR2 and CCR5 can be a useful strategy. Owing to the importance of these receptors, information regarding the binding site is of prime importance. Structural studies have been hampered due to the lack of X-ray crystal structures, and templates with close homologs for comparative modeling. Most of the previous models were based on the bovine rhodopsin and β2-adrenergic receptor. In this study, based on a closer homolog with higher resolution (CXCR4, PDB code: 3ODU 2.5 Å), we constructed three-dimensional models. The main aim of this study was to provide relevant information on binding sites of these receptors. Molecular dynamics simulation was done to refine the homology models and PROCHECK results indicated that the models were reasonable. Here, binding poses were checked with some established inhibitors of high pharmaceutical importance against the modeled receptors. Analysis of interaction modes gave an integrated interpretation with detailed structural information. The binding poses confirmed that the acidic residues Glu291 (CCR2) and Glu283 (CCR5) are important, and we also found some additional residues. Comparisons of binding sites of CCR2/CCR5 were done sequentially and also by docking a potent dual antagonist. Our results can be a starting point for further structure-based drug design.
Collapse
Affiliation(s)
- Gugan Kothandan
- Department of Bio-New Drug Development, College of Medicine, Chosun University, Gwangju, Korea
| | - Changdev G. Gadhe
- Department of Bio-New Drug Development, College of Medicine, Chosun University, Gwangju, Korea
| | - Seung Joo Cho
- Department of Bio-New Drug Development, College of Medicine, Chosun University, Gwangju, Korea
- Department of Cellular Molecular Medicine, Research Center for Resistant Cells, College of Medicine, Chosun University, Gwangju, Korea
- * E-mail:
| |
Collapse
|
24
|
Abbate I, Rozera G, Tommasi C, Bruselles A, Bartolini B, Chillemi G, Nicastri E, Narciso P, Ippolito G, Capobianchi M. Analysis of co‐receptor usage of circulating viral and proviral HIV genome quasispecies by ultra‐deep pyrosequencing in patients who are candidates for CCR5 antagonist treatment. Clin Microbiol Infect 2011; 17:725-31. [DOI: 10.1111/j.1469-0691.2010.03350.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Duri K, Soko W, Gumbo F, Kristiansen K, Mapingure M, Stray-Pedersen B, Muller, and the BHAMC Group F. Genotypic analysis of human immunodeficiency virus type 1 env V3 loop sequences: bioinformatics prediction of coreceptor usage among 28 infected mother-infant pairs in a drug-naive population. AIDS Res Hum Retroviruses 2011; 27:411-9. [PMID: 20969460 DOI: 10.1089/aid.2010.0142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We sought to predict virus coreceptor utilization using a simple bioinformatics method based on genotypic analysis of human immunodeficiency virus types 1 (HIV-1) env V3 loop sequences of 28 infected but drug-naive women during pregnancy and their infected infants and to better understand coreceptor usage in vertical transmission dynamics. The HIV-1 env V3 loop was sequenced from plasma samples and analyzed for viral coreceptor usage and subtype in a cohort of HIV-1-infected pregnant women. Predicted maternal frequencies of the X4, R5X4, and R5 genotypes were 7%, 11%, and 82%, respectively. Antenatal plasma viral load was higher, with a mean log(10) (SD) of 4.8 (1.6) and 3.6 (1.2) for women with the X4 and R5 genotypes, respectively, p = 0.078. Amino acid substitution from the conserved V3 loop crown motif GPGQ to GPGR and lymphadenopathy were associated with the X4 genotype, p = 0.031 and 0.043, respectively. The maternal viral coreceptor genotype was generally preserved in vertical transmission and was predictive of the newborn's viral genotype. Infants born to mothers with X4 genotypes were more likely to have lower birth weights relative to those born to mothers with the R5 genotype, with a mean weight (SD) of 2870 (±332) and 3069 (±300) g, respectively. These data show that at least in HIV-1 subtype C, R5 coreceptor usage is the most predominant genotype, which is generally preserved following vertical transmission and is associated with the V3 GPGQ crown motif. Therefore, antiretroviral-naive pregnant women and their infants can benefit from ARV combination therapies that include R5 entry inhibitors following prediction of their coreceptor genotype using simple bioinformatics methods.
Collapse
Affiliation(s)
- Kerina Duri
- Department of Immunology, University of Zimbabwe, Harare, Zimbabwe
| | - White Soko
- Department of Immunology, National Institute of Health Research, Harare, Zimbabwe
| | - Felicity Gumbo
- Department of Paediatrics and Child Health, University of Zimbabwe, Harare, Zimbabwe
| | - Knut Kristiansen
- Department of Molecular Biology, University of Oslo, Oslo, Norway
| | | | - Babill Stray-Pedersen
- Department of Obstetrics and Gynaecology, University of Oslo and Rikshospitalet, Oslo, Norway
| | | | | |
Collapse
|
26
|
Abstract
Enveloped viruses penetrate their cell targets following the merging of their membrane with that of the cell. This fusion process is catalyzed by one or several viral glycoproteins incorporated on the membrane of the virus. These envelope glycoproteins (EnvGP) evolved in order to combine two features. First, they acquired a domain to bind to a specific cellular protein, named "receptor." Second, they developed, with the help of cellular proteins, a function of finely controlled fusion to optimize the replication and preserve the integrity of the cell, specific to the genus of the virus. Following the activation of the EnvGP either by binding to their receptors and/or sometimes the acid pH of the endosomes, many changes of conformation permit ultimately the action of a specific hydrophobic domain, the fusion peptide, which destabilizes the cell membrane and leads to the opening of the lipidic membrane. The comprehension of these mechanisms is essential to develop medicines of the therapeutic class of entry inhibitor like enfuvirtide (Fuzeon) against human immunodeficiency virus (HIV). In this chapter, we will summarize the different envelope glycoprotein structures that viruses develop to achieve membrane fusion and the entry of the virus. We will describe the different entry pathways and cellular proteins that viruses have subverted to allow infection of the cell and the receptors that are used. Finally, we will illustrate more precisely the recent discoveries that have been made within the field of the entry process, with a focus on the use of pseudoparticles. These pseudoparticles are suitable for high-throughput screenings that help in the development of natural or artificial inhibitors as new therapeutics of the class of entry inhibitors.
Collapse
Affiliation(s)
- François-Loic Cosset
- Université de Lyon, UCB-Lyon1, IFR128, Lyon, France,INSERM, U758, Lyon, France,Ecole Normale Supérieure de Lyon, Lyon, France
| | - Dimitri Lavillette
- Université de Lyon, UCB-Lyon1, IFR128, Lyon, France,INSERM, U758, Lyon, France,Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
27
|
Vargas GA. Personalized healthcare: how to improve outcomes by increasing benefit and decreasing risk through the use of biomarkers. Biomark Med 2010; 3:701-9. [PMID: 20477708 DOI: 10.2217/bmm.09.74] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The use of personalized healthcare is beginning to show promise as a means of increasing benefit and decreasing risk for patients, but much work needs to be done in order to fully exploit the advances in medical science that have occurred over the last 30 years. In particular, molecular approaches that aim to characterize patient individuality must be combined with genetic approaches to capture the promise of this potential revolution in the practice of medicine.
Collapse
Affiliation(s)
- Gabriel A Vargas
- CNS Clinical Biomarker Group, CNS Clinical Research & Exploratory Development, Hoffmann-La Roche, Building 663/2210, 4070 Basel, Switzerland.
| |
Collapse
|
28
|
Mouscadet JF, Desmaële D. Chemistry and structure-activity relationship of the styrylquinoline-type HIV integrase inhibitors. Molecules 2010; 15:3048-78. [PMID: 20657464 PMCID: PMC6263292 DOI: 10.3390/molecules15053048] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 11/25/2022] Open
Abstract
In spite of significant progress in anti-HIV-1 therapy, current antiviral chemo-therapy still suffers from deleterious side effects and emerging drug resistance. Therefore, the development of novel antiviral drugs remains a crucial issue for the fight against AIDS. HIV-1 integrase is a key enzyme in the replication cycle of the retrovirus since it catalyzes the integration of the reverse transcribed viral DNA into the chromosomal DNA. Efforts to develop anti-integrase drugs started during the early nineties, culminating with the recent approval of Raltegravir. The discovery and the development of the styrylquinoline inhibitor class was an important step in the overall process. In this review we have described the key synthetic issues and the structure-activity relationship of this family of integrase inhibitors. Crystallographic and docking studies that shed light on their mechanism of action are also examined.
Collapse
Affiliation(s)
| | - Didier Desmaële
- Faculté de Pharmacie, Université Paris-Sud, UMR CNRS 8076 BIOCIS, Châtenay-Malabry, France
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|
29
|
Zhao Q. Dual targeting of CCR2 and CCR5: therapeutic potential for immunologic and cardiovascular diseases. J Leukoc Biol 2010; 88:41-55. [PMID: 20360402 DOI: 10.1189/jlb.1009671] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A cardinal feature of inflammation is the tissue recruitment of leukocytes, a process that is mediated predominantly by chemokines via their receptors on migrating cells. CCR2 and CCR5, two CC chemokine receptors, are important players in the trafficking of monocytes/macrophages and in the functions of other cell types relevant to disease pathogenesis. This review provides a brief overview of the biological actions of CCR2 and CCR5 and a comprehensive summary of published data that demonstrate the involvement of both receptors in the pathogenesis of immunologic diseases (RA, CD, and transplant rejection) and cardiovascular diseases (atherosclerosis and AIH). In light of the potential for functional redundancy of chemokine receptors in mediating leukocyte trafficking and the consequent concern over insufficient efficacy offered by pharmacologically inhibiting one receptor, this review presents evidence supporting dual targeting of CCR2 and CCR5 as a more efficacious strategy than targeting either receptor alone. It also examines potential safety issues associated with such dual targeting.
Collapse
Affiliation(s)
- Qihong Zhao
- Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543, USA.
| |
Collapse
|
30
|
de Silva UC, Warachit J, Sattagowit N, Jirapongwattana C, Panthong S, Utachee P, Yasunaga T, Ikuta K, Kameoka M, Boonsathorn N. Genotypic characterization of HIV type 1 env gp160 sequences from three regions in Thailand. AIDS Res Hum Retroviruses 2010; 26:223-7. [PMID: 20156104 DOI: 10.1089/aid.2009.0213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report 25 env gp160 sequences from patients in three geographically distinct districts of Thailand, i.e., Lampang in the north, Trang in the south and Rayong in the east. One of these is a CRF01_AE/subtype B recombinant and the other 24 sequences are purely CRF01_AE. Very little interpopulation diversity was observed between the sequences from the three different geographic regions and from those previously reported by our laboratory from central Thailand. Potential N-linked glycosylation sites (PNLGs) were reasonably conserved among the 25 sequences: we found 15 highly conserved PNLGs on gp120 and 4 almost fully conserved PNLGs on gp41. Analysis of coreceptor tropism revealed that six of the isolates were dual tropic and the others were R5 tropic. We also examined a rare seven amino acid deletion found in one isolate at position 847-853 on gp41. These results may enhance our understanding of HIV-1 currently circulating in Thailand.
Collapse
Affiliation(s)
- U. Chandimal de Silva
- Thailand–Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Nonthaburi 11000, Thailand
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Jiranan Warachit
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Nerisa Sattagowit
- Medical Biotechnology Centre, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Chanin Jirapongwattana
- Medical Biotechnology Centre, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Sumolrat Panthong
- Medical Biotechnology Centre, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Piraporn Utachee
- Thailand–Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Nonthaburi 11000, Thailand
| | - Teruo Yasunaga
- Thailand–Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Nonthaburi 11000, Thailand
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kazuyoshi Ikuta
- Thailand–Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Nonthaburi 11000, Thailand
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Masanori Kameoka
- Thailand–Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Nonthaburi 11000, Thailand
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Naphatsawan Boonsathorn
- Medical Biotechnology Centre, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| |
Collapse
|
31
|
Kubin CJ, Hammer SM. Antiretroviral agents. Infect Dis (Lond) 2010. [DOI: 10.1016/b978-0-323-04579-7.00145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
32
|
Hunter Z, Smyth HD, Durfee P, Chackerian B. Induction of mucosal and systemic antibody responses against the HIV coreceptor CCR5 upon intramuscular immunization and aerosol delivery of a virus-like particle based vaccine. Vaccine 2009; 28:403-14. [PMID: 19849995 DOI: 10.1016/j.vaccine.2009.10.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/30/2009] [Accepted: 10/08/2009] [Indexed: 12/28/2022]
Abstract
Virus-like particles (VLPs) can be exploited as platforms to increase the immunogenicity of poorly immunogenic antigens, including self-proteins. We have developed VLP-based vaccines that target two domains of the HIV coreceptor CCR5 that are involved in HIV binding. These vaccines induce anti-CCR5 antibodies that bind to native CCR5 and inhibit SIV infection in vitro. Given the role of mucosal surfaces in HIV transmission and replication, we also asked whether an aerosolized, VLP-based pulmonary vaccine targeting CCR5 could induce a robust mucosal response in addition to a systemic response. In rats, both intramuscular and pulmonary immunization induced high-titer IgG and IgA against the vaccine in the serum, but only aerosol vaccination induced IgA antibodies at local mucosal sites. An intramuscular prime followed by an aerosol boost resulted in strong serum and mucosal antibody responses. These results show that VLP-based vaccines targeting CCR5 induce high-titer systemic antibodies, and can elicit both local and systemic mucosal response when administered via an aerosol. Vaccination against a self-molecule that is critically involved during HIV transmission and pathogenesis is an alternative to targeting the virus itself. More generally, our results provide a general method for inducing broad systemic and mucosal antibody responses using VLP-based immunogens.
Collapse
Affiliation(s)
- Zoe Hunter
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, United States
| | | | | | | |
Collapse
|
33
|
Singh A, Page T, Moore PL, Allgaier RL, Hiramen K, Coovadia HM, Walker BD, Morris L, Ndung’u T. Functional and genetic analysis of coreceptor usage by dualtropic HIV-1 subtype C isolates. Virology 2009; 393:56-67. [PMID: 19695656 PMCID: PMC3492694 DOI: 10.1016/j.virol.2009.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 05/19/2009] [Accepted: 07/15/2009] [Indexed: 11/25/2022]
Abstract
It is widely documented that a complete switch from the predominant CCR5 (R5) to CXCR4 (X4) phenotype is less common for HIV-1 subtype C (HIV-1C) compared to other major subtypes. We investigated whether dualtropic HIV-1C isolates represented dualtropic, mixed R5 and X4 clones or both. Thirty of 35 functional HIV-1 env clones generated by bulk PCR amplification from peripheral blood mononuclear cells (PBMCs) infected with seven dualtropic HIV-1C isolates utilized CXCR4 exclusively. Five of 35 clones displayed dualtropism. Endpoint dilution of one isolate did not yield a substantial proportion of R5-monotropic env clones. Sequence-based predictive algorithms showed that env sequences from PBMCs, CXCR4 or CCR5-expressing cell lines were indistinguishable and all possessed X4/dualtropic characteristics. We describe HIV-1C CXCR4-tropic env sequence features. Our results suggest a dramatic loss of CCR5 monotropism as dualtropism emerges in HIV-1C which has important implications for the use of coreceptor antagonists in therapeutic strategies for this subtype.
Collapse
MESH Headings
- Amino Acid Sequence
- Cells, Cultured
- Cluster Analysis
- DNA, Viral/chemistry
- DNA, Viral/genetics
- HIV-1/classification
- HIV-1/genetics
- HIV-1/physiology
- Humans
- Leukocytes, Mononuclear/virology
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction/methods
- Receptors, CCR5/analysis
- Receptors, CXCR5/analysis
- Receptors, HIV/analysis
- Receptors, HIV/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology
- Virus Internalization
- env Gene Products, Human Immunodeficiency Virus/genetics
Collapse
Affiliation(s)
- Ashika Singh
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Taryn Page
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Penny L. Moore
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
| | - Rachel L. Allgaier
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Charlestown, MA, USA
| | - Keshni Hiramen
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Hoosen M. Coovadia
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
- Department of Paediatrics and Child Heath, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Charlestown, MA, USA
| | - Lynn Morris
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Charlestown, MA, USA
| |
Collapse
|