1
|
Neoh CF, Jeong W, Kong DCM, Beardsley J, Kwok PCL, Slavin MA, Chen SCA. New and emerging roles for inhalational and direct antifungal drug delivery approaches for treatment of invasive fungal infections. Expert Rev Anti Infect Ther 2024; 22:1085-1098. [PMID: 39317940 DOI: 10.1080/14787210.2024.2409408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION The rising prevalence of difficult-to-treat, deep-seated invasive fungal diseases (IFD) has led to high mortality. Currently available antifungal treatments, administered predominantly orally or intravenously, may not sufficiently penetrate certain body sites, and/or are associated with systemic toxicity. Little is known about how to position alternative administration approaches such as inhalational and direct drug delivery routes. AREAS COVERED This review provides an updated overview of unconventional drug delivery strategies for managing IFD, focusing on inhalational (to target the lungs) and direct delivery methods to the central nervous system, bone/joint, and eyes. Novel compounds (e.g. opelconazole) and existing antifungals with innovative drug delivery systems currently undergoing clinical trials and/or used off-label in the clinical setting are discussed. EXPERT OPINION For both inhalational agents and direct delivery approaches, there are similar challenges that include the absence of: approved formulations for specific administration routes, delivery vehicles that are simple and safe to use whilst maintaining potency and efficiency of delivery, animal models suitable for investigating pharmacokinetic/pharmacodynamic profiles of inhaled antifungals, and consensus on the composite endpoints and intervals for of follow-up in clinical trials. To meet these challenges, cooperation of all stakeholders in drug development and regulation is required.
Collapse
Affiliation(s)
- Chin Fen Neoh
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Wirawan Jeong
- Pharmacy Department, The Royal Women's Hospital, Melbourne, Australia
| | - David C M Kong
- The National Centre for Antimicrobial Stewardship, The Peter Doherty Institute for Infections and Immunity, Melbourne, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Justin Beardsley
- Sydney infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
- Westmead Institute for Medical Research, Sydney, Australia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, Australia
| | - Monica A Slavin
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Sharon C-A Chen
- Sydney infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
| |
Collapse
|
2
|
Wang Y, Jin Z, Cui Y, Dong R, Li L, Lizal F, Hriberšek M, Ravnik J, Yang M, Liu Y. An individualised 3D computational flow and particle model to predict the deposition of inhaled medicines - A case study using a nebuliser. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 251:108203. [PMID: 38744057 DOI: 10.1016/j.cmpb.2024.108203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND AND OBJECTIVE Drug inhalation is generally accepted as the preferred administration method for treating respiratory diseases. To achieve effective inhaled drug delivery for an individual, it is necessary to use an interdisciplinary approach that can cope with inter-individual differences. The paper aims to present an individualised pulmonary drug deposition model based on Computational Fluid and Particle Dynamics simulations within a time frame acceptable for clinical use. METHODS We propose a model that can analyse the inhaled drug delivery efficiency based on the patient's airway geometry as well as breathing pattern, which has the potential to also serve as a tool for a sub-regional diagnosis of respiratory diseases. The particle properties and size distribution are taken for the case of drug inhalation by using nebulisers, as they are independent of the patient's breathing pattern. Finally, the inhaled drug doses that reach the deep airways of different lobe regions of the patient are studied. RESULTS The numerical accuracy of the proposed model is verified by comparison with experimental results. The difference in total drug deposition fractions between the simulation and experimental results is smaller than 4.44% and 1.43% for flow rates of 60 l/min and 15 l/min, respectively. A case study involving a COVID-19 patient is conducted to illustrate the potential clinical use of the model. The study analyses the drug deposition fractions in relation to the breathing pattern, aerosol size distribution, and different lobe regions. CONCLUSIONS The entire process of the proposed model can be completed within 48 h, allowing an evaluation of the deposition of the inhaled drug in an individual patient's lung within a time frame acceptable for clinical use. Achieving a 48-hour time window for a single evaluation of patient-specific drug delivery enables the physician to monitor the patient's changing conditions and potentially adjust the drug administration accordingly. Furthermore, we show that the proposed methodology also offers a possibility to be extended to a detection approach for some respiratory diseases.
Collapse
Affiliation(s)
- Yulong Wang
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China.
| | - Zhendong Jin
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China.
| | - Yan Cui
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China.
| | - Rongbo Dong
- Department of Radiology, 95829 Hospital, Gongnongbing Road 15, 430012, Wuhan, China.
| | - Lei Li
- Department of Pediatrics, Union Hospital, Huazhong University of Science and Technology, 1277 Jie Fang Ave., 430022, Wuhan, China.
| | - Frantisek Lizal
- Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 61669, Brno, Czech Republic.
| | - Matjaž Hriberšek
- Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000, Maribor, Slovenia.
| | - Jure Ravnik
- Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000, Maribor, Slovenia.
| | - Mingshi Yang
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| | - Yinshui Liu
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China.
| |
Collapse
|
3
|
Liao Q, Lam JKW. Inhaled Antifungal Agents for the Treatment and Prophylaxis of Pulmonary Mycoses. Curr Pharm Des 2021; 27:1453-1468. [PMID: 33388013 DOI: 10.2174/1381612826666210101153547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022]
Abstract
Pulmonary mycoses are associated with high morbidity and mortality. The current standard treatment by systemic administration is limited by inadequate local bioavailability and systemic toxic effects. Aerosolisation of antifungals is an attractive approach to overcome these problems, but no inhaled antifungal formulation is currently available for the treatment of pulmonary mycoses. Hence, the development of respirable antifungals formulations is of interest and in high demand. In this review, the recent advances in the development of antifungal formulations for pulmonary delivery are discussed, including both nebulised and dry powder formulations. Although the clinical practices of nebulised parenteral amphotericin B and voriconazole formulations (off-label use) are reported to show promising therapeutic effects with few adverse effects, there is no consensus about the dosage regimen (e.g. the dose, frequency, and whether they are used as single or combination therapy). To maximise the benefits of nebulised antifungal therapy, it is important to establish standardised protocol that clearly defines the dose and specifies the device and the administration conditions. Dry powder formulations of antifungal agents such as itraconazole and voriconazole with favourable physicochemical and aerosol properties are developed using various powder engineering technologies, but it is important to consider their suitability for use in patients with compromised lung functions. In addition, more biological studies on the therapeutic efficacy and pharmacokinetic profile are needed to demonstrate their clinical potential.
Collapse
Affiliation(s)
- Qiuying Liao
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, Hong Kong
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, Hong Kong
| |
Collapse
|
4
|
Nebulized Micafungin Treatment for Scopulariopsis/ Microascus Tracheobronchitis in Lung Transplant Recipients. Antimicrob Agents Chemother 2021; 65:AAC.02174-20. [PMID: 33722884 DOI: 10.1128/aac.02174-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/06/2021] [Indexed: 02/02/2023] Open
Abstract
Scopulariopsis/Microascus isolates cause infections with high mortality in lung transplant recipients. Treatment is challenging due to antimicrobial resistance. We describe two cases of Scopulariopsis/Microascus tracheobronchitis in lung transplant recipients successfully treated with nebulized micafungin. This antifungal was well tolerated and achieved high concentrations in epithelial lining fluid up to 14 h after nebulization without significant plasma concentrations. Nebulized micafungin may be a safe and effective option for the treatment of fungal tracheobronchitis.
Collapse
|