1
|
Jung H, Kang J, Han KM, Kim H. Prognostic Value of Pentraxin3 Protein Expression in Human Malignancies: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:3754. [PMID: 39594709 PMCID: PMC11593206 DOI: 10.3390/cancers16223754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Pentraxin 3 (PTX3), a member of the pentraxin superfamily, plays diverse roles in immunity and inflammation. Its dual role in tumorigenesis, exhibiting both protumoral and antitumoral effects, has been the subject of conflicting reports. High PTX3 expression levels in serum and tumor tissues have been associated with poor prognosis in various malignancies, suggesting its potential as a prognostic biomarker. Through this meta-analysis, we aim to comprehensively assess the prognostic significance of PTX3 protein expression in human malignancies and evaluate its potential as a pan-cancer prognostic marker. METHODS A systematic literature search was conducted across the PubMed, Embase, Web of Science, MEDLINE, and Cochrane Library databases. Studies were included if they assessed the association between PTX3 protein expression and overall survival (OS) in cancer patients. Hazard ratios (HRs) were pooled using a random-effects model. Subgroup analyses were performed based on the method of PTX3 assessment, and publication bias was evaluated using Egger's and Begg's tests. RESULTS Nine studies encompassing 1215 patients were included in the analysis. High PTX3 expression was significantly associated with poorer OS (HR = 1.89, 95% CI = 1.55-2.32, p < 0.01) with no significant heterogeneity (I2 = 0%). Subgroup analysis revealed consistent results across different assessment methods (immunohistochemistry: HR = 1.93, p < 0.01; immunoassay: HR = 1.86, p < 0.01). However, publication bias was detected (Egger's test, p = 0.03). CONCLUSIONS High PTX3 protein expression is associated with a poor prognosis in various malignancies, supporting its potential as a prognostic biomarker.
Collapse
Affiliation(s)
| | | | | | - Hyunchul Kim
- Department of Pathology, CHA Ilsan Medical Center, Goyang-si 10414, Gyeonggi-do, Republic of Korea (J.K.); (K.-M.H.)
| |
Collapse
|
2
|
Li GS, Tang YX, Zhang W, Li JD, Huang HQ, Liu J, Fu ZW, He RQ, Kong JL, Zhou HF, Chen G. MMP12 is a Potential Predictive and Prognostic Biomarker of Various Cancers Including Lung Adenocarcinoma. Cancer Control 2024; 31:10732748241235468. [PMID: 38410859 PMCID: PMC10898301 DOI: 10.1177/10732748241235468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/01/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
OBJECTIVE This study sought to explore the clinical value of matrix metalloproteinases 12 (MMP12) in multiple cancers, including lung adenocarcinoma (LUAD). METHODS Using >10,000 samples, this retrospective study demonstrated the first pan-cancer analysis of MMP12. The expression of MMP12 between cancer groups and their control groups was analyzed using Wilcoxon rank-sum tests. The clinical significance of MMP12 expression in multiple cancers was assessed using receiver operating characteristic curves, Kaplan-Meier curves, and univariate Cox analysis. A further LUAD-related analysis based on 4565 multi-center and in-house samples was performed to verify the findings regarding MMP12 in pan-cancer analysis partly. RESULTS MMP12 mRNA is highly expressed in 13 cancers compared to their controls, and the MMP12 protein level is elevated in some of these cancers (e.g., colon adenocarcinoma) (P < .05). MMP12 expression makes it feasible to distinguish 21 cancer tissues from normal tissues (AUC = 0.86). A high MMP12 expression is a prognosis risk factor in eight cancers, such as adrenocortical carcinoma (hazard ratio >1, P < .05). The elevated MMP12 expression is also a prognosis protective factor in breast-invasive carcinoma and colon adenocarcinoma (hazard ratio <1, P < .05). Some pan-cancer findings regarding MMP12 are verified in LUAD-MMP12 expression is upregulated in LUAD at both the mRNA and protein levels (P < .05), has the potential to distinguish LUAD with considerable accuracy (AUC = .91), and plays a risk prognosis factor for patients with the disease (P < .05). CONCLUSIONS MMP12 is highly expressed in most cancers and may serve as a novel biomarker for the prediction and prognosis of numerous cancers.
Collapse
Affiliation(s)
- Guo-Sheng Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yu-Xing Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - He-Qing Huang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Jun Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Zong-Wang Fu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Jin-Liang Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Hua-Fu Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
3
|
Kwon MJ. Matrix metalloproteinases as therapeutic targets in breast cancer. Front Oncol 2023; 12:1108695. [PMID: 36741729 PMCID: PMC9897057 DOI: 10.3389/fonc.2022.1108695] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are the most prominent proteinases involved in tumorigenesis. They were initially recognized to promote tumor progression by remodeling the extracellular matrix through their proteolytic activity. However, accumulating evidence has revealed that some MMPs have protective roles in cancer progression, and the same MMP can exert opposing roles depending on the cell type in which it is expressed or the stage of cancer. Moreover, studies have shown that MMPs are involved in cancer progression through their roles in other biological processes such as cell signaling and immune regulation, independent of their catalytic activity. Despite the prognostic significance of tumoral or stromal expression of MMPs in breast cancer, their roles and molecular mechanisms in breast cancer progression remain unclear. As the failures of early clinical trials with broad-spectrum MMP inhibitors were mainly due to a lack of drug specificity, substantial efforts have been made to develop highly selective MMP inhibitors. Some recently developed MMP inhibitory monoclonal antibodies demonstrated promising anti-tumor effects in preclinical models of breast cancer. Importantly, anti-tumor effects of these antibodies were associated with the modulation of tumor immune microenvironment, suggesting that the use of MMP inhibitors in combination with immunotherapy can improve the efficacy of immunotherapy in HER2-positive or triple-negative breast cancer. In this review, the current understanding of the roles of tumoral or stromal MMPs in breast cancer is summarized, and recent advances in the development of highly selective MMP inhibitors are discussed.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- Vessel-Organ Interaction Research Center (MRC), College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea,BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea,*Correspondence: Mi Jeong Kwon,
| |
Collapse
|
4
|
Liu W, Gajendran B, Sample KM, Wang C, Hu A, Chen B, Li Y, Zacksenhaus E, Ben-David Y. A critical ETV4/Twist1/Vimentin axis in Ha-RAS-induced aggressive breast cancer. Cancer Gene Ther 2022; 29:1590-1599. [PMID: 35477769 DOI: 10.1038/s41417-022-00471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023]
Abstract
RAS oncogenes are major drivers of diverse types of cancer. However, they are largely not druggable, and therefore targeting critical downstream pathways and dependencies is an attractive approach. We have isolated a tumorigenic cell line (FE1.2), which exhibits mesenchymal characteristics, after inoculating Ha-Ras-expressing retrovirus into mammary glands of rats, and subsequently isolated a non-aggressive revertant cell line (FC5). This revertant has lost the rat Ha-Ras driver and showed a more epithelial morphology, slower proliferation in culture, and reduced tumorigenicity in vivo. Re-expression of human Ha-RAS in these cells (FC5-RAS) reinduced mesenchymal morphology, higher proliferation rate, and tumorigenicity that was still significantly milder than parental FE1.2 cells. RNA-seq analysis of FC5-RAS vs FC5-Vector cells identified multiple genes whose expressions were regulated by Ha-RAS. This analysis also identified many genes including those controlling cell growth whose expression was altered by loss of HA-Ras in FC5 cells but remained unchanged upon reintroduction of Ha-RAS. These results suggest that targeting the Ha-Ras driver oncogene induces partial tumor regression, but it still denotes strong efficacy for cancer therapy. Among the RAS-responsive genes, we identified Twist1 as a critical mediator of epithelial-to-mesenchymal transition through the direct transcriptional regulation of vimentin. Mechanistically, we show that Twist1 is induced by the ETS gene, ETV4, downstream of Ha-RAS, and that inhibition of ETV4 suppressed the growth of breast cancer cells driven by the Ha-RAS pathway. Targeting the ETV4/Twist1/Vimentin axis may therefore offer a therapeutic modality for breast tumors driven by the Ha-RAS pathway.
Collapse
Affiliation(s)
- Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants/College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants/College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China.,School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Klarke M Sample
- State Key Laboratory for Functions and Applications of Medicinal Plants/College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants/College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China
| | - Anling Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants/College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China
| | - Beiling Chen
- State Key Laboratory for Functions and Applications of Medicinal Plants/College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China
| | - Yanmei Li
- State Key Laboratory for Functions and Applications of Medicinal Plants/College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Advanced Diagnostics, Toronto General Research Institute-University Health Network, Toronto, ON, Canada
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants/College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China. .,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China.
| |
Collapse
|
5
|
Yeni M, Korkut E, Aksungur N, Kara S, Askin S, Kartal M. Determination of Pentraxin-3, Interleukin-8 and Vascular Endothelial Growth Factor Levels in Patients with Gastric Adenocarcinoma. Asian Pac J Cancer Prev 2021; 22:1507-1512. [PMID: 34048179 PMCID: PMC8408411 DOI: 10.31557/apjcp.2021.22.5.1507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION AND AIM The purpose of this study was to determine the value, in terms of diagnosis, resectability and prognosis of pentraxin-3 (PTX3), interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF) in cases of gastric adenocarcinoma, an important condition both worldwide and in Turkey, and to determine their levels in order to contribute to elucidating the pathogenesis of the disease. MATERIALS AND METHODS Serum was separated from blood specimens collected from 45 patients diagnosed with gastric adenocarcinoma and from a 30-member healthy control group. Serum PTX3, IL-8 and VEGF levels were studied by ELISA method. RESULTS Serum PTX3 values differed significantly between the patient group and the control group (p <0.05). Serum IL-8 values also differed significantly between the patient group and the control group (p <0.05). A significant difference was also observed between serum VEGF values in the patient group and the control group (p <0.05). Significant correlation was determined between serum PTX3 and VEGF (p <0.01; r=0.833), between serum PTX3 and IL-8 (p <0.01; r=0.818), and between serum VEGF and IL-8 (p <0.01; r=0.803), measurements when the entire study population was evaluated irrespectively of groups. CONCLUSION Serum PTX3, IL-8 and VEGF levels decreased in cases of gastric adenocarcinoma compared to the control group, and their levels affected one another.<br />.
Collapse
Affiliation(s)
- Mustafa Yeni
- General Surgery Clinic, Regional Training and Research Hospital, Erzurum, Turkey
| | - Ercan Korkut
- Department of General Surgery, Atatürk University Faculty of Medicine, Erzurum, Turkey
| | - Nurhak Aksungur
- Department of General Surgery, Atatürk University Faculty of Medicine, Erzurum, Turkey
| | - Salih Kara
- General Surgery, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Seda Askin
- Department of Biochemistry, Atatürk University, Erzurum, Turkey
| | - Murat Kartal
- Department of General Surgery, Erzurum Regional Training Research Hospital, Erzurum, Turkey
| |
Collapse
|
6
|
Cui X, Zhang H, Cao A, Cao L, Hu X. Cytokine TNF-α promotes invasion and metastasis of gastric cancer by down-regulating Pentraxin3. J Cancer 2020; 11:1800-1807. [PMID: 32194791 PMCID: PMC7052870 DOI: 10.7150/jca.39562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/20/2019] [Indexed: 01/04/2023] Open
Abstract
As a novel multifaceted player in cancer, Pentraxin3(PTX3) was recognized to be a possible factor related with tumor development. Recent researches have indicated that PTX3 is involved in immune response, inflammation, as well as cancer, and is greatly controlled by numerous cytokines. Tumor necrosis factor (TNF-α) is an imperative cytokine that demonstrates an extensive array of biological consequences in gastric cancer advancement. Here, we inspected the expression of PTX3 in gastric carcinoma tissues along with gastric cell lines and established that PTX3 was suggestively inferior in gastric cancer tissue and cells. The treatment of the gastric cell lines BGC-823 as well as SGC-7901 with rhTNF-α caused substantial decrease in the expression of PTX3. Furthermore, PTX3 controlled the capability of cell migration, invasion as well as epithelial-mesenchymal transition (EMT) in gastric cancer cell lines mediated by TNF-α. Additionally, PTX3 upregulation inhibited tumorigenicity in vivo and could be reversed by exogenous TNF-α. Conversely, overexpression of PTX3 inhibited progress both in vitro as well as in vivo in gastric cancer mediated by TNF-α. Further studies are necessary to demonstrate the mechanism of interaction between PTX3 and cytokines.
Collapse
Affiliation(s)
- Xinye Cui
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011,China
| | - Han Zhang
- Department of Pathology, Dalian Medical University, Dalian 116044, People's Republic of China
| | - An'na Cao
- Department of Pathology, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Liang Cao
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011,China
| | - Xiang Hu
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011,China
| |
Collapse
|
7
|
Cho E, Kwon YJ, Ye DJ, Baek HS, Kwon TU, Choi HK, Chun YJ. G0/G1 Switch 2 Induces Cell Survival and Metastasis through Integrin-Mediated Signal Transduction in Human Invasive Breast Cancer Cells. Biomol Ther (Seoul) 2019; 27:591-602. [PMID: 31272137 PMCID: PMC6824625 DOI: 10.4062/biomolther.2019.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022] Open
Abstract
Human breast cancer cell line, MDA-MB-231, is highly invasive and aggressive, compared to less invasive cell line, MCF-7. To explore the genes that might influence the malignancy of MDA-MB-231, DNA microarray analysis was performed. The results showed that G0/G1 switch 2 (G0S2) was one of the most highly expressed genes among the genes upregulated in MDA-MB-231. Although G0S2 acts as a direct inhibitor of adipose triglyceride lipase, action of G0S2 in cancer progression is not yet understood. To investigate whether G0S2 affects invasiveness of MDA-MB-231 cells, G0S2 expression was inhibited using siRNA, which led to decreased cell proliferation, migration, and invasion of MDA-MB-231 cells. Consequently, G0S2 inhibition inactivated integrinregulated FAK-Src signaling, which promoted Hippo signaling and inactivated ERK1/2 signaling. In addition, G0S2 downregulation decreased β-catenin expression, while E-cadherin expression was increased. It was demonstrated for the first time that G0S2 mediates the Hippo pathway and induces epithelial to mesenchymal transition (EMT). Taken together, our results suggest that G0S2 is a major factor contributing to cell survival and metastasis of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Eunah Cho
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| | - Dong-Jin Ye
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| | - Hyoung-Seok Baek
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| | - Tae-Uk Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| |
Collapse
|
8
|
Mohamad NE, Abu N, Yeap SK, Lim KL, Romli MF, Sharifuddin SA, Long K, Alitheen NB. Apoptosis and metastasis inhibitory potential of pineapple vinegar against mouse mammary gland cells in vitro and in vivo. Nutr Metab (Lond) 2019; 16:49. [PMID: 31372176 PMCID: PMC6660685 DOI: 10.1186/s12986-019-0380-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/23/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Plant-based food medicine and functional foods have been consumed extensively due to their bioactive substances and health-beneficial effects. Vinegar is one of them due to its bioactivities, which confers benefits on human body. Our previous study has produced pineapple vinegar that is rich in gallic acid and caffeic acid via 2 steps fermentation. There are many evidences that show the effectiveness of these resources in inhibiting the proliferation and metastasis of the cancer cells through several mechanisms. METHODS Freeze-dried pineapple vinegar was evaluated for its in vitro apoptosis and metastasis inhibitory potential using MTT, cell cycle, Annexin V and scratch assays. The in vivo test using BALB/c mice challenged with 4 T1 cells was further investigated by pre-treating the mice with 0.08 or 2 ml/kg body weight of freshly-prepared pineapple vinegar for 28 days. The tumor weight, apoptotic state of cells in tumor, metastasis and immune response of the untreated and pineapple vinegar treatment group were evaluated and compared. RESULTS From the in vitro study, an IC50 value of 0.25 mg/mL after 48 h of treatment was established. Annexin V/PI and scratch closure assays showed that pineapple vinegar induced 70% of cell population to undergo apoptosis and inhibited 30% of wound closure of 4 T1 cells. High concentration of pineapple vinegar (2 ml/kg body weight) led to the reduction of tumor weight and volume by 45%as compared to the untreated 4 T1-challenged mice. This effect might have been contributed by the increase of T cell and NK cells population associated with the overexpression of IL-2 andIFN-γ cytokines and splenocyte cytotoxicity. Furthermore, fewer instances of metastasis events were recorded in the pineapple vinegar treatment group and this could be explained by the downregulation of inflammation related genes (iNOS, NF-kB and COX2), metastasis related genes (iCAM, VEGF and MMP9) and angeogenesis related genes (CD26, TIMP1, HGF, MMP3, IGFBP-1 and IGFBP-2). CONCLUSION The ability of pineapple vinegar to delay cancer progression portrayed its potential as chemopreventive dietry intervention for cancer therapy.
Collapse
Affiliation(s)
- Nurul Elyani Mohamad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor Malaysia
| | - Nadiah Abu
- UKM Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Yaa’cob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Malaysia
| | - Kian Lam Lim
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor Malaysia
| | - Muhammad Firdaus Romli
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor Malaysia
| | - Shaiful Adzni Sharifuddin
- Biotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), 43400 Serdang, Selangor Malaysia
| | - Kamariah Long
- Biotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), 43400 Serdang, Selangor Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor Malaysia
- Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor Malaysia
| |
Collapse
|
9
|
Xia H, Yu W, Liu M, Li H, Pang W, Wang L, Zhang Y. An integrated bioinformatics analysis of potential therapeutic targets among matrix metalloproteinases in breast cancer. Oncol Lett 2019; 18:2985-2994. [PMID: 31452777 PMCID: PMC6704324 DOI: 10.3892/ol.2019.10669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/14/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is one of the most aggressive malignancies worldwide among females. Matrix metalloproteinases (MMPs), as the most abundant class of non-serine proteases present in invasive and metastatic tumors, can regulate a variety of alterations in the microenvironment during tumor progression. However, the differential expression of MMPs and its prognostic values in BC is yet to be elucidated. In this research, using the ONCOMINE dataset, The Cancer Genome Atlas, Breast Cancer Gene-Expression Miner v4.1 (Bc-GenExMiner), Kaplan-Meier Plotter and cBioPortal, the transcriptional MMPs and survival outcome data of patients with BC was compared. It was indicated that mRNA levels of MMP1/3/9/10/11/12/13 were increased compared with non-tumor tissues, whereas mRNA expression of MMP2/16/19/23B/28 was lower in BC tissues. Kaplan-Meier plots showed that high mRNA levels of MMP2/10/16/19/20/23B/27 in patients with BC were associated with better recurrence-free survival. In contrast, high MMP1/8/9/11/12 conferred worse RFS rate. Meanwhile, high transcription levels of MMP1/3/11/12/13 predicted shorter distant metastasis-free survival, while high levels of MMP1/12 demonstrated worse overall survival in patients with BC. From Bc-GenExMiner, it was indicated that high expression of MMP16/20 was correlated with better prognosis, while MMP1/9/11/12/13/14/15 exerted a negative effect on patient prognosis. The integrative bioinformatics analysis performed in the present study suggests that MMP1/9/12/16, compared with other MMPs, are potentially appropriate targets for targeted therapy in patients with BC.
Collapse
Affiliation(s)
- Haiqun Xia
- Department of Radiation Oncology, Tungwah Hospital of Sun Yat-Sen University, Dongguan, Guangdong 523000, P.R. China
| | - Weixuan Yu
- Department of Surgical Oncology, Tungwah Hospital of Sun Yat-Sen University, Dongguan, Guangdong 523000, P.R. China
| | - Ming Liu
- Department of Surgical Oncology, Tungwah Hospital of Sun Yat-Sen University, Dongguan, Guangdong 523000, P.R. China
| | - Hong Li
- Department of Surgical Oncology, Tungwah Hospital of Sun Yat-Sen University, Dongguan, Guangdong 523000, P.R. China
| | - Wei Pang
- Department of Radiation Oncology, Tungwah Hospital of Sun Yat-Sen University, Dongguan, Guangdong 523000, P.R. China
| | - Libin Wang
- Department of Surgical Oncology, Tungwah Hospital of Sun Yat-Sen University, Dongguan, Guangdong 523000, P.R. China
| | - Yunda Zhang
- Department of Surgical Oncology, Tungwah Hospital of Sun Yat-Sen University, Dongguan, Guangdong 523000, P.R. China
| |
Collapse
|
10
|
Rathore M, Girard C, Ohanna M, Tichet M, Ben Jouira R, Garcia E, Larbret F, Gesson M, Audebert S, Lacour JP, Montaudié H, Prod'Homme V, Tartare-Deckert S, Deckert M. Cancer cell-derived long pentraxin 3 (PTX3) promotes melanoma migration through a toll-like receptor 4 (TLR4)/NF-κB signaling pathway. Oncogene 2019; 38:5873-5889. [PMID: 31253871 DOI: 10.1038/s41388-019-0848-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 03/30/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023]
Abstract
Cutaneous melanoma is one of the most aggressive cancers characterized by a high plasticity, a propensity for metastasis, and drug resistance. Melanomas are composed of phenotypically diverse subpopulations of tumor cells with heterogeneous molecular profiles that reflect intrinsic invasive abilities. In an attempt to identify novel factors of the melanoma invasive cell state, we previously investigated the nature of the invasive secretome by using a comparative proteomic approach. Here, we have extended this analysis to show that PTX3, an acute phase inflammatory glycoprotein, is one such factor secreted by invasive melanoma to promote tumor cell invasiveness. Elevated PTX3 production was observed in the population of MITFlow invasive cells but not in the population of MITFhigh differentiated melanoma cells. Consistently, MITF knockdown increased PTX3 expression in MITFhigh proliferative and poorly invasive cells. High levels of PTX3 were found in tissues and blood of metastatic melanoma patients, and in BRAF inhibitor-resistant melanoma cells displaying a mesenchymal invasive MITFlow phenotype. Genetic silencing of PTX3 in invasive melanoma cells dramatically impaired migration and invasion in vitro and in experimental lung extravasation assay in xenografted mice. In contrast, addition of melanoma-derived or recombinant PTX3, or expression of PTX3 enhanced motility of low migratory cells. Mechanistically, autocrine production of PTX3 by melanoma cells triggered an IKK/NFκB signaling pathway that promotes migration, invasion, and expression of the EMT factor TWIST1. Finally, we found that TLR4 and MYD88 knockdown inhibited PTX3-induced melanoma cell migration, suggesting that PTX3 functions through a TLR4-dependent pathway. Our work reveals that tumor-derived PTX3 contributes to melanoma cell invasion via targetable inflammation-related pathways. In addition to providing new insights into the biology of melanoma invasive behavior, this study underscores the notion that secreted PTX3 represents a potential biomarker and therapeutic target in a subpopulation of MITFlow invasive and/or refractory melanoma.
Collapse
Affiliation(s)
- M Rathore
- Université Côte d'Azur, INSERM, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - C Girard
- Université Côte d'Azur, INSERM, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - M Ohanna
- Université Côte d'Azur, INSERM, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - M Tichet
- Université Côte d'Azur, INSERM, C3M, Nice, France
- Laboratory of Translational Oncology, ISREC, EPFL, Lausanne, Switzerland
| | - R Ben Jouira
- Université Côte d'Azur, INSERM, C3M, Nice, France
| | - E Garcia
- Université Côte d'Azur, INSERM, C3M, Nice, France
| | - F Larbret
- Université Côte d'Azur, INSERM, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - M Gesson
- Université Côte d'Azur, INSERM, C3M, Nice, France
| | - S Audebert
- Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - J-P Lacour
- Université Côte d'Azur, CHU Nice, Nice, France
| | - H Montaudié
- Université Côte d'Azur, CHU Nice, Nice, France
| | - V Prod'Homme
- Université Côte d'Azur, INSERM, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - S Tartare-Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France.
- Equipe labellisée Ligue Contre le Cancer 2016, Nice, France.
| | - M Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France.
- Equipe labellisée Ligue Contre le Cancer 2016, Nice, France.
| |
Collapse
|
11
|
Chan SH, Tsai JP, Shen CJ, Liao YH, Chen BK. Oleate-induced PTX3 promotes head and neck squamous cell carcinoma metastasis through the up-regulation of vimentin. Oncotarget 2018; 8:41364-41378. [PMID: 28489600 PMCID: PMC5522334 DOI: 10.18632/oncotarget.17326] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/30/2017] [Indexed: 01/08/2023] Open
Abstract
The association between metabolic diseases and the risk of developing cancer is emerging. However, the impact of long pentraxin-3 (PTX3) on dyslipidemia-associated tumor metastasis remains unknown. In this study, we found that oleate induced PTX3 expression and secretion through the activation of Akt/NF-κB pathway in head and neck squamous cell carcinomas (HNSCCs). The activation of NF-κB was essential for the oleate-induced stabilization of PTX3 mRNA. In addition, both the depletion of PTX3 and the inhibition of NF-κB significantly inhibited oleate-induced tumor cell migration and invasion. The enhancement of binding between tumor and endothelial cells was observed in oleate-treated cells but not in the depletion and neutralization of PTX3 with siPTX3 and anti-PTX3 antibodies, respectively. The levels of oleate-induced epithelial-mesenchymal transition (EMT) markers, such as vimentin and MMP-3, were significantly reduced in PTX3-depleted cells. Knocking down vimentin also repressed oleate-induced HNSCC invasion. Furthermore, the depletion of PTX3 blocked the oleate-primed metastatic seeding of tumor cells in the lungs. These results demonstrate that oleate enhances HNSCC metastasis through the PTX3/vimentin signaling axes. The inhibition of PTX3 could be a potential strategy for the treatment of dyslipidemia-mediated HNSCC metastasis.
Collapse
Affiliation(s)
- Shih-Hung Chan
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China
| | - Jhih-Peng Tsai
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China.,Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China
| | - Chih-Jie Shen
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, People's Republic of China
| | - Yu-Han Liao
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China
| | - Ben-Kuen Chen
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China.,Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China.,Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, People's Republic of China
| |
Collapse
|
12
|
Long pentraxin 3: A novel multifaceted player in cancer. Biochim Biophys Acta Rev Cancer 2017; 1869:53-63. [PMID: 29175552 DOI: 10.1016/j.bbcan.2017.11.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 01/12/2023]
Abstract
Since its discovery in 1992, long pentraxin 3 (PTX3) has been characterized as soluble patter recognition receptor, a key player of the innate immunity arm with non-redundant functions in pathogen recognition and inflammatory responses. As a component of the extra-cellular matrix milieu, PTX3 has been implicated also in wound healing/tissue remodeling, cardiovascular diseases, fertility, and infectious diseases. Consequently, PTX3 levels in biological fluids have been proposed as a fluid-phase biomarker in different pathological conditions. In the last decade, experimental evidences have shown that PTX3 may exert a significant impact also on different aspects of cancer biology, including tumor onset, angiogenesis, metastatic dissemination and immune-modulation. However, it remains unclear whether PTX3 acts as a good cop or bad cop in cancer. In this review, we will summarize and discuss the scientific literature data focusing on the role of PTX3 in experimental and human tumors, including its putative translational implications.
Collapse
|
13
|
Shi AP, Fan ZM, Ma KW, Jiang YF, Wang L, Zhang KW, Fu SB, Xu N, Zhang ZR. Isolation and characterization of adult mammary stem cells from breast cancer-adjacent tissues. Oncol Lett 2017; 14:2894-2902. [PMID: 28927044 PMCID: PMC5588124 DOI: 10.3892/ol.2017.6485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/28/2017] [Indexed: 01/06/2023] Open
Abstract
Normal adult mammary stem cells (AMSCs) are promising sources for breast reconstruction, particularly following the resection of breast tumors. However, carcinogenic events can potentially convert normal AMSCs to cancer stem cells, posing a safety concern for the use of AMSCs for clinical tissue regeneration. In the present study, AMSCs and autologous primary breast cancer cells were isolated and compared for their ability to differentiate, their gene expression profile, and their potential to form tumors in vivo. AMSCs were isolated from normal tissue surrounding primary breast tumors by immunomagnetic sorting. The pluripotency of these cells was investigated by differentiation analysis, and gene expression profiles were compared with microarrays. Differentially expressed candidate genes were confirmed by reverse transcription-polymerase chain reaction and western blot analyses. The in vivo tumorigenicity of these cells, compared with low-malignancy MCF-7 cells, was also investigated by xenograft tumor formation analysis. The results revealed that AMSCs isolated from normal tissues surrounding primary breast tumors were positive for the stem cell markers epithelial-specific antigen and keratin-19. When stimulated with basic fibroblast growth factor, a differentiation agent, these AMSCs formed lobuloalveolar structures with myoepithelia that were positive for common acute lymphoblastic leukemia antigen. The gene expression profiles revealed that, compared with cancer cells, AMSCs expressed low levels of oncogenes, including MYC, RAS and ErbB receptor tyrosine kinase 2, and high levels of tumor suppressor genes, including RB transcriptional corepressor 1, phosphatase and tensin homolog, and cyclin-dependent kinase inhibitor 2A. When injected into nude non-obese diabetic/severe combined immunodeficiency-type mice, the AMSCs did not form tumors, and regular mammary ductal structures were generated. The AMSCs isolated from normal tissue adjacent to primary breast tumors had the normal phenotype of mammary stem cells, and therefore may be promising candidates for mammary reconstruction subsequent to breast tumor resection.
Collapse
Affiliation(s)
- Ai-Ping Shi
- Department of Breast Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhi-Min Fan
- Department of Breast Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ke-Wei Ma
- Department of Oncology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan-Fang Jiang
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Wang
- Department of Breast Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ke-Wei Zhang
- Department of Oncology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shi-Bo Fu
- MH Radiobiology Research Unit, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ning Xu
- Department of Urology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhi-Ru Zhang
- Department of Breast Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
14
|
Ma D, Zong Y, Zhu ST, Wang YJ, Li P, Zhang ST. Inhibitory Role of Pentraxin-3 in Esophageal Squamous Cell Carcinoma. Chin Med J (Engl) 2017; 129:2233-40. [PMID: 27625097 PMCID: PMC5022346 DOI: 10.4103/0366-6999.189921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Esophageal cancer is the sixth leading cause of cancer-related death worldwide. Pentraxin-3 (PTX3) is a member of the PTX superfamily. Here, we investigated the role of PTX3 in esophageal squamous cell carcinoma (ESCC). METHODS The effect of PTX3 on ESCC cell proliferation, colony formation, apoptosis, migration, and invasion was investigated using cell viability assays, colony formation assays, flow cytometry, and migration and invasion assays. The effect of PTX3 on the tumorigenicity of ESCC in vivo was investigated with xenograft studies in nude mice. RESULTS PTX3 overexpression in ESCC cells reduced cellular proliferation and colony formation (P < 0.05) and increased the rate of apoptosis (P < 0.05). PTX3 expression had no significant effect on the migratory or invasive potential of ESCC cells. In our mouse model of human ESCC, we achieved 100% successful tumor establishment. Compared with the control and empty vector-expressing groups, the PTX3-expressing group formed significantly smaller tumors (P < 0.05). CONCLUSIONS This study indicates that PTX3 might play an inhibitory role in ESCC.
Collapse
Affiliation(s)
- Dan Ma
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases; Beijing Digestive Disease Center; Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, China
| | - Ye Zong
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases; Beijing Digestive Disease Center; Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, China
| | - Sheng-Tao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases; Beijing Digestive Disease Center; Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, China
| | - Yong-Jun Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases; Beijing Digestive Disease Center; Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases; Beijing Digestive Disease Center; Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, China
| | - Shu-Tian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases; Beijing Digestive Disease Center; Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, China
| |
Collapse
|
15
|
Ying TH, Lee CH, Chiou HL, Yang SF, Lin CL, Hung CH, Tsai JP, Hsieh YH. Knockdown of Pentraxin 3 suppresses tumorigenicity and metastasis of human cervical cancer cells. Sci Rep 2016; 6:29385. [PMID: 27377307 PMCID: PMC4932528 DOI: 10.1038/srep29385] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 06/20/2016] [Indexed: 01/14/2023] Open
Abstract
Pentraxin 3 (PTX3) as an inflammatory molecule has been shown to be involved in immune response, inflammation, and cancer. However, the effects of PTX3 on the biological features of cervical cancer cells in vitro and in vivo have not been delineated. Immunohistochemical staining showed that increased PTX3 expression was significantly associated with tumor grade (P < 0.011) and differentiation (P < 0.019). Knocking down PTX3 with lentivirus-mediated small hairpin RNA (shRNA) in cervical cancer cell lines resulted in inhibited cell viability, diminished colony-forming ability, and induced cell cycle arrest at the G2/M phase of the cell cycle, along with downregulated expression of cyclin B1, cdc2, and cdc25c, and upregulated expression of p-cdc2, p-cdc25c, p21, and p27. Furthermore, knockdown of PTX3 significantly decreased the potential of migration and invasion of cervical cancer cells by inhibiting matrix metalloproteidase-2 (MMP-2), MMP-9, and urokinase plasminogen activator (uPA). Moreover, in vivo functional studies showed PTX3-knockdown in mice suppressed tumorigenicity and lung metastatic potential. Conversely, overexpression of PTX3 enhanced proliferation and invasion both in vitro and in vivo. Our results demonstrated that PTX3 contributes to tumorigenesis and metastasis of human cervical cancer cells. Further studies are warranted to demonstrate PTX3 as a novel therapeutic biomarker for human cervical cancer.
Collapse
Affiliation(s)
- Tsung-Ho Ying
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Hsing Lee
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.,Division of Pediatric Surgery, Department of Surgery, Children's Hospital of China Medical University, Taichung, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chu-Liang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Hung Hung
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Jen-Pi Tsai
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.,Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Clinical laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
16
|
Inhibition of pentraxin 3 in glioma cells impairs proliferation and invasion in vitro and in vivo. J Neurooncol 2016; 129:201-9. [DOI: 10.1007/s11060-016-2168-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/01/2016] [Indexed: 12/17/2022]
|
17
|
Melanoma cell therapy: Endothelial progenitor cells as shuttle of the MMP12 uPAR-degrading enzyme. Oncotarget 2015; 5:3711-27. [PMID: 25003596 PMCID: PMC4116515 DOI: 10.18632/oncotarget.1987] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The receptor for the urokinase-type plasminogen activator (uPAR) accounts for many features of cancer progression, and is therefore considered a target for anti-tumoral therapy. Only full length uPAR mediates tumor progression. Matrix-metallo-proteinase-12 (MMP12)-dependent uPAR cleavage results into the loss of invasion properties and angiogenesis. MMP12 can be employed in the field of “targeted therapies” as a biological drug to be delivered directly in patient's tumor mass. Endothelial Progenitor Cells (EPCs) are selectively recruited within the tumor and could be used as cellular vehicles for delivering anti-cancer molecules. The aim of our study is to inhibit cancer progression by engeneering ECFCs, a subset of EPC, with a lentivirus encoding the anti-tumor uPAR-degrading enzyme MMP12. Ex vivo manipulated ECFCs lost the capacity to perform capillary morphogenesis and acquired the anti-tumor and anti-angiogenetic activity. In vivo MMP12-engineered ECFCs cleaved uPAR within the tumor mass and strongly inhibited tumor growth, tumor angiogenesis and development of lung metastasis. The possibility to exploit tumor homing and activity of autologous MMP12-engineered ECFCs represents a novel way to combat melanoma by a “personalized therapy”, without rejection risk. The i.v. injection of radiolabelled MMP12-ECFCs can thus provide a new theranostic approach to control melanoma progression and metastasis.
Collapse
|
18
|
Chen WY, Wu F, You ZY, Zhang ZM, Guo YL, Zhong LX. Analyzing the differentially expressed genes and pathway cross-talk in aggressive breast cancer. J Obstet Gynaecol Res 2014; 41:132-40. [PMID: 25227254 DOI: 10.1111/jog.12495] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/03/2014] [Indexed: 01/03/2023]
Abstract
AIM The aim of this study was to explore the genes and pathways involved in the aggressive breast cancer cells. METHODS The gene expression profiles of GSE40057, including four aggressive breast cell lines and six less aggressive cell lines, were downloaded from the Gene Expression Omnibus (GEO) database. The gene differential expression analysis was carried out with limma software with the method of Bayes for multiple tests. The gene ontology (GO) term enrichment and pathway cross-talk analysis were performed with the online tool of DAVID and Cytoscape software. RESULTS A total of 401 differentially expressed genes (DEG), such as pentraxin 3 (PTX3), snail family zinc finger 2 (SNAI2), interleukin-8/6 (IL-8/6), osteonectin (SPARC), matrix metallopeptidase-1 (MMP-1) and Ras-related protein Rab-25 (Rab 25), were identified between aggressive and less aggressive cell lines. They were mainly enriched in the GO terms of response to wounding, negative regulation of cell proliferation and calcium binding. Pathways in cancer dysfunctionally interacted with glyoxylate and dicarboxylate metabolism (P < 0.0001), basal transcription factors (P < 0.0001), tyrosine metabolism (P < 0.0001), calcium signaling pathway (P = 0.0021), FcγR-mediated phagocytosis (P = 0.0022), metabolism of xenobiotics by cytochrome P450 (P = 0.0097) and phagosome (P = 0.0102). CONCLUSION The screened aggressive cancer-associated DEG (PTX3, SNAI2, IL-8/6, SPARC, MMP-1 and Rab25) and significant pathways (calcium signaling pathway, tyrosine metabolism, alanine, aspartate and glutamate metabolism) give us new insights into the mechanism of aggressive breast cancer cells, and these DEG may become promising target genes in the treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Wen-Yan Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | | | | | | | | | | |
Collapse
|
19
|
Liu C, Yao Y, Wang W. Pentraxin-3 as a prognostic marker in patients with small-cell lung cancer. Med Oncol 2014; 31:207. [DOI: 10.1007/s12032-014-0207-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/23/2014] [Indexed: 01/14/2023]
|
20
|
Dodd T, Wiggins L, Hutcheson R, Smith E, Musiyenko A, Hysell B, Russell JC, Rocic P. Impaired coronary collateral growth in the metabolic syndrome is in part mediated by matrix metalloproteinase 12-dependent production of endostatin and angiostatin. Arterioscler Thromb Vasc Biol 2013; 33:1339-49. [PMID: 23599440 DOI: 10.1161/atvbaha.113.301533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We have previously shown that transient coronary artery occlusion stimulated coronary collateral growth (CCG) in healthy (Sprague Dawley) but not in metabolic syndrome (JCR:LA-cp [JCR] ) rats. Here, we sought to determine whether matrix metalloproteinases (MMPs) negatively regulate CCG in the metabolic syndrome via release of endostatin and angiostatin. APPROACH AND RESULTS Rats underwent transient, repetitive left anterior descending occlusion and resultant myocardial ischemia (RI) for 0 to 10 days. CCG was measured in the collateral-dependent and normal zones using microspheres, MMP activation by Western blot, and endostatin and angiostatin by ELISA on days 0, 3, 6, 9, or 10 of RI. Endostatin and angiostatin were increased in JCR but not in Sprague Dawley rats on days 6 and 9 of RI. Increased endostatin and angiostatin correlated with increased MMP12 (≈ 4-fold) activation in JCR but not in Sprague Dawley rats on days 6 and 9 of RI. Inhibition of MMP12 in JCR rats nearly completely blocked endostatin (≈ 85%) and angiostatin (≈ 90%) generation and significantly improved CCG (collateral-dependent zone flow was ≈ 66% of normal zone flow versus ≈ 12% for JCR RI). CONCLUSIONS Compromised CCG in the metabolic syndrome is, in large part, because of increased MMP12 activation and consequent increased generation of endostatin and angiostatin, which inhibits late-stage collateral remodeling.
Collapse
Affiliation(s)
- Tracy Dodd
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Shishido SN, Varahan S, Yuan K, Li X, Fleming SD. Humoral innate immune response and disease. Clin Immunol 2012; 144:142-58. [PMID: 22771788 PMCID: PMC3576926 DOI: 10.1016/j.clim.2012.06.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/05/2012] [Accepted: 06/09/2012] [Indexed: 12/27/2022]
Abstract
The humoral innate immune response consists of multiple components, including the naturally occurring antibodies (NAb), pentraxins and the complement and contact cascades. As soluble, plasma components, these innate proteins provide key elements in the prevention and control of disease. However, pathogens and cells with altered self proteins utilize multiple humoral components to evade destruction and promote pathogy. Many studies have examined the relationship between humoral immunity and autoimmune disorders. This review focuses on the interactions between the humoral components and their role in promoting the pathogenesis of bacterial and viral infections and chronic diseases such as atherosclerosis and cancer. Understanding the beneficial and detrimental aspects of the individual components and the interactions between proteins which regulate the innate and adaptive response will provide therapeutic targets for subsequent studies.
Collapse
Affiliation(s)
- Stephanie N Shishido
- Department of Diagnostic Medicine and Pathology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | |
Collapse
|
22
|
Zalman Y, Klipper E, Farberov S, Mondal M, Wee G, Folger JK, Smith GW, Meidan R. Regulation of angiogenesis-related prostaglandin f2alpha-induced genes in the bovine corpus luteum. Biol Reprod 2012; 86:92. [PMID: 22174022 DOI: 10.1095/biolreprod.111.095067] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We recently compared prostaglandin F2alpha (PG)-induced global gene expression profiles in PG-refractory, bovine corpus luteum (CL) collected on Day 4 of the estrous cycle, versus PG-responsive, Day 11 CL. Transcriptome analyses led us to study the regulation of angiogenesis-related genes by PG and their functions in luteal endothelial cells (ECs). We found that PG regulated angiogenesis-modulating factors in a luteal stage-dependent way. A robust increase in FGF2 expression (mRNA and protein) occurred in the PG-refractory Day 4 CL promoting CL survival and function. Inhibitors of FGF2 action, thrombospondin 1 and 2, their receptor (CD36), and PTX3 were upregulated by PG specifically in Day 11 CL undergoing luteolysis. VEGF mRNA decreased 4 h post-PG in both Day 4 and Day 11 CL. The resulting destabilization of blood vessels in Day 11 CL is expected to weaken the gland and reduce its hormonal output. These genes were expressed in dispersed luteal ECs and steroidogenic cells; however, thrombospondin 1 and FGF2 were more abundant in luteal ECs. Expression of such genes and their ability to modulate FGF2 actions were investigated. Similar to its in vivo effect, PG, in vitro, stimulated the expression of thrombospondins and PTX3 genes in several luteal cell models. Importantly, these factors influenced the angiogenic properties of luteal ECs. FGF2 dose-dependently enhanced cell migration and proliferation, whereas thrombospondin 1 and PTX3 inhibited FGF2 actions in luteal ECs. Collectively, the data presented here suggest that, by tilting the balance between pro- and antiangiogenic factors, PG can potentially control the ability of the CL to resist or advance toward luteolysis.
Collapse
Affiliation(s)
- Yulia Zalman
- Department of Animal Sciences, the Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
23
|
The interconnectedness of cancer cell signaling. Neoplasia 2012; 13:1183-93. [PMID: 22241964 DOI: 10.1593/neo.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 11/18/2022] Open
Abstract
The elegance of fundamental and applied research activities have begun to reveal a myriad of spatial and temporal alterations in downstream signaling networks affected by cell surface receptor stimulation including G protein-coupled receptors and receptor tyrosine kinases. Interconnected biochemical pathways serve to integrate and distribute the signaling information throughout the cell by orchestration of complex biochemical circuits consisting of protein interactions and covalent modification processes. It is clear that scientific literature summarizing results from both fundamental and applied scientific research activities has served to provide a broad foundational biologic database that has been instrumental in advancing our continued understanding of underlying cancer biology. This article reflects on historical advances and the role of innovation in the competitive world of grant-sponsored research.
Collapse
|
24
|
Hernandez L, Magalhaes MAO, Coniglio SJ, Condeelis JS, Segall JE. Opposing roles of CXCR4 and CXCR7 in breast cancer metastasis. Breast Cancer Res 2011; 13:R128. [PMID: 22152016 PMCID: PMC3326570 DOI: 10.1186/bcr3074] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 09/20/2011] [Accepted: 12/09/2011] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION CXCL12-CXCR4 signaling has been shown to play a role in breast cancer progression by enhancing tumor growth, angiogenesis, triggering cancer cell invasion in vitro, and guiding cancer cells to their sites of metastasis. However, CXCR7 also binds to CXCL12 and has been recently found to enhance lung and breast primary tumor growth, as well as metastasis formation. Our goal was to dissect the contributions of CXCR4 and CXCR7 to the different steps of metastasis - in vivo invasion, intravasation and metastasis formation. METHODS We overexpressed CXCR4, CXCR7 or both in the rat mammary adenocarcinoma cell line MTLn3. Stable expressors were used to form tumors in severe combined immunodeficiency (SCID) mice, and in vivo invasiveness, intravital motility, intravasation, and metastasis were measured. RESULTS We found that CXCR4 overexpression increased the chemotactic and invasive behavior of MTLn3 cells to CXCL12, both in vitro and in vivo, as well as in vivo motility and intravasation. CXCR7 overexpression enhanced primary tumor growth and angiogenesis (as indicated by microvessel density and VEGFA expression), but decreased in vivo invasion, intravasation, and metastasis formation. In vitro, expression of CXCR7 alone had no effect in chemotaxis or invasion to CXCL12. However, in the context of increased CXCR4 expression, CXCR7 enhanced chemotaxis to CXCL12 but decreased invasion in response to CXCL12 in vitro and in vivo and impaired CXCL12 stimulated matrix degradation. The changes in matrix degradation correlated with expression of matrix metalloproteinase 12 (MMP12). CONCLUSIONS We find that CXCR4 and CXCR7 play different roles in metastasis, with CXCR4 mediating breast cancer invasion and CXCR7 impairing invasion but enhancing primary tumor growth through angiogenesis.
Collapse
Affiliation(s)
- Lorena Hernandez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
25
|
Wang JX, He YL, Zhu ST, Yang S, Zhang ST. Aberrant methylation of the 3q25 tumor suppressor gene PTX3 in human esophageal squamous cell carcinoma. World J Gastroenterol 2011; 17:4225-30. [PMID: 22072855 PMCID: PMC3208368 DOI: 10.3748/wjg.v17.i37.4225] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/24/2011] [Accepted: 03/31/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify the novel methylation-silenced gene pentraxin 3 (PTX3) in esophageal squamous cell carcinoma (ESCC).
METHODS: PTX3 mRNA expression was examined in six human ESCC cell lines, one human immortalized normal esophageal epithelial cell line, primary ESCC tumor tissue, and paired adjacent nontumor tissue using reverse transcription polymerase chain reaction (RT-PCR). Semi-quantitative immunohistochemistry was used to examine cellular localisation and protein levels. Methylation specific PCR and bisulphite genomic sequencing were employed to investigate the methylation of the candidate gene.
RESULTS: In the majority of ESCC cell lines, we found that PTX3 expression was down-regulated due to gene promoter hypermethylation, which was further confirmed by bisulphite genomic sequencing. Demethylation treatment with 5-aza-2’-deoxycytidine restored PTX3 mRNA expression in ESCC cell lines. Methylation was more common in tumor tissues (85%) than in adjacent nontumor tissues (25%) (P < 0 .01).
CONCLUSION: PTX3 is down-regulated through promoter hypermethylation in ESCC, and could potentially serve as a biomarker of ESCC.
Collapse
|
26
|
Decock J, Thirkettle S, Wagstaff L, Edwards DR. Matrix metalloproteinases: protective roles in cancer. J Cell Mol Med 2011; 15:1254-65. [PMID: 21418514 PMCID: PMC4373327 DOI: 10.1111/j.1582-4934.2011.01302.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The original notion that matrix metalloproteinases (MMPs) act as tumour and metastasis-promoting enzymes by clearing a path for tumour cells to invade and metastasize has been challenged in the last decade. It has become clear that MMPs are involved in numerous steps of tumour progression and metastasis, and hence are now considered to be multifaceted proteases. Moreover, more recent experimental evidence indicates that some members of the MMP family behave as tumour-suppressor enzymes and should therefore be regarded as anti-targets in cancer therapy. The complexity of the pro- and anti-tumorigenic and -metastatic functions might partly explain why broad-spectrum MMP inhibitors failed in phase III clinical trials. This review will provide a focussed overview of the published data on the tumour-suppressive behaviour of MMPs.
Collapse
Affiliation(s)
- Julie Decock
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | | | | | | |
Collapse
|
27
|
Chu JH, Lazarus R, Carey VJ, Raby BA. Quantifying differential gene connectivity between disease states for objective identification of disease-relevant genes. BMC SYSTEMS BIOLOGY 2011; 5:89. [PMID: 21627793 PMCID: PMC3128864 DOI: 10.1186/1752-0509-5-89] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 05/31/2011] [Indexed: 02/16/2023]
Abstract
Background Network modeling of whole transcriptome expression data enables characterization of complex epistatic (gene-gene) interactions that underlie cellular functions. Though numerous methods have been proposed and successfully implemented to develop these networks, there are no formal methods for comparing differences in network connectivity patterns as a function of phenotypic trait. Results Here we describe a novel approach for quantifying the differences in gene-gene connectivity patterns across disease states based on Graphical Gaussian Models (GGMs). We compare the posterior probabilities of connectivity for each gene pair across two disease states, expressed as a posterior odds-ratio (postOR) for each pair, which can be used to identify network components most relevant to disease status. The method can also be generalized to model differential gene connectivity patterns within previously defined gene sets, gene networks and pathways. We demonstrate that the GGM method reliably detects differences in network connectivity patterns in datasets of varying sample size. Applying this method to two independent breast cancer expression data sets, we identified numerous reproducible differences in network connectivity across histological grades of breast cancer, including several published gene sets and pathways. Most notably, our model identified two gene hubs (MMP12 and CXCL13) that each exhibited differential connectivity to more than 30 transcripts in both datasets. Both genes have been previously implicated in breast cancer pathobiology, but themselves are not differentially expressed by histologic grade in either dataset, and would thus have not been identified using traditional differential gene expression testing approaches. In addition, 16 curated gene sets demonstrated significant differential connectivity in both data sets, including the matrix metalloproteinases, PPAR alpha sequence targets, and the PUFA synthesis pathway. Conclusions Our results suggest that GGM can be used to formally evaluate differences in global interactome connectivity across disease states, and can serve as a powerful tool for exploring the molecular events that contribute to disease at a systems level.
Collapse
Affiliation(s)
- Jen-hwa Chu
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston MA 02115, USA.
| | | | | | | |
Collapse
|
28
|
Dinosaurs and ancient civilizations: reflections on the treatment of cancer. Neoplasia 2011; 12:957-68. [PMID: 21170260 DOI: 10.1593/neo.101588] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 11/15/2010] [Accepted: 11/15/2010] [Indexed: 12/14/2022] Open
Abstract
Research efforts in the area of palaeopathology have been seen as an avenue to improve our understanding of the pathogenesis of cancer. Answers to questions of whether dinosaurs had cancer, or if cancer plagued ancient civilizations, have captured the imagination as well as the popular media. Evidence for dinosaurian cancer may indicate that cancer may have been with us from the dawn of time. Ancient recorded history suggests that past civilizations attempted to fight cancer with a variety of interventions. When contemplating the issue why a generalized cure for cancer has not been found, it might prove useful to reflect on the relatively limited time that this issue has been an agenda item of governmental attention as well as continued introduction of an every evolving myriad of manmade carcinogens relative to the total time cancer has been present on planet Earth. This article reflects on the history of cancer and the progress made following the initiation of the "era of cancer chemotherapy."
Collapse
|
29
|
Yoshihara T, Takahashi-Yanaga F, Shiraishi F, Morimoto S, Watanabe Y, Hirata M, Hoka S, Sasaguri T. Anti-angiogenic effects of differentiation-inducing factor-1 involving VEGFR-2 expression inhibition independent of the Wnt/β-catenin signaling pathway. Mol Cancer 2010; 9:245. [PMID: 20843378 PMCID: PMC2946290 DOI: 10.1186/1476-4598-9-245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 09/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Differentiation-inducing factor-1 (DIF-1) is a putative morphogen that induces cell differentiation in Dictyostelium discoideum. DIF-1 inhibits proliferation of various mammalian tumor cells by suppressing the canonical Wnt/β-catenin signaling pathway. To assess the potential of a novel cancer chemotherapy based on the pharmacological effect of DIF-1, we investigated whether DIF-1 exhibits anti-angiogenic effects in vitro and in vivo. RESULTS DIF-1 not only inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) by restricting cell cycle in the G0/G1 phase and degrading cyclin D1, but also inhibited the ability of HUVECs to form capillaries and migrate. Moreover, DIF-1 suppressed VEGF- and cancer cell-induced neovascularization in Matrigel plugs injected subcutaneously to murine flank. Subsequently, we attempted to identify the mechanism behind the anti-angiogenic effects of DIF-1. We showed that DIF-1 strongly decreased vascular endothelial growth factor receptor-2 (VEGFR-2) expression in HUVECs by inhibiting the promoter activity of human VEGFR-2 gene, though it was not caused by inhibition of the Wnt/β-catenin signaling pathway. CONCLUSION These results suggested that DIF-1 inhibits angiogenesis both in vitro and in vivo, and reduction of VEGFR-2 expression is involved in the mechanism. A novel anti-cancer drug that inhibits neovascularization and tumor growth may be developed by successful elucidation of the target molecules for DIF-1 in the future.
Collapse
Affiliation(s)
- Tatsuya Yoshihara
- Department of Clinical Pharmacology, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
The War on Cancer rages on. Neoplasia 2010; 11:1252-63. [PMID: 20019833 DOI: 10.1593/neo.91866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 02/08/2023] Open
Abstract
In 1971, the "War on Cancer" was launched by the US government to cure cancer by the 200-year anniversary of the founding of the United States of America, 1976. This article briefly looks back at the progress that has been made in cancer research and compares progress made in other areas of human affliction. While progress has indeed been made, the battle continues to rage on.
Collapse
|
31
|
Albini A, Indraccolo S, Noonan DM, Pfeffer U. Functional genomics of endothelial cells treated with anti-angiogenic or angiopreventive drugs. Clin Exp Metastasis 2010; 27:419-39. [PMID: 20383568 DOI: 10.1007/s10585-010-9312-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 02/16/2010] [Indexed: 01/28/2023]
Abstract
Angiogenesis is a highly regulated physiological process that has been studied in considerable detail given its importance in several chronic pathologies. Many endogenous factors and hormones intervene in the regulation of angiogensis and classical as well as targeted drugs have been developed for its control. Angiogenesis inhibition has come off the bench and entered into clinical application for cancer therapy, particularly for metastatic disease. While the clinical benefit is currently in terms of months, preclinical data suggest that novel drugs and drug combinations could lead to substantial improvement. The many targets of endogenous angiogenesis inhibitors reflect the complexity of the process; in contrast, current clinical therapies mainly target the vascular endothelial growth factor system. Cancer chemopreventive compounds can retard tumor insurgence and delay or prevent metastasis and many of these molecules hinder angiogenesis, a mechanism that we termed angioprevention. Angiopreventive drugs appear to prevalently act through the inhibition of the pro-inflammatory and anti-apoptotic player NFkappaB, thus contrasting inflammation dependent angiogenesis. Relatively little is known concerning the effects of these angiogenesis inhibitors on gene expression of endothelial cells, the main target of many of these molecules. Here we provide an exhaustive list of anti-angiogenic molecules, and summarize their effects, where known, on the transcriptome and functional genomics of endothelial cells. The regulation of specific genes can be crucial to preventive or therapeutic intervention. Further, novel targets might help to circumvent resistance to anti-angiogenic therapy. The studies we review are relevant not only to cancer but also to other chronic degenerative diseases involving endothelial cells, such as cardiovascular disorders, diabetes, rheumatoid arthritis and retinopaties, as well as vessel aging.
Collapse
Affiliation(s)
- Adriana Albini
- MultiMedica Castellanza (VA) and Oncology Research, IRCCS MultiMedica, 20138 Milan, Italy.
| | | | | | | |
Collapse
|