1
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Roy A, Niharika, Chakraborty S, Mishra J, Singh SP, Patra SK. Mechanistic aspects of reversible methylation modifications of arginine and lysine of nuclear histones and their roles in human colon cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:261-302. [PMID: 37019596 DOI: 10.1016/bs.pmbts.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Developmental proceedings and maintenance of cellular homeostasis are regulated by the precise orchestration of a series of epigenetic events that eventually control gene expression. DNA methylation and post-translational modifications (PTMs) of histones are well-characterized epigenetic events responsible for fine-tuning gene expression. PTMs of histones bear molecular logic of gene expression at chromosomal territory and have become a fascinating field of epigenetics. Nowadays, reversible methylation on histone arginine and lysine is gaining increasing attention as a significant PTM related to reorganizing local nucleosomal structure, chromatin dynamics, and transcriptional regulation. It is now well-accepted and reported that histone marks play crucial roles in colon cancer initiation and progression by encouraging abnormal epigenomic reprogramming. It is becoming increasingly clear that multiple PTM marks at the N-terminal tails of the core histones cross-talk with one another to intricately regulate DNA-templated biological processes such as replication, transcription, recombination, and damage repair in several malignancies, including colon cancer. These functional cross-talks provide an additional layer of message, which spatiotemporally fine-tunes the overall gene expression regulation. Nowadays, it is evident that several PTMs instigate colon cancer development. How colon cancer-specific PTM patterns or codes are generated and how they affect downstream molecular events are uncovered to some extent. Future studies would address more about epigenetic communication, and the relationship between histone modification marks to define cellular functions in depth. This chapter will comprehensively highlight the importance of histone arginine and lysine-based methylation modifications and their functional cross-talk with other histone marks from the perspective of colon cancer development.
Collapse
|
3
|
Wang S, C Ordonez-Rubiano S, Dhiman A, Jiao G, Strohmier BP, Krusemark CJ, Dykhuizen EC. Polycomb group proteins in cancer: multifaceted functions and strategies for modulation. NAR Cancer 2021; 3:zcab039. [PMID: 34617019 PMCID: PMC8489530 DOI: 10.1093/narcan/zcab039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Polycomb repressive complexes (PRCs) are a heterogenous collection of dozens, if not hundreds, of protein complexes composed of various combinations of subunits. PRCs are transcriptional repressors important for cell-type specificity during development, and as such, are commonly mis-regulated in cancer. PRCs are broadly characterized as PRC1 with histone ubiquitin ligase activity, or PRC2 with histone methyltransferase activity; however, the mechanism by which individual PRCs, particularly the highly diverse set of PRC1s, alter gene expression has not always been clear. Here we review the current understanding of how PRCs act, both individually and together, to establish and maintain gene repression, the biochemical contribution of individual PRC subunits, the mis-regulation of PRC function in different cancers, and the current strategies for modulating PRC activity. Increased mechanistic understanding of PRC function, as well as cancer-specific roles for individual PRC subunits, will uncover better targets and strategies for cancer therapies.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Sandra C Ordonez-Rubiano
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Alisha Dhiman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Guanming Jiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Brayden P Strohmier
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| |
Collapse
|
4
|
Kaneko S, Takasawa K, Asada K, Shinkai N, Bolatkan A, Yamada M, Takahashi S, Machino H, Kobayashi K, Komatsu M, Hamamoto R. Epigenetic Mechanisms Underlying COVID-19 Pathogenesis. Biomedicines 2021; 9:1142. [PMID: 34572329 PMCID: PMC8466119 DOI: 10.3390/biomedicines9091142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
In 2019, a novel severe acute respiratory syndrome called coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was reported and was declared a pandemic by the World Health Organization (WHO) in March 2020. With the advancing development of COVID-19 vaccines and their administration globally, it is expected that COVID-19 will converge in the future; however, the situation remains unpredictable because of a series of reports regarding SARS-CoV-2 variants. Currently, there are still few specific effective treatments for COVID-19, as many unanswered questions remain regarding the pathogenic mechanism of COVID-19. Continued elucidation of COVID-19 pathogenic mechanisms is a matter of global importance. In this regard, recent reports have suggested that epigenetics plays an important role; for instance, the expression of angiotensin I converting enzyme 2 (ACE2) receptor, an important factor in human infection with SARS-CoV-2, is epigenetically regulated; further, DNA methylation status is reported to be unique to patients with COVID-19. In this review, we focus on epigenetic mechanisms to provide a new molecular framework for elucidating the pathogenesis of SARS-CoV-2 infection in humans and of COVID-19, along with the possibility of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ken Takasawa
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ken Asada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Norio Shinkai
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Amina Bolatkan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masayoshi Yamada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- National Cancer Center Hospital, Department of Endoscopy, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Satoshi Takahashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Hidenori Machino
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Kazuma Kobayashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
5
|
Asada K, Kaneko S, Takasawa K, Machino H, Takahashi S, Shinkai N, Shimoyama R, Komatsu M, Hamamoto R. Integrated Analysis of Whole Genome and Epigenome Data Using Machine Learning Technology: Toward the Establishment of Precision Oncology. Front Oncol 2021; 11:666937. [PMID: 34055633 PMCID: PMC8149908 DOI: 10.3389/fonc.2021.666937] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
With the completion of the International Human Genome Project, we have entered what is known as the post-genome era, and efforts to apply genomic information to medicine have become more active. In particular, with the announcement of the Precision Medicine Initiative by U.S. President Barack Obama in his State of the Union address at the beginning of 2015, "precision medicine," which aims to divide patients and potential patients into subgroups with respect to disease susceptibility, has become the focus of worldwide attention. The field of oncology is also actively adopting the precision oncology approach, which is based on molecular profiling, such as genomic information, to select the appropriate treatment. However, the current precision oncology is dominated by a method called targeted-gene panel (TGP), which uses next-generation sequencing (NGS) to analyze a limited number of specific cancer-related genes and suggest optimal treatments, but this method causes the problem that the number of patients who benefit from it is limited. In order to steadily develop precision oncology, it is necessary to integrate and analyze more detailed omics data, such as whole genome data and epigenome data. On the other hand, with the advancement of analysis technologies such as NGS, the amount of data obtained by omics analysis has become enormous, and artificial intelligence (AI) technologies, mainly machine learning (ML) technologies, are being actively used to make more efficient and accurate predictions. In this review, we will focus on whole genome sequencing (WGS) analysis and epigenome analysis, introduce the latest results of omics analysis using ML technologies for the development of precision oncology, and discuss the future prospects.
Collapse
Affiliation(s)
- Ken Asada
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Syuzo Kaneko
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Ken Takasawa
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Hidenori Machino
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoshi Takahashi
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Norio Shinkai
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Shimoyama
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Masaaki Komatsu
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Ryuji Hamamoto
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
6
|
Anwar T, Gonzalez ME, Kleer CG. Noncanonical Functions of the Polycomb Group Protein EZH2 in Breast Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:774-783. [PMID: 33556366 PMCID: PMC8127103 DOI: 10.1016/j.ajpath.2021.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Enhancer of Zeste Homologue 2 (EZH2) is the catalytic subunit of the polycomb repressive complex 2 (PRC2) that is critical for determining cell identity. An epigenetic writer, EZH2 has a well-defined role in transcriptional repression by depositing trimethyl marks on lysine 27 of histone H3. However, there is mounting evidence that histone methyltransferases like EZH2 exert histone methyltransferase-independent functions. The relevance of these functions to breast cancer progression and their regulatory mechanisms are only beginning to become understood. Here, we review the current understanding of EZH2 H3K27me3-independent, noncanonical, functions and their regulation in breast cancer.
Collapse
Affiliation(s)
- Talha Anwar
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria E Gonzalez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Celina G Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
7
|
Asada K, Bolatkan A, Takasawa K, Komatsu M, Kaneko S, Hamamoto R. Critical Roles of N6-Methyladenosine (m 6A) in Cancer and Virus Infection. Biomolecules 2020; 10:1071. [PMID: 32709063 PMCID: PMC7408378 DOI: 10.3390/biom10071071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Studies have shown that epigenetic abnormalities are involved in various diseases, including cancer. In particular, in order to realize precision medicine, the integrated analysis of genetics and epigenetics is considered to be important; detailed epigenetic analysis in the medical field has been becoming increasingly important. In the epigenetics analysis, DNA methylation and histone modification analyses have been actively studied for a long time, and many important findings were accumulated. On the other hand, recently, attention has also been focused on RNA modification in the field of epigenetics; now it is known that RNA modification is associated with various biological functions, such as regulation of gene expression. Among RNA modifications, functional analysis of N6-methyladenosine (m6A), the most abundant RNA modification found from humans to plants is actively progressing, and it has also been known that m6A abnormality is involved in cancer and other diseases. Importantly, recent studies have shown that m6A is related to viral infections. Considering the current world situation under threat of viral infections, it is important to deepen knowledge of RNA modification from the viewpoint of viral diseases. Hence, in this review, we have summarized the recent findings regarding the roles of RNA modifications in biological functions, cancer biology, and virus infection, particularly focusing on m6A in mRNA.
Collapse
Affiliation(s)
- Ken Asada
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (A.B.); (K.T.); (M.K.)
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Amina Bolatkan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (A.B.); (K.T.); (M.K.)
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Ken Takasawa
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (A.B.); (K.T.); (M.K.)
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Masaaki Komatsu
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (A.B.); (K.T.); (M.K.)
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Ryuji Hamamoto
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (A.B.); (K.T.); (M.K.)
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| |
Collapse
|
8
|
Urulangodi M, Mohanty A. DNA damage response and repair pathway modulation by non-histone protein methylation: implications in neurodegeneration. J Cell Commun Signal 2020; 14:31-45. [PMID: 31749026 PMCID: PMC7176765 DOI: 10.1007/s12079-019-00538-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Protein post-translational modifications (PTMs) have emerged to be combinatorial, essential mechanisms used by eukaryotic cells to regulate local chromatin structure, diversify and extend their protein functions and dynamically coordinate complex intracellular signalling processes. Most common types of PTMs include enzymatic addition of small chemical groups resulting in phosphorylation, glycosylation, poly(ADP-ribosyl)ation, nitrosylation, methylation, acetylation or covalent attachment of complete proteins such as ubiquitin and SUMO. Protein arginine methyltransferases (PRMTs) and protein lysine methyltransferases (PKMTs) enzymes catalyse the methylation of arginine and lysine residues in target proteins, respectively. Rapid progress in quantitative proteomic analysis and functional assays have not only documented the methylation of histone proteins post-translationally but also identified their occurrence in non-histone proteins which dynamically regulate a plethora of cellular functions including DNA damage response and repair. Emerging advances have now revealed the role of both histone and non-histone methylations in the regulating the DNA damage response (DDR) proteins, thereby modulating the DNA repair pathways both in proliferating and post-mitotic neuronal cells. Defects in many cellular DNA repair processes have been found primarily manifested in neuronal tissues. Moreover, fine tuning of the dynamicity of methylation of non-histone proteins as well as the perturbations in this dynamic methylation processes have recently been implicated in neuronal genomic stability maintenance. Considering the impact of methylation on chromatin associated pathways, in this review we attempt to link the evidences in non-histone protein methylation and DDR with neurodegenerative research.
Collapse
Affiliation(s)
- Madhusoodanan Urulangodi
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, PIN-695011, India.
| | - Abhishek Mohanty
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, PIN-110085, India.
| |
Collapse
|
9
|
Hamamoto R, Komatsu M, Takasawa K, Asada K, Kaneko S. Epigenetics Analysis and Integrated Analysis of Multiomics Data, Including Epigenetic Data, Using Artificial Intelligence in the Era of Precision Medicine. Biomolecules 2019; 10:62. [PMID: 31905969 PMCID: PMC7023005 DOI: 10.3390/biom10010062] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
To clarify the mechanisms of diseases, such as cancer, studies analyzing genetic mutations have been actively conducted for a long time, and a large number of achievements have already been reported. Indeed, genomic medicine is considered the core discipline of precision medicine, and currently, the clinical application of cutting-edge genomic medicine aimed at improving the prevention, diagnosis and treatment of a wide range of diseases is promoted. However, although the Human Genome Project was completed in 2003 and large-scale genetic analyses have since been accomplished worldwide with the development of next-generation sequencing (NGS), explaining the mechanism of disease onset only using genetic variation has been recognized as difficult. Meanwhile, the importance of epigenetics, which describes inheritance by mechanisms other than the genomic DNA sequence, has recently attracted attention, and, in particular, many studies have reported the involvement of epigenetic deregulation in human cancer. So far, given that genetic and epigenetic studies tend to be accomplished independently, physiological relationships between genetics and epigenetics in diseases remain almost unknown. Since this situation may be a disadvantage to developing precision medicine, the integrated understanding of genetic variation and epigenetic deregulation appears to be now critical. Importantly, the current progress of artificial intelligence (AI) technologies, such as machine learning and deep learning, is remarkable and enables multimodal analyses of big omics data. In this regard, it is important to develop a platform that can conduct multimodal analysis of medical big data using AI as this may accelerate the realization of precision medicine. In this review, we discuss the importance of genome-wide epigenetic and multiomics analyses using AI in the era of precision medicine.
Collapse
Affiliation(s)
- Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.K.); (K.T.); (K.A.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masaaki Komatsu
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.K.); (K.T.); (K.A.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ken Takasawa
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.K.); (K.T.); (K.A.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ken Asada
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.K.); (K.T.); (K.A.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.K.); (K.T.); (K.A.); (S.K.)
| |
Collapse
|
10
|
Kim S, Bolatkan A, Kaneko S, Ikawa N, Asada K, Komatsu M, Hayami S, Ojima H, Abe N, Yamaue H, Hamamoto R. Deregulation of the Histone Lysine-Specific Demethylase 1 Is Involved in Human Hepatocellular Carcinoma. Biomolecules 2019; 9:810. [PMID: 31805626 PMCID: PMC6995592 DOI: 10.3390/biom9120810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and is a leading cause of cancer-related death worldwide. Given that the standard-of-care for advanced liver cancer is limited, there is an urgent need to develop a novel molecular targeted therapy to improve therapeutic outcomes for HCC. In order to tackle this issue, we conducted functional analysis of the histone lysine-specific demethylase (LSD1) to explore the possibility that this enzyme acts as a therapeutic target in HCC. According to immunohistochemical analysis, 232 of 303 (77%) HCC cases showed positive staining of LSD1 protein, and its expression was correlated with several clinicopathological characteristics, such as female gender, AFP (alpha-fetoprotein) levels, and HCV (hepatitis C virus) infectious. The survival curves for HCC using the Kaplan-Meier method and the log-rank test indicate that positive LSD1 protein expression was significantly associated with decreased rates of overall survival (OS) and disease-free survival (DFS); the multivariate analysis indicates that LSD1 expression was an independent prognostic factor for both OS and DFS in patients with HCC. In addition, knockout of LSD1 using the CRISPR/Cas9 system showed a significantly lower number of colony formation units (CFUs) and growth rate in both SNU-423 and SNU-475 HCC cell lines compared to the corresponding control cells. Moreover, LSD1 knockout decreased cells in S phase of SNU-423 and SNU-475 cells with increased levels of H3K4me1/2 and H3K9me1/2. Finally, we identified the signaling pathways regulated by LSD1 in HCC, including the retinoic acid (RA) pathway. Our findings imply that deregulation of LSD1 can be involved in HCC; further studies may explore the usefulness of LSD1 as a therapeutic target of HCC.
Collapse
Affiliation(s)
- Sangchul Kim
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Department of Gastroenterological and General Surgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan;
| | - Amina Bolatkan
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
| | - Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
| | - Noriko Ikawa
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
| | - Ken Asada
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masaaki Komatsu
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Shinya Hayami
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8510, Japan; (S.H.); (H.Y.)
| | - Hidenori Ojima
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Nobutsugu Abe
- Department of Gastroenterological and General Surgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan;
| | - Hiroki Yamaue
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8510, Japan; (S.H.); (H.Y.)
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
11
|
A P, Xu X, Wang C, Yang J, Wang S, Dai J, Ye L. EZH2 promotes DNA replication by stabilizing interaction of POLδ and PCNA via methylation-mediated PCNA trimerization. Epigenetics Chromatin 2018; 11:44. [PMID: 30071900 PMCID: PMC6071395 DOI: 10.1186/s13072-018-0213-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022] Open
Abstract
Background Proliferating cell nuclear antigen (PCNA), a ring-shaped homotrimer complex, promotes DNA replication via binding to DNA polymerase. Trimerized PCNA is critical for DNA replication. Enhancer of zeste homologue 2 (EZH2), which primarily acts as a histone methyltransferase, is essential for proliferation. However, how EZH2 promotes proliferation by controlling DNA replication through PCNA remains elusive. Results Here, we showed that low EZH2 levels repressed the proliferation of human dental pulp cells (hDPCs). The EZH2 protein level was dramatically upregulated in hDPCs at S phase in the absence of H3K27 trimethylation. Molecularly, EZH2 interacted with PCNA via the PIP box and dimethylated PCNA at lysine 110. Dimethylation of PCNA is essential for stabilization of the PCNA trimer and the binding of DNA polymerase δ to PCNA. Conclusions Our data reveal the direct interaction between PCNA and EZH2 and a novel mechanism by which EZH2 orchestrates genome duplication. Electronic supplementary material The online version of this article (10.1186/s13072-018-0213-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng A
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xinyi Xu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Jing Yang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Shida Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Jiewen Dai
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
12
|
Oki S, Sone K, Oda K, Hamamoto R, Ikemura M, Maeda D, Takeuchi M, Tanikawa M, Mori-Uchino M, Nagasaka K, Miyasaka A, Kashiyama T, Ikeda Y, Arimoto T, Kuramoto H, Wada-Hiraike O, Kawana K, Fukayama M, Osuga Y, Fujii T. Oncogenic histone methyltransferase EZH2: A novel prognostic marker with therapeutic potential in endometrial cancer. Oncotarget 2018; 8:40402-40411. [PMID: 28418882 PMCID: PMC5522273 DOI: 10.18632/oncotarget.16316] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/17/2017] [Indexed: 01/20/2023] Open
Abstract
The histone methyltransferase EZH2, a key epigenetic modifier, is known to be associated with human tumorigenesis. However, the physiological importance of EZH2 and its clinical relevance in endometrial cancer remain unclear. Hence, in the present study, we investigated the expression and function of EZH2 in endometrial cancer. In a quantitative real-time PCR analysis of 11 endometrial cancer cell lines and 52 clinical endometrial cancer specimens, EZH2 was significantly overexpressed in cancer cells and tissues compared to that in corresponding normal control cells and tissues. Kaplan-Meier survival analysis using data of the TCGA RNA-seq database and tissue microarrays (TMAs) indicated that EZH2 overexpression is associated with endometrial cancer prognosis. In addition, knockdown of EZH2 using specific siRNAs resulted in growth suppression and apoptosis induction of endometrial cancer cells, accompanied by attenuation of H3K27 trimethylation. Consistent with these results, treatment with GSK126, a specific EZH2 inhibitor, suppressed endometrial cancer cell growth and decreased the number of cancer cell colonies. Furthermore, GSK126 showed additive effects with doxorubicin or cisplatin, which are conventional drugs for treatment of endometrial cancer. Further studies should explore the therapeutic potential of inhibiting EZH2 in patients with endometrial cancer.
Collapse
Affiliation(s)
- Shinya Oki
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Masako Ikemura
- Department of Pathology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Daichi Maeda
- Department of Pathology, Faculty of Medicine, Akita University, Akita 010-8543, Japan
| | - Makoto Takeuchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mayuyo Mori-Uchino
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kazunori Nagasaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Aki Miyasaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoko Kashiyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuji Ikeda
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takahide Arimoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroyuki Kuramoto
- Center for Female Preventive Medicine, Kanagawa Health Service Association, Naka-ku, Yokohama, Kanagawa 231-0021, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Masashi Fukayama
- Department of Pathology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
13
|
Yoshioka Y, Suzuki T, Matsuo Y, Nakakido M, Tsurita G, Simone C, Watanabe T, Dohmae N, Nakamura Y, Hamamoto R. SMYD3-mediated lysine methylation in the PH domain is critical for activation of AKT1. Oncotarget 2018; 7:75023-75037. [PMID: 27626683 PMCID: PMC5342720 DOI: 10.18632/oncotarget.11898] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
AKT1 is a cytosolic serine/threonine kinase that is overexpressed in various types of cancer and has a central role in human tumorigenesis. Although it is known that AKT1 is post-translationally modified in various ways including phosphorylation and ubiquitination, methylation has not been reported so far. Here we demonstrate that the protein lysine methyltransferase SMYD3 methylates lysine 14 in the PH domain of AKT1 both in vitro and in vivo. Lysine 14-substituted AKT1 shows significantly lower levels of phosphorylation at threonine 308 than wild-type AKT1, and knockdown of SMYD3 as well as treatment with a SMYD3 inhibitor significantly attenuates this phosphorylation in cancer cells. Furthermore, substitution of lysine 14 diminishes the plasma membrane accumulation of AKT1, and cancer cells overexpressing lysine 14-substiuted AKT1 shows lower growth rate than those overexpressing wild-type AKT1. These results imply that SMYD3-mediated methylation of AKT1 at lysine 14 is essential for AKT1 activation and that SMYD3-mediated AKT1 methylation appears to be a good target for development of anti-cancer therapy.
Collapse
Affiliation(s)
- Yuichiro Yoshioka
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, MC2115 Chicago, IL 60637, USA.,Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yo Matsuo
- OncoTherapy Science, Inc., Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Makoto Nakakido
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, MC2115 Chicago, IL 60637, USA
| | - Giichiro Tsurita
- Department of Surgery, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Cristiano Simone
- Division of Medical Genetics, Department of Biomedical Science and Human Oncology (DIMO), University of Bari 'Aldo Moro', Bari 70124, Italy
| | - Toshiaki Watanabe
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, MC2115 Chicago, IL 60637, USA
| | - Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, MC2115 Chicago, IL 60637, USA
| |
Collapse
|
14
|
Janardhan A, Kathera C, Darsi A, Ali W, He L, Yang Y, Luo L, Guo Z. Prominent role of histone lysine demethylases in cancer epigenetics and therapy. Oncotarget 2018; 9:34429-34448. [PMID: 30344952 PMCID: PMC6188137 DOI: 10.18632/oncotarget.24319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022] Open
Abstract
Protein methylation has an important role in the regulation of chromatin, gene expression and regulation. The protein methyl transferases are genetically altered in various human cancers. The enzymes that remove histone methylation have led to increased awareness of protein interactions as potential drug targets. Specifically, Lysine Specific Demethylases (LSD) removes methylated histone H3 lysine 4 (H3K4) and H3 lysine 9 (H3K9) through formaldehyde-generating oxidation. It has been reported that LSD1 and its downstream targets are involved in tumor-cell growth and metastasis. Functional studies of LSD1 indicate that it regulates activation and inhibition of gene transcription in the nucleus. Here we made a discussion about the summary of histone lysine demethylase and their functions in various human cancers.
Collapse
Affiliation(s)
- Avilala Janardhan
- The No. 7 People's Hospital of Changzhou, Changzhou, China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chandrasekhar Kathera
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Amrutha Darsi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wajid Ali
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yanhua Yang
- The No. 7 People's Hospital of Changzhou, Changzhou, China
| | - Libo Luo
- The No. 7 People's Hospital of Changzhou, Changzhou, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
15
|
Piao L, Nakakido M, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R. Automethylation of SUV39H2, an oncogenic histone lysine methyltransferase, regulates its binding affinity to substrate proteins. Oncotarget 2017; 7:22846-56. [PMID: 26988914 PMCID: PMC5008405 DOI: 10.18632/oncotarget.8072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
We previously reported that the histone lysine methyltransferase SUV39H2, which is overexpressed in various types of human cancer, plays a critical role in the DNA repair after double strand breakage, and possesses oncogenic activity. Although its biological significance in tumorigenesis has been elucidated, the regulatory mechanism of SUV39H2 activity through post-translational modification is not well known. In this study, we demonstrate in vitro and in vivo automethylation of SUV39H2 at lysine 392. Automethylation of SUV39H2 led to impairment of its binding affinity to substrate proteins such as histone H3 and LSD1. Furthermore, we observed that hyper-automethylated SUV39H2 reduced methylation activities to substrates through affecting the binding affinity to substrate proteins. Our finding unveils a novel autoregulatory mechanism of SUV39H2 through lysine automethylation.
Collapse
Affiliation(s)
- Lianhua Piao
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Makoto Nakakido
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.,Division of Molecular Modification and Cancer Biology, National Cancer Center, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
16
|
PRMT1 promotes mitosis of cancer cells through arginine methylation of INCENP. Oncotarget 2016; 6:35173-82. [PMID: 26460953 PMCID: PMC4742097 DOI: 10.18632/oncotarget.6050] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/25/2015] [Indexed: 11/25/2022] Open
Abstract
Inner centromere protein (INCENP) is a part of a protein complex known as the chromosomal passenger complex (CPC) that is essential for correcting non-bipolar chromosome attachments and for cytokinesis. We here demonstrate that a protein arginine methyltransferase PRMT1, which are overexpressed in various types of cancer including lung and bladder cancer, methylates arginine 887 in an Aurora Kinase B (AURKB)-binding region of INCENP both in vitro and in vivo. R887-substituted INCENP revealed lower binding-affinity to AURKB than wild-type INCENP in the presence of PRMT1. Knockdown of PRMT1 as well as overexpression of methylation-inactive INCENP attenuated the AURKB activity in cancer cells, and resulted in abnormal chromosomal alignment and segregation. Furthermore, introduction of methylation-inactive INCENP into cancer cells reduced the growth rate, compared with those introduced wild-type INCENP or Mock. Our data unveils a novel mechanism of PRMT1-mediated CPC regulation through methylation of INCENP.
Collapse
|
17
|
Vougiouklakis T, Sone K, Saloura V, Cho HS, Suzuki T, Dohmae N, Alachkar H, Nakamura Y, Hamamoto R. SUV420H1 enhances the phosphorylation and transcription of ERK1 in cancer cells. Oncotarget 2016; 6:43162-71. [PMID: 26586479 PMCID: PMC4791223 DOI: 10.18632/oncotarget.6351] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/11/2015] [Indexed: 01/04/2023] Open
Abstract
The oncogenic protein ERK, a member of the extracellular signal-regulated kinase (ERK) cascade, is a well characterized signaling molecule involved in tumorigenesis. The ERK signaling pathway is activated in a large proportion of cancers and plays a critical role in tumor development. Functional regulation by phosphorylation of kinases in the ERK pathway has been extensively studied, however methylation of the ERK protein has not been reported to date. Here, we demonstrated that the protein lysine methyltransferase SUV420H1 tri-methylated ERK1 at lysines 302 and 361, and that substitution of methylation sites diminished phosphorylation levels of ERK1. Concordantly, knockdown of SUV420H1 reduced phosphorylated ERK1 and total ERK1 proteins, and interestingly suppressed ERK1 at the transcriptional level. Our results indicate that overexpression of SUV420H1 may result in activation of the ERK signaling pathway through enhancement of ERK phosphorylation and transcription, thereby providing new insights in the regulation of the ERK cascade in human cancer.
Collapse
Affiliation(s)
- Theodore Vougiouklakis
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Kenbun Sone
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Vassiliki Saloura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Hyun-Soo Cho
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Houda Alachkar
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Piao L, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R. SUV39H2 methylates and stabilizes LSD1 by inhibiting polyubiquitination in human cancer cells. Oncotarget 2016; 6:16939-50. [PMID: 26183527 PMCID: PMC4627283 DOI: 10.18632/oncotarget.4760] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/26/2015] [Indexed: 11/25/2022] Open
Abstract
LSD1 is a histone lysine demethylase, which is highly expressed in multiple types of human cancer. Although its roles in transcriptional regulation have been well-studied, functional regulation of LSD1 by post-translational modifications still remains unknown. Here, we demonstrate that the histone lysine methyltransferase SUV39H2 trimethylated LSD1 on lysine 322. Knockdown of SUV39H2 resulted in a decrease of LSD1 protein even though the mRNA levels were unchanged. SUV39H2-induced LSD1 methylation suppresses LSD1 polyubiquitination and subsequent degradation. In addition, we also observed indirect effect of SUV39H2 overexpression on LSD1-target genes. Our results reveal the regulatory mechanism of LSD1 protein through its lysine methylation by SUV39H2 in human cancer cells.
Collapse
Affiliation(s)
- Lianhua Piao
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Takehiro Suzuki
- Biomolecular Characterizaion Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterizaion Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
Kadoch C, Copeland RA, Keilhack H. PRC2 and SWI/SNF Chromatin Remodeling Complexes in Health and Disease. Biochemistry 2016; 55:1600-14. [DOI: 10.1021/acs.biochem.5b01191] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Robert A. Copeland
- Epizyme Inc., 400 Technology
Square, 4th floor, Cambridge, Massachusetts 02139, United States
| | - Heike Keilhack
- Epizyme Inc., 400 Technology
Square, 4th floor, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Hamamoto R, Nakamura Y. Dysregulation of protein methyltransferases in human cancer: An emerging target class for anticancer therapy. Cancer Sci 2016; 107:377-84. [PMID: 26751963 PMCID: PMC4832871 DOI: 10.1111/cas.12884] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 12/15/2022] Open
Abstract
Protein methylation is one of the important post-translational modifications. Although its biological and physiological functions were unknown for a long time, we and others have characterized a number of protein methyltransferases, which have unveiled the critical functions of protein methylation in various cellular processes, in particular, in epigenetic regulation. In addition, it had been believed that protein methylation is an irreversible phenomenon, but through identification of a variety of protein demethylases, protein methylation is now considered to be dynamically regulated similar to protein phosphorylation. A large amount of evidence indicated that protein methylation has a pivotal role in post-translational modification of histone proteins as well as non-histone proteins and is involved in various processes of cancer development and progression. As dysregulation of this modification has been observed frequently in various types of cancer, small-molecule inhibitors targeting protein methyltransferases and demethylases have been actively developed as anticancer drugs; clinical trials for some of these drugs have already begun. In this review, we discuss the biological and physiological importance of protein methylation in human cancer, especially focusing on the significance of protein methyltransferases as emerging targets for anticancer therapy.
Collapse
Affiliation(s)
- Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Tarcic O, Pateras IS, Cooks T, Shema E, Kanterman J, Ashkenazi H, Boocholez H, Hubert A, Rotkopf R, Baniyash M, Pikarsky E, Gorgoulis VG, Oren M. RNF20 Links Histone H2B Ubiquitylation with Inflammation and Inflammation-Associated Cancer. Cell Rep 2016; 14:1462-1476. [PMID: 26854224 PMCID: PMC4761112 DOI: 10.1016/j.celrep.2016.01.020] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/24/2015] [Accepted: 01/01/2016] [Indexed: 02/07/2023] Open
Abstract
Factors linking inflammation and cancer are of great interest. We now report that the chromatin-targeting E3 ubiquitin ligase RNF20/RNF40, driving histone H2B monoubiquitylation (H2Bub1), modulates inflammation and inflammation-associated cancer in mice and humans. Downregulation of RNF20 and H2Bub1 favors recruitment of p65-containing nuclear factor κB (NF-κB) dimers over repressive p50 homodimers and decreases the heterochromatin mark H3K9me3 on a subset of NF-κB target genes to augment their transcription. Concordantly, RNF20(+/-) mice are predisposed to acute and chronic colonic inflammation and inflammation-associated colorectal cancer, with excessive myeloid-derived suppressor cells (MDSCs) that may quench antitumoral T cell activity. Notably, colons of human ulcerative colitis patients, as well as colorectal tumors, reveal downregulation of RNF20/RNF40 and H2Bub1 in both epithelium and stroma, supporting the clinical relevance of our tissue culture and mouse model findings.
Collapse
Affiliation(s)
- Ohad Tarcic
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot 7610001, Israel
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology-Embryology, School of Medicine, University of Athens, 11527 Athens, Greece
| | - Tomer Cooks
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot 7610001, Israel
| | - Efrat Shema
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot 7610001, Israel
| | - Julia Kanterman
- The Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Hadas Ashkenazi
- The Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Hana Boocholez
- The Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Ayala Hubert
- Sharett Institute of Oncology, Hebrew University-Hadassah Medical Center, Jerusalem 91120, Israel
| | - Ron Rotkopf
- Department of Biological Services, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Baniyash
- The Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Eli Pikarsky
- Department of Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; Department of Pathology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology-Embryology, School of Medicine, University of Athens, 11527 Athens, Greece; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; Faculty Institute for Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot 7610001, Israel.
| |
Collapse
|
22
|
Dysregulation of AKT Pathway by SMYD2-Mediated Lysine Methylation on PTEN. Neoplasia 2016; 17:367-73. [PMID: 25925379 PMCID: PMC4415136 DOI: 10.1016/j.neo.2015.03.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/25/2015] [Accepted: 03/09/2015] [Indexed: 12/17/2022] Open
Abstract
Phosphatase and tensin homologue (PTEN), one of the well-characterized tumor suppressor proteins, counteracts the phosphatidylinositol 3-kinase-AKT pathway through its unique lipid phosphatase activity. The functions of PTEN are regulated by a variety of posttranslational modifications such as acetylation, oxidation, ubiquitylation, phosphorylation, and SUMOylation. However, methylation of PTEN has not been reported so far. In this study, we demonstrated that the oncogenic protein lysine methyltransferase SET and MYND domain containing 2 (SMYD2) methylates PTEN at lysine 313 in vitro and in vivo. Knockdown of SMYD2 suppressed the cell growth of breast cancer cells and attenuated phosphorylation levels of AKT, indicating that SMYD2-mediated methylation negatively regulates PTEN tumor suppressor activity and results in activation of the phosphatidylinositol 3-kinase-AKT pathway. Furthermore, PTEN protein with lysine 313 substitution diminished phosphorylation of PTEN at serine 380, which is known to inactivate tumor suppressor functions of PTEN. Taken together, our findings unveil a novel mechanism of PTEN dysregulation regulated by lysine methylation in human cancer.
Collapse
|
23
|
Cai XC, Kapilashrami K, Luo M. Synthesis and Assays of Inhibitors of Methyltransferases. Methods Enzymol 2016; 574:245-308. [DOI: 10.1016/bs.mie.2016.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Abstract
Post-translational modifications of histones (so-called epigenetic modifications) play a major role in transcriptional control and normal development, and are tightly regulated. Disruption of their control is a frequent event in disease. In particular, the methylation of lysine 27 on histone H3 (H3K27), induced by the methylase EZH2, emerges as a key control of gene expression and a major regulator of cell physiology. The identification of driver mutations in EZH2 has already led to new prognostic and therapeutic advances, and new classes of potent and specific inhibitors for EZH2 show promising results in preclinical trials. This review examines the roles of histone lysine methylases and demethylases in cells and focuses on the recent knowledge and developments about EZH2.
Collapse
|
25
|
Deng Z, Matsuda K, Tanikawa C, Lin J, Furukawa Y, Hamamoto R, Nakamura Y. Late Cornified Envelope Group I, a novel target of p53, regulates PRMT5 activity. Neoplasia 2015; 16:656-64. [PMID: 25220593 PMCID: PMC4234875 DOI: 10.1016/j.neo.2014.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/26/2014] [Accepted: 07/29/2014] [Indexed: 12/04/2022]
Abstract
p53 is one of the most important tumor suppressor genes involved in human carcinogenesis. Although downstream targets of p53 and their biologic functions in cancer cells have been extensively investigated, it is still far from the full understanding. Here, we demonstrate that Late Cornified Envelope Group I (LCE1) genes, which are located in the LCE gene clusters encoding multiple well-conserved stratum-corneum proteins, are novel downstream targets of p53. Exogenous p53 overexpression using an adenoviral vector system significantly enhanced the expression of LCE1 cluster genes. We also observed induction of LCE1 expressions by DNA damage, which was caused by treatment with adriamycin or UV irradiation in a wild-type p53-dependent manner. Concordantly, the induction of LCE1 by DNA damage was significantly attenuated by the knockdown of p53. Among predicted p53-binding sites within the LCE1 gene cluster, we confirmed one site to be a p53-enhancer sequence by reporter assays. Furthermore, we identified LCE1 to interact with protein arginine methyltransferase 5 (PRMT5). Knockdown of LCE1 by specific small interfering RNAs significantly increased the symmetric dimethylation of histone H3 arginine 8, a substrate of PRMT5, and overexpression of LCE1F remarkably decreased its methylation level. Our data suggest that LCE1 is a novel p53 downstream target that can be directly transactivated by p53 and is likely to have tumor suppressor functions through modulation of the PRMT5 activity.
Collapse
Affiliation(s)
- Zhenzhong Deng
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637 USA; Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Matsuda
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chizu Tanikawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jiaying Lin
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637 USA; Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637 USA.
| |
Collapse
|
26
|
Huang Z, Cai L, Tu BP. Dietary control of chromatin. Curr Opin Cell Biol 2015; 34:69-74. [PMID: 26094239 DOI: 10.1016/j.ceb.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/28/2022]
Abstract
Organisms must be able to rapidly alter gene expression in response to changes in their nutrient environment. This review summarizes evidence that epigenetic modifications of chromatin depend on particular metabolites of intermediary metabolism, enabling the facile regulation of gene expression in tune with metabolic state. Nutritional or dietary control of chromatin is an often-overlooked, yet fundamental regulatory mechanism directly linked to human physiology. Nutrient-sensitive epigenetic marks are dynamic, suggesting rapid turnover, and may have functions beyond the regulation of gene transcription, including pH regulation and as carbon sources in cancer cells.
Collapse
Affiliation(s)
- Zhiguang Huang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ling Cai
- Children's Medical Center Research Institute, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Benjamin P Tu
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
27
|
Zhu Y, Xu Y, Helseth DL, Gulukota K, Yang S, Pesce LL, Mitra R, Müller P, Sengupta S, Guo W, Silverstein JC, Foster I, Parsad N, White KP, Ji Y. Zodiac: A Comprehensive Depiction of Genetic Interactions in Cancer by Integrating TCGA Data. J Natl Cancer Inst 2015; 107:djv129. [PMID: 25956356 DOI: 10.1093/jnci/djv129] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 04/10/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Genetic interactions play a critical role in cancer development. Existing knowledge about cancer genetic interactions is incomplete, especially lacking evidences derived from large-scale cancer genomics data. The Cancer Genome Atlas (TCGA) produces multimodal measurements across genomics and features of thousands of tumors, which provide an unprecedented opportunity to investigate the interplays of genes in cancer. METHODS We introduce Zodiac, a computational tool and resource to integrate existing knowledge about cancer genetic interactions with new information contained in TCGA data. It is an evolution of existing knowledge by treating it as a prior graph, integrating it with a likelihood model derived by Bayesian graphical model based on TCGA data, and producing a posterior graph as updated and data-enhanced knowledge. In short, Zodiac realizes "Prior interaction map + TCGA data → Posterior interaction map." RESULTS Zodiac provides molecular interactions for about 200 million pairs of genes. All the results are generated from a big-data analysis and organized into a comprehensive database allowing customized search. In addition, Zodiac provides data processing and analysis tools that allow users to customize the prior networks and update the genetic pathways of their interest. Zodiac is publicly available at www.compgenome.org/ZODIAC. CONCLUSIONS Zodiac recapitulates and extends existing knowledge of molecular interactions in cancer. It can be used to explore novel gene-gene interactions, transcriptional regulation, and other types of molecular interplays in cancer.
Collapse
Affiliation(s)
- Yitan Zhu
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Yanxun Xu
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Donald L Helseth
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Kamalakar Gulukota
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Shengjie Yang
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Lorenzo L Pesce
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Riten Mitra
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Peter Müller
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Subhajit Sengupta
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Wentian Guo
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Jonathan C Silverstein
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Ian Foster
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Nigel Parsad
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Kevin P White
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Yuan Ji
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL.
| |
Collapse
|
28
|
Hamamoto R, Saloura V, Nakamura Y. Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat Rev Cancer 2015; 15:110-24. [PMID: 25614009 DOI: 10.1038/nrc3884] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several protein lysine methyltransferases and demethylases have been identified to have critical roles in histone modification. A large body of evidence has indicated that their dysregulation is involved in the development and progression of various diseases, including cancer, and these enzymes are now considered to be potential therapeutic targets. Although most studies have focused on histone methylation, many reports have revealed that these enzymes also regulate the methylation dynamics of non-histone proteins such as p53, RB1 and STAT3 (signal transducer and activator of transcription 3), which have important roles in human tumorigenesis. In this Review, we summarize the molecular functions of protein lysine methylation and its involvement in human cancer, with a particular focus on lysine methylation of non-histone proteins.
Collapse
Affiliation(s)
- Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC 2115 Chicago, Illinois 60637, USA
| | - Vassiliki Saloura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC 2115 Chicago, Illinois 60637, USA
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC 2115 Chicago, Illinois 60637, USA
| |
Collapse
|
29
|
Abstract
Ubiquitination has traditionally been viewed in the context of polyubiquitination that is essential for marking proteins for degradation via the proteasome. Recent discoveries have shed light on key cellular roles for monoubiquitination, including as a post-translational modification (PTM) of histones such as histone H2B. Monoubiquitination plays a significant role as one of the largest histone PTMs, alongside smaller, better-studied modifications such as methylation, acetylation and phosphorylation. Monoubiquitination of histone H2B at lysine 120 (H2Bub1) has been shown to have key roles in transcription, the DNA damage response and stem cell differentiation. The H2Bub1 enzymatic cascade involves E3 RING finger ubiquitin ligases, with the main E3 generally accepted to be the RNF20-RNF40 complex, and deubiquitinases including ubiquitin-specific protease 7 (USP7), USP22 and USP44. H2Bub1 has been shown to physically disrupt chromatin strands, fostering a more open chromatin structure accessible to transcription factors and DNA repair proteins. It also acts as a recruiting signal, actively attracting proteins with roles in transcription and DNA damage. H2Bub1 also appears to play central roles in histone cross-talk, influencing methylation events on histone H3, including H3K4 and H3K79. Most significantly, global levels of H2Bub1 are low to absent in advanced cancers including breast, colorectal, lung and parathyroid, marking H2Bub1 and the enzymes that regulate it as key molecules of interest as possible new therapeutic targets for the treatment of cancer. This review offers an overview of current knowledge regarding H2Bub1 and highlights links between dysregulation of H2Bub1-associated enzymes, stem cells and malignancy.
Collapse
Affiliation(s)
- Alexander J Cole
- Hormones and Cancer GroupKolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales 2065, Australia
| | - Roderick Clifton-Bligh
- Hormones and Cancer GroupKolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales 2065, Australia
| | - Deborah J Marsh
- Hormones and Cancer GroupKolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales 2065, Australia
| |
Collapse
|
30
|
Abstract
DNA methylation and histone modification are epigenetic mechanisms that result in altered gene expression and cellular phenotype. The exact role of methylation in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) remains unclear. However, aberrations (e.g. loss-/gain-of-function or up-/down-regulation) in components of epigenetic transcriptional regulation in general, and of the methylation machinery in particular, have been implicated in the pathogenesis of these diseases. In addition, many of these components have been identified as therapeutic targets for patients with MDS/AML, and are also being assessed as potential biomarkers of response or resistance to hypomethylating agents (HMAs). The HMAs 5-azacitidine (AZA) and 2'-deoxy-5-azacitidine (decitabine, DAC) inhibit DNA methylation and have shown significant clinical benefits in patients with myeloid malignancies. Despite being viewed as mechanistically similar drugs, AZA and DAC have differing mechanisms of action. DAC is incorporated 100% into DNA, whereas AZA is incorporated into RNA (80-90%) as well as DNA (10-20%). As such, both drugs inhibit DNA methyltransferases (DNMTs; dependently or independently of DNA replication) resulting in the re-expression of tumor-suppressor genes; however, AZA also has an impact on mRNA and protein metabolism via its inhibition of ribonucleotide reductase, resulting in apoptosis. Herein, we first give an overview of transcriptional regulation, including DNA methylation, post-translational histone-tail modifications, the role of micro-RNA and long-range epigenetic gene silencing. We place special emphasis on epigenetic transcriptional regulation and discuss the implication of various components in the pathogenesis of MDS/AML, their potential as therapeutic targets, and their therapeutic modulation by HMAs and other substances (if known). The main focus of this review is laid on dissecting the rapidly evolving knowledge of AZA and DAC with a special focus on their differing mechanisms of action, and the effect of HMAs on transcriptional regulation.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Hospital Salzburg, Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute , Salzburg , Austria
| | | |
Collapse
|
31
|
Sone K, Piao L, Nakakido M, Ueda K, Jenuwein T, Nakamura Y, Hamamoto R. Critical role of lysine 134 methylation on histone H2AX for γ-H2AX production and DNA repair. Nat Commun 2014; 5:5691. [PMID: 25487737 PMCID: PMC4268694 DOI: 10.1038/ncomms6691] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 10/29/2014] [Indexed: 12/19/2022] Open
Abstract
The presence of phosphorylated histone H2AX (γ-H2AX) is associated with the local activation of DNA-damage repair pathways. Although γ-H2AX deregulation in cancer has previously been reported, the molecular mechanism involved and its relationship with other histone modifications remain largely unknown. Here we find that the histone methyltransferase SUV39H2 methylates histone H2AX on lysine 134. When H2AX was mutated to abolish K134 methylation, the level of γ-H2AX became significantly reduced. We also found lower γ-H2AX activity following the introduction of double-strand breaks in Suv39h2 knockout cells or on SUV39H2 knockdown. Tissue microarray analyses of clinical lung and bladder tissues also revealed a positive correlation between H2AX K134 methylation and γ-H2AX levels. Furthermore, introduction of K134-substituted histone H2AX enhanced radio- and chemosensitivity of cancer cells. Overall, our results suggest that H2AX methylation plays a role in the regulation of γ-H2AX abundance in cancer. γ-H2AX The Ser139 phosphorylated form of H2AX, γ-H2AX, is generated in response to DNA double-strand breaks and is involved in the repair process. Here, Sone et al. show that H2AX K134 methylation by SUV39H2 is crucial for the production of γ-H2AX, and that loss of methylation correlates with radio- and chemosensitivity.
Collapse
Affiliation(s)
- Kenbun Sone
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, 5841 South Maryland Avenue, MC2115, Chicago, Illinois 60637, USA
| | - Lianhua Piao
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, 5841 South Maryland Avenue, MC2115, Chicago, Illinois 60637, USA
| | - Makoto Nakakido
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, 5841 South Maryland Avenue, MC2115, Chicago, Illinois 60637, USA
| | - Koji Ueda
- Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Thomas Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, 5841 South Maryland Avenue, MC2115, Chicago, Illinois 60637, USA
| | - Ryuji Hamamoto
- 1] Section of Hematology/Oncology, Department of Medicine, University of Chicago, 5841 South Maryland Avenue, MC2115, Chicago, Illinois 60637, USA [2] Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
32
|
Saloura V, Cho HS, Kiyotani K, Alachkar H, Zuo Z, Nakakido M, Tsunoda T, Seiwert T, Lingen M, Licht J, Nakamura Y, Hamamoto R. WHSC1 promotes oncogenesis through regulation of NIMA-related kinase-7 in squamous cell carcinoma of the head and neck. Mol Cancer Res 2014; 13:293-304. [PMID: 25280969 DOI: 10.1158/1541-7786.mcr-14-0292-t] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Squamous cell carcinoma of the head and neck (SCCHN) is a relatively common malignancy with suboptimal long-term prognosis, thus new treatment strategies are urgently needed. Over the last decade, histone methyltransferases (HMT) have been recognized as promising targets for cancer therapy, but their mechanism of action in most solid tumors, including SCCHN, remains to be elucidated. This study investigated the role of Wolf-Hirschhorn syndrome candidate 1 (WHSC1), an NSD family HMT, in SCCHN. Immunohistochemical analysis of locoregionally advanced SCCHN, dysplastic, and normal epithelial tissue specimens revealed that WHSC1 expression and dimethylation of histone H3 lysine 36 (H3K36me2) were significantly higher in SCCHN tissues than in normal epithelium. Both WHSC1 expression and H3K36me2 levels were significantly correlated with histologic grade. WHSC1 knockdown in multiple SCCHN cell lines resulted in significant growth suppression, induction of apoptosis, and delay of the cell-cycle progression. Immunoblot and immunocytochemical analyses in SCCHN cells demonstrated that WHSC1 induced H3K36me2 and H3K36me3. Microarray expression profile analysis revealed NIMA-related kinase-7 (NEK7) to be a downstream target gene of WHSC1, and chromatin immunoprecipitation (ChIP) assays showed that NEK7 was directly regulated by WHSC1 through H3K36me2. Furthermore, similar to WHSC1, NEK7 knockdown significantly reduced cell-cycle progression, indicating that NEK7 is a key player in the molecular pathway regulated by WHSC1. IMPLICATIONS WHSC1 possesses oncogenic functions in SCCHN and represents a potential molecular target for the treatment of SCCHN.
Collapse
Affiliation(s)
- Vassiliki Saloura
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Hyun-Soo Cho
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois. Genomics Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Kazuma Kiyotani
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Houda Alachkar
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Zhixiang Zuo
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Makoto Nakakido
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Tanguy Seiwert
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Mark Lingen
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Jonathan Licht
- Section of Hematology and Oncology, Northwestern University, Chicago, Illinois
| | - Yusuke Nakamura
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Ryuji Hamamoto
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
33
|
Cancer subclonal genetic architecture as a key to personalized medicine. Neoplasia 2014; 15:1410-20. [PMID: 24403863 DOI: 10.1593/neo.131972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023] Open
Abstract
The future of personalized oncological therapy will likely rely on evidence-based medicine to integrate all of the available evidence to delineate the most efficacious treatment option for the patient. To undertake evidence-based medicine through use of targeted therapy regimens, identification of the specific underlying causative mutation(s) driving growth and progression of a patient's tumor is imperative. Although molecular subtyping is important for planning and treatment, intraclonal genetic diversity has been recently highlighted as having significant implications for biopsy-based prognosis. Overall, delineation of the clonal architecture of a patient's cancer and how this will impact on the selection of the most efficacious therapy remain a topic of intense interest.
Collapse
|