1
|
Montenegro MF, Martí-Díaz R, Navarro A, Tolivia J, Sánchez-Del-Campo L, Cabezas-Herrera J, Rodríguez-López JN. Targeting protein methylation in pancreatic cancer cells results in KRAS signaling imbalance and inhibition of autophagy. Cell Death Dis 2023; 14:761. [PMID: 37996408 PMCID: PMC10667277 DOI: 10.1038/s41419-023-06288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Pancreatic cancer cells with mutant KRAS require strong basal autophagy for viability and growth. Here, we observed that some processes that allow the maintenance of basal autophagy in pancreatic cancer cells are controlled by protein methylation. Thus, by maintaining the methylation status of proteins such as PP2A and MRAS, these cells can sustain their autophagic activity. Protein methylation disruption by a hypomethylating treatment (HMT), which depletes cellular S-adenosylmethionine levels while inducing S-adenosylhomocysteine accumulation, resulted in autophagy inhibition and endoplasmic reticulum stress-induced apoptosis in pancreatic cancer cells. We observed that by reducing the membrane localization of MRAS, hypomethylation conditions produced an imbalance in KRAS signaling, resulting in the partial inactivation of ERK and hyperactivation of the PI3K/AKT-mTORC1 pathway. Interestingly, HMT impeded CRAF activation by disrupting the ternary SHOC2 complex (SHOC2/MRAS/PP1), which functions as a CRAF-S259 holophosphatase. The demethylation events that resulted in PP2A inactivation also favored autophagy inhibition by preventing ULK1 activation while restoring the cytoplasmic retention of the MiT/TFE transcription factors. Since autophagy provides pancreatic cancer cells with metabolic plasticity to cope with various metabolic stress conditions, while at the same time promoting their pathogenesis and resistance to KRAS pathway inhibitors, this hypomethylating treatment could represent a therapeutic opportunity for pancreatic adenocarcinomas.
Collapse
Affiliation(s)
- María F Montenegro
- Department of Biochemistry and Molecular Biology A, School of Biology, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain.
| | - Román Martí-Díaz
- Department of Biochemistry and Molecular Biology A, School of Biology, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Ana Navarro
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Grupo GECYEN del Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Jorge Tolivia
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Grupo GECYEN del Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Luis Sánchez-Del-Campo
- Department of Biochemistry and Molecular Biology A, School of Biology, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Juan Cabezas-Herrera
- Molecular Therapy and Biomarkers Research Group, University Hospital Virgen de la Arrixaca, IMIB, Murcia, Spain
| | - José Neptuno Rodríguez-López
- Department of Biochemistry and Molecular Biology A, School of Biology, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain.
| |
Collapse
|
2
|
Song D, Ye Z, Chen F, Zhan L, Sun X. circFNDC3B promotes esophageal squamous cell carcinoma progression by targeting MYO5A via miR-370-3p/miR-136-5p. BMC Cancer 2023; 23:821. [PMID: 37667251 PMCID: PMC10476377 DOI: 10.1186/s12885-023-11314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a prevalent malignant tumor worldwide. Circular RNA (circRNA) is of great value in tumorigenesis progression. However, the mechanism of circFNDC3B in ESCC remains to be clarified. METHODS Firstly, the circular characteristics of circFNDC3B were evaluated by Actinomycin D and RNase R measurements. The functions of circFNDC3B in ESCC cells were examined by CCK-8, EdU and flow cytometry. Subsequently, the molecular mechanism of circFNDC3B was explained using luciferase reporter gene detection. Finally, we constructed xenograft model to prove the role of circFNDC3B in vivo. RESULTS Our study revealed that circFNDC3B was more stable than its linear RNA and prominently upregulated in ESCC. Functional findings suggested that silencing of circFNDC3B reduced the proliferation and enhanced apoptosis of ESCC cells in vitro. Meanwhile, knockdown of circFNDC3B attenuated tumor progression in vivo. Next, miR-370-3p/miR-136-5p was discovered to bind circFNDC3B. miR-370-3p/miR-136-5p reversed the promotive effect on cell proliferation and the inhibitory effect on cell apoptosis of circFNDC3B. MYO5A was a downstream target of miR-370-3p/miR-136-5p. CircFNDC3B served as a sponge for miR-370-3p/miR-136-5p and alleviated the prohibitory effect of miR-370-3p/miR-136-5p on MYO5A, which accelerated ESCC progression. CONCLUSION circFNDC3B positively adjusted the MYO5A expression via spongy miR-370-3p/miR-136-5p, hence achieving the cancer-promoting effect on ESCC. circFNDC3B was a prospective diagnosis marker for ESCC.
Collapse
Affiliation(s)
- Dan Song
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, No.42, Baiziting, Nanjing, 210009, Jinagsu Province, China.
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Ziqi Ye
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Fangyu Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Liangliang Zhan
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, No.42, Baiziting, Nanjing, 210009, Jinagsu Province, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
3
|
Salari S, Bamorovat M, Sharifi I, Almani PGN. Global distribution of treatment resistance gene markers for leishmaniasis. J Clin Lab Anal 2022; 36:e24599. [PMID: 35808933 PMCID: PMC9396204 DOI: 10.1002/jcla.24599] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Pentavalent antimonials (Sb(V)) such as meglumine antimoniate (Glucantime®) and sodium stibogluconate (Pentostam®) are used as first-line treatments for leishmaniasis, either alone or in combination with second-line drugs such as amphotericin B (Amp B), miltefosine (MIL), methotrexate (MTX), or cryotherapy. Therapeutic aspects of these drugs are now challenged because of clinical resistance worldwide. METHODS We reviewedthe recent original studies were assessed by searching in electronic databases such as Scopus, Pubmed, Embase, and Web of Science. RESULTS Studies on molecular biomarkers involved in drug resistance are essential for monitoring the disease. We reviewed genes and mechanisms of resistance to leishmaniasis, and the geographical distribution of these biomarkers in each country has also been thoroughly investigated. CONCLUSION Due to the emergence of resistant genes mainly in anthroponotic Leishmania species such as L. donovani and L. tropica, as the causative agents of ACL and AVL, respectively, selection of an appropriate treatment modality is essential. Physicians should be aware of the presence of such resistance for the selection of proper treatment modalities in endemic countries.
Collapse
Affiliation(s)
- Samira Salari
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesKermanIran
| | - Mehdi Bamorovat
- Leishmaniasis Research CenterKerman University of Medical SciencesKermanIran
| | - Iraj Sharifi
- Leishmaniasis Research CenterKerman University of Medical SciencesKermanIran
| | | |
Collapse
|
4
|
Zhang T, Zhu X, Sun Q, Qin X, Zhang Z, Feng Y, Yan M, Chen W. Identification and Confirmation of the miR-30 Family as a Potential Central Player in Tobacco-Related Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:616372. [PMID: 34336638 PMCID: PMC8315965 DOI: 10.3389/fonc.2021.616372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
Constituents of tobacco that can cause DNA adduct formation and oxidative stress are implicated in the development of head and neck squamous cell carcinoma (HNSCC). However, there are few studies on the mechanism(s) that underlie tobacco-associated HNSCC. Here, we used a model in which tumors were induced in rats using 4-nitroquinoline 1-oxide (4NQO), which mimicked tobacco-related HNSCC, and analyzed the expression profiles of microRNAs and mRNAs. Our results indicated that 57 miRNAs and 474 mRNA/EST transcripts exhibited differential expression profiles between tumor and normal tongue tissues. In tumor tissue, the expression levels of rno-miR-30 family members (rno-miR-30a, rno-miR-30a-3p, rno-miR-30b-5p, rno-miR-30c, rno-miR-30d, rno-miR-30e and rno-miR-30e-3p) were only 8% to 37% of those in the control group. The GO terms enrichment analysis of the differentially expressed miRNAs indicated that oxidation reduction was the most enriched process. Low expression of miR-30 family members in human HNSCC cell lines and tissues was validated by qPCR. The results revealed that the expression of miR-30b-5p and miR-30e-5p was significantly decreased in the TCGA HNSCC dataset and validation datasets, and this decrease in expression further distinguishes HNSCC associated with tobacco use from other subtypes of HNSCC. CCK8, colony formation, transwell migration and HNSCC xenograft tumor assays indicated that miR-30b-5p or miR-30e-5p inhibited proliferation, migration and invasion in vitro, and miR-30b-5p suppressed tumor growth in vivo. Moreover, we uncovered that KRAS might be the potential target gene of miR-30e-5p or miR-30b-5p. Thus, our data clearly showed that decreased expression of miR-30e-5p or miR-30b-5p may play a crucial role in cancer development, especially that of tobacco-induced HNSCC, and may be a novel candidate biomarker and target for this HNSCC subtype.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.,Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| | - Xueqin Zhu
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qiang Sun
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.,Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xing Qin
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhen Zhang
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yuanyong Feng
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ming Yan
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wantao Chen
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.,Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
PRMT1-dependent methylation of BRCA1 contributes to the epigenetic defense of breast cancer cells against ionizing radiation. Sci Rep 2020; 10:13275. [PMID: 32764667 PMCID: PMC7413540 DOI: 10.1038/s41598-020-70289-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
The therapeutic effect of irradiation is thought to come from DNA damage that affects rapidly proliferating cancer cells; however, resistant cells rapidly initiate mechanisms to repair such damage. While DNA repair mechanisms responsible for cancer cell survival following DNA damage are understood, less is known about the epigenetic mechanisms resulting in resistance to radiotherapy. Although changes in DNA methylation are related to mechanisms of long-term resistance, it is more likely that the methylation state of a series of proteins could be responsible for the first-line of defense of cancer cells against irradiation. In this study, we observed that irradiation of breast cancer cells was accompanied by an overproduction in S-adenosylmethionine, which increases the activity of cellular methylases. We found that by activating PRMT1, irradiation triggers a BRCA1-dependent program that results in efficient DNA repair and inhibition of apoptosis. Depletion of PRMT1 in irradiated cells resulted in a switch of BRCA1 functions from repair and survival in the nucleus to activation of cell death signals in the cytoplasm. We conclude that by modulating the cellular localization of BRCA1, PRMT1 is an important regulator of the oncogenic functions of BRCA1, contributing to the epigenetic defense of breast cancer cells against ionizing radiation.
Collapse
|
6
|
Furnish M, Caino MC. Altered mitochondrial trafficking as a novel mechanism of cancer metastasis. Cancer Rep (Hoboken) 2019; 3:e1157. [PMID: 32671955 DOI: 10.1002/cnr2.1157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/07/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mammalian cells must constantly reprogram the distribution of mitochondria in order to meet the local demands for energy, calcium, redox balance, and other mitochondrial functions. Mitochondrial localization inside the cell is a result of a combination of movement along the microtubule tracks plus anchoring to actin filaments. RECENT FINDINGS Recent advances show that subcellular distribution of mitochondria can regulate tumor cell growth, proliferation/motility plasticity, metastatic competence, and therapy responses in tumors. In this review, we discuss our current understanding of the mechanisms by which mitochondrial subcellular distribution is regulated in tumor cells. CONCLUSIONS Mitochondrial trafficking is dysregulated in tumors. Accumulation of mitochondria at the leading edge of the cell supports energy expensive processes of focal adhesion dynamics, cell membrane dynamics, migration, and invasion.
Collapse
Affiliation(s)
- Madison Furnish
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - M Cecilia Caino
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
7
|
Myosin 5a regulates tumor migration and epithelial-mesenchymal transition in esophageal squamous cell carcinoma: utility as a prognostic factor. Hum Pathol 2018; 80:113-122. [DOI: 10.1016/j.humpath.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
|
8
|
Zhao X, Zhang W, Ji W. MYO5A inhibition by miR-145 acts as a predictive marker of occult neck lymph node metastasis in human laryngeal squamous cell carcinoma. Onco Targets Ther 2018; 11:3619-3635. [PMID: 29950866 PMCID: PMC6016585 DOI: 10.2147/ott.s164597] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Each year, ~50,000 patients worldwide die of laryngeal squamous cell carcinoma (LSCC) because of its highly metastatic properties. However, its pathogenic mechanisms are still unclear, and in particular, the prediction of metastasis remains elusive. This study aimed to define the role of microRNA-145 (miR-145) in LSCC progression. We also aimed to elucidate the clinical significance of the miR-145/MYO5A pathway, especially the predictive function of MYO5A in neck lymph node metastasis. MATERIALS AND METHODS MYO5A and miR-145 expression was analyzed in 132 patients with LSCC, and associations between their expression and clinicopathological features were evaluated. We validated the regulatory relationship between miR-145b and MYO5A by dual luciferase reporter assay. The role of the miR-145/MYO5A pathway in proliferation, metastasis, and apoptosis was examined in vitro. The predictive functions of MYO5A in neck lymph node metastasis and prognosis were defined according to patient follow-up. RESULTS Our results showed downregulation of miR-145 in LSCC, which was negatively correlated with MYO5A suppression of LSCC progression and metastasis. MiR-145 directly regulated MYO5A expression in vitro and suppressed LSCC proliferation and invasion while promoting apoptosis by inhibiting MYO5A. CONCLUSION Notably, overexpression of serum MYO5A in LSCC predicted cervical nodal occult metastasis and poor prognosis, providing an effective indicator for predicting neck lymph node metastasis and assessing LSCC prognosis.
Collapse
Affiliation(s)
- Xudong Zhao
- Department of Otorhinolaryngology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wei Zhang
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wenyue Ji
- Department of Otorhinolaryngology, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Cos-Seq for high-throughput identification of drug target and resistance mechanisms in the protozoan parasite Leishmania. Proc Natl Acad Sci U S A 2016; 113:E3012-21. [PMID: 27162331 DOI: 10.1073/pnas.1520693113] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Innovative strategies are needed to accelerate the identification of antimicrobial drug targets and resistance mechanisms. Here we develop a sensitive method, which we term Cosmid Sequencing (or "Cos-Seq"), based on functional cloning coupled to next-generation sequencing. Cos-Seq identified >60 loci in the Leishmania genome that were enriched via drug selection with methotrexate and five major antileishmanials (antimony, miltefosine, paromomycin, amphotericin B, and pentamidine). Functional validation highlighted both known and previously unidentified drug targets and resistance genes, including novel roles for phosphatases in resistance to methotrexate and antimony, for ergosterol and phospholipid metabolism genes in resistance to miltefosine, and for hypothetical proteins in resistance to paromomycin, amphothericin B, and pentamidine. Several genes/loci were also found to confer resistance to two or more antileishmanials. This screening method will expedite the discovery of drug targets and resistance mechanisms and is easily adaptable to other microorganisms.
Collapse
|
10
|
Cancer subclonal genetic architecture as a key to personalized medicine. Neoplasia 2014; 15:1410-20. [PMID: 24403863 DOI: 10.1593/neo.131972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023] Open
Abstract
The future of personalized oncological therapy will likely rely on evidence-based medicine to integrate all of the available evidence to delineate the most efficacious treatment option for the patient. To undertake evidence-based medicine through use of targeted therapy regimens, identification of the specific underlying causative mutation(s) driving growth and progression of a patient's tumor is imperative. Although molecular subtyping is important for planning and treatment, intraclonal genetic diversity has been recently highlighted as having significant implications for biopsy-based prognosis. Overall, delineation of the clonal architecture of a patient's cancer and how this will impact on the selection of the most efficacious therapy remain a topic of intense interest.
Collapse
|
11
|
Meng P, Ghosh R. Transcription addiction: can we garner the Yin and Yang functions of E2F1 for cancer therapy? Cell Death Dis 2014; 5:e1360. [PMID: 25101673 PMCID: PMC4454301 DOI: 10.1038/cddis.2014.326] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 12/29/2022]
Abstract
Classically, as a transcription factor family, the E2Fs are known to regulate the expression of various genes whose products are involved in a multitude of biological functions, many of which are deregulated in diseases including cancers. E2F is deregulated and hyperactive in most human cancers with context dependent, dichotomous and contradictory roles in almost all cancers. Cancer cells have an insatiable demand for transcription to ensure that gene products are available to sustain various biological processes that support their rapid growth and survival. In this context, cutting-off hyperactivity of transcription factors that support transcription dependence could be a valuable therapeutic strategy. However, one of the greatest challenges of targeting a transcription factor is the global effects on non-cancerous cells given that they control cellular functions in general. Recently, there is growing realization regarding the possibility to target the oncogenic activation of transcription factors to modulate transcription addiction without affecting the normal activity required for cell functions. In this review, we used E2F1 as a prototype transcription factor to address transcription factor activity in cancer cell functions. We focused on melanoma considering that E2F1 executes critical functions in response to UV, an etiological factor of cutaneous melanoma and lies immediately downstream of the CDKN2A/pRb axis, which is frequently deregulated in melanoma. Further, activation of E2F1 in melanomas can also occur independent of loss of CDKN2A. Given its activated status and the ability to transcriptionally control a plethora of genes involved in regulating melanoma development and progression, we review the current literature on its differential role in controlling signaling pathways involved in melanoma as well as therapeutic resistance, and discuss the practical value of weaning melanoma cells from E2F1-mediated transcription dependence for melanoma management.
Collapse
Affiliation(s)
- P Meng
- Department of Urology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - R Ghosh
- 1] Department of Urology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA [2] Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA [3] Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA [4] Cancer Therapy and Research Center, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
12
|
How CW, Teruel JA, Ortiz A, Montenegro MF, Rodríguez-López JN, Aranda FJ. Effects of a synthetic antitumoral catechin and its tyrosinase-processed product on the structural properties of phosphatidylcholine membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1215-24. [DOI: 10.1016/j.bbamem.2014.01.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/07/2014] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
|
13
|
Montenegro MF, Sánchez-del-Campo L, Fernández-Pérez MP, Sáez-Ayala M, Cabezas-Herrera J, Rodríguez-López JN. Targeting the epigenetic machinery of cancer cells. Oncogene 2014; 34:135-43. [PMID: 24469033 DOI: 10.1038/onc.2013.605] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/20/2013] [Indexed: 02/07/2023]
Abstract
Cancer is characterized by uncontrolled cell growth and the acquisition of metastatic properties. In most cases, the activation of oncogenes and/or deactivation of tumour suppressor genes lead to uncontrolled cell cycle progression and inactivation of apoptotic mechanisms. Although the underlying mechanisms of carcinogenesis remain unknown, increasing evidence links aberrant regulation of methylation to tumourigenesis. In addition to the methylation of DNA and histones, methylation of nonhistone proteins, such as transcription factors, is also implicated in the biology and development of cancer. Because the metabolic cycling of methionine is a key pathway for many of these methylating reactions, strategies to target the epigenetic machinery of cancer cells could result in novel and efficient anticancer therapies. The application of these new epigenetic therapies could be of utility in the promotion of E2F1-dependent apoptosis in cancer cells, in avoiding metastatic pathways and/or in sensitizing tumour cells to radiotherapy.
Collapse
Affiliation(s)
- M F Montenegro
- Department of Biochemistry and Molecular Biology A, University of Murcia, Murcia, Spain
| | - L Sánchez-del-Campo
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - M P Fernández-Pérez
- Department of Biochemistry and Molecular Biology A, University of Murcia, Murcia, Spain
| | - M Sáez-Ayala
- Department of Biochemistry and Molecular Biology A, University of Murcia, Murcia, Spain
| | - J Cabezas-Herrera
- Translational Cancer Research Group, University Hospital Virgen de la Arrixaca (IMIB), Murcia, Spain
| | - J N Rodríguez-López
- Department of Biochemistry and Molecular Biology A, University of Murcia, Murcia, Spain
| |
Collapse
|