1
|
Druy AE, Tsaur GA, Shorikov EV, Tytgat GAM, Fechina LG. Suppressed miR-128-3p combined with TERT overexpression predicts dismal outcomes for neuroblastoma. Cancer Biomark 2022; 34:661-671. [PMID: 35634846 DOI: 10.3233/cbm-210414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Molecular and clinical diversity of neuroblastomas is notorious. The activating TERT rearrangements have been associated with dismal prognosis. Suppression of miR-128-3p may complement and enhance the adverse effects of TERT overexpression. OBJECTIVE The study aimed at evaluation of prognostic significance of the miR-128-3p/TERT expression in patients with primary neuroblastoma. METHODS RNA samples isolated from fresh-frozen tumor specimens (n= 103) were reverse transcribed for evaluation of miR-128-3p and TERT expression by qPCR. The normalized expression levels were tested for correlations with the event-free survival (EFS). ROC-analysis was used to establish threshold expression levels (TLs) for the possible best prediction of the outcomes. The median follow-up was 57 months. RESULTS Both TERT overexpression and miR-128-3p downregulation were independently associated with superior rates of adverse events (p= 0.027, TL =-2.32 log10 and p= 0.080, TL =-1.33 log10, respectively). The MYCN single-copy patients were stratified into groups based on the character of alterations in expression of the studied transcripts. Five-year EFS in the groups of patients with elevated TERT/normal miR-128-3p expression and normal TERT/reduced miR-128-3p expression were 0.74 ± 0.08 and 0.60 ± 0.16, respectively. The patients with elevated TERT/reduced miR-128-3p expression had the worst outcomes, with 5-year EFS of 0.40 ± 0.16 compared with 0.91 ± 0.06 for the patients with unaltered levels of both transcripts (p< 0.001). Cumulative incidence of relapse/progression for the groups constituted 0.23 ± 0.08, 0.40 ± 0.16, 0.60 ± 0.16 and 0.09 ± 0.06, respectively. Moreover, the loss of miR-128-3p was qualified as independent adverse predictor which outperformed the conventional clinical and genetic risk factors in the multivariate Cox regression model of EFS. CONCLUSIONS Combined expression levels of miR-128-3p and TERT represent a novel prognostic biomarker for neuroblastoma.
Collapse
Affiliation(s)
- A E Druy
- Laboratory of Molecular Oncology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation.,Laboratory of the Cellular Therapy of Oncohematological Disorders, Research Institute of Medical Cell Technologies, Yekaterinburg, Russian Federation
| | - G A Tsaur
- Laboratory of the Cellular Therapy of Oncohematological Disorders, Research Institute of Medical Cell Technologies, Yekaterinburg, Russian Federation.,Pediatric Oncology and Hematology Center, Regional Children's Hospital, Yekaterinburg, Russian Federation.,Chair of Laboratory Medicine, Ural State Medical University, Yekaterinburg, Russian Federation
| | - E V Shorikov
- PET-Technology Center of Nuclear Medicine, Yekaterinburg, Russian Federation
| | - G A M Tytgat
- Princess Máxima Centre for Pediatric Oncology (PMC), Utrecht, The Netherlands
| | - L G Fechina
- Laboratory of the Cellular Therapy of Oncohematological Disorders, Research Institute of Medical Cell Technologies, Yekaterinburg, Russian Federation.,Pediatric Oncology and Hematology Center, Regional Children's Hospital, Yekaterinburg, Russian Federation
| |
Collapse
|
2
|
Analysis of Telomere Maintenance Related Genes Reveals NOP10 as a New Metastatic-Risk Marker in Pheochromocytoma/Paraganglioma. Cancers (Basel) 2021; 13:cancers13194758. [PMID: 34638246 PMCID: PMC8507560 DOI: 10.3390/cancers13194758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Telomere maintenance involving TERT and ATRX genes has been recently described in metastatic pheochromocytoma and paraganglioma, reinforcing the importance of immortalization mechanisms in the progression of these tumors. Thus, the aim of this study was to analyze additional telomere-related genes to uncover potential new markers capable of identifying metastatic-risk patients more accurately. After analyzing 29 telomere-related genes, we were able to validate the predictive value of TERT and ATRX in mPPGL progression. In addition, we were able to identify NOP10 as a novel prognostic risk marker of mPPGLs, which also facilitates telomerase-dependent telomere length maintenance in these tumors. Interestingly, NOP10 overexpression assessment by IHC could be easily included within the current battery of markers for stratifying PPGL patients to fine-tune their clinical diagnoses. Abstract One of the main problems we face with PPGL is the lack of molecular markers capable of predicting the development of metastases in patients. Telomere-related genes, such as TERT and ATRX, have been recently described in PPGL, supporting the association between the activation of immortalization mechanisms and disease progression. However, the contribution of other genes involving telomere preservation machinery has not been previously investigated. In this work, we aimed to analyze the prognostic value of a comprehensive set of genes involved in telomere maintenance. For this study, we collected 165 PPGL samples (97 non-metastatic/63 metastatic), genetically characterized, in which the expression of 29 genes of interest was studied by NGS. Three of the 29 genes studied, TERT, ATRX and NOP10, showed differential expression between metastatic and non-metastatic cases, and alterations in these genes were associated with a shorter time to progression, independent of SDHB-status. We studied telomere length by Q-FISH in patient samples and in an in vitro model. NOP10 overexpressing tumors displayed an intermediate-length telomere phenotype without ALT, and in vitro results suggest that NOP10 has a role in telomerase-dependent telomere maintenance. We also propose the implementation of NOP10 IHC to better stratify PPGL patients.
Collapse
|
3
|
Dsouza VL, Adiga D, Sriharikrishnaa S, Suresh PS, Chatterjee A, Kabekkodu SP. Small nucleolar RNA and its potential role in breast cancer - A comprehensive review. Biochim Biophys Acta Rev Cancer 2021; 1875:188501. [PMID: 33400969 DOI: 10.1016/j.bbcan.2020.188501] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Small Nucleolar RNAs (snoRNAs) are known for their canonical functions, including ribosome biogenesis and RNA modification. snoRNAs act as endogenous sponges that regulate miRNA expression. Thus, precise snoRNA expression is critical for fine-tuning miRNA expression. snoRNAs processed into miRNA-like sequences play a crucial role in regulating the expression of protein-coding genes similar to that of miRNAs. Recent studies have linked snoRNA deregulation to breast cancer (BC). Inappropriate snoRNA expression contributes to BC pathology by facilitating breast cells to acquire cancer hallmarks. Since snoRNAs show significant differential expression in normal and cancer conditions, measuring snoRNA levels could be useful for BC prognosis and diagnosis. The present article provides a comprehensive overview of the role of snoRNAs in breast cancer pathology. More specifically, we have discussed the regulation, biological function, signaling pathways, and clinical utility of abnormally expressed snoRNAs in BC. Besides, we have also discussed the role of snoRNA host genes in breast tumorigenesis and emerging and future research directions in the field of snoRNA and cancer.
Collapse
Affiliation(s)
- Venzil Lavie Dsouza
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - S Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut, Kerala 673601, India
| | - Aniruddha Chatterjee
- Department of Pathology, Otago Medical School, Dunedin Campus, University of Otago, Dunedin, New Zealand
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
4
|
Elsharawy KA, Althobiti M, Mohammed OJ, Aljohani AI, Toss MS, Green AR, Rakha EA. Nucleolar protein 10 (NOP10) predicts poor prognosis in invasive breast cancer. Breast Cancer Res Treat 2020; 185:615-627. [PMID: 33161513 PMCID: PMC7920889 DOI: 10.1007/s10549-020-05999-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/26/2020] [Indexed: 01/16/2023]
Abstract
Purpose Nucleolar protein 10 (NOP10) is required for ribosome biogenesis and telomere maintenance and plays a key role in carcinogenesis. This study aims to evaluate the clinical and prognostic significance of NOP10 in breast cancer (BC). Methods NOP10 expression was assessed at mRNA level employing the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) (n = 1980) and Cancer Genome Atlas (TCGA) BC cohorts (n = 854). Protein expression was evaluated on tissue microarray of a large BC cohort (n = 1081) using immunohistochemistry. The correlation between NOP10 expression, clinicopathological parameters and patient outcome was assessed. Results NOP10 expression was detected in the nucleus and nucleolus of the tumour cells. At the transcriptomic and proteomic levels, NOP10 was significantly associated with aggressive BC features including high tumour grade, high nucleolar score and poor Nottingham Prognostic Index. High NOP10 protein expression was an independent predictor of poor outcome in the whole cohort and in triple-negative BC (TNBC) class (p = 0.002 & p = 0.014, respectively). In chemotherapy- treated patients, high NOP10 protein expression was significantly associated with shorter survival (p = 0.03) and was predictive of higher risk of death (p = 0.028) and development of distant metastasis (p = 0.02) independent of tumour size, nodal stage and tumour grade. Conclusion High NOP10 expression is a poor prognostic biomarker in BC and its expression can help in predicting chemotherapy resistance. Functional assessments are necessary to decipher the underlying mechanisms and to reveal its potential therapeutic values in various BC subtypes especially in the aggressive TNBC class. Electronic supplementary material The online version of this article (doi:10.1007/s10549-020-05999-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Khloud A Elsharawy
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK.,Faculty of Science, Damietta University, Damietta, Egypt
| | - Maryam Althobiti
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK.,Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University, Shaqra, Saudi Arabia
| | - Omar J Mohammed
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Abrar I Aljohani
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK. .,Division of Cancer and Stem Cell, University of Nottingham, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
5
|
Elsharawy KA, Mohammed OJ, Aleskandarany MA, Hyder A, El-Gammal HL, Abou-Dobara MI, Green AR, Dalton LW, Rakha EA. The nucleolar-related protein Dyskerin pseudouridine synthase 1 (DKC1) predicts poor prognosis in breast cancer. Br J Cancer 2020; 123:1543-1552. [PMID: 32868896 PMCID: PMC7653035 DOI: 10.1038/s41416-020-01045-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hypertrophy of the nucleolus is a distinctive cytological feature of malignant cells and corresponds to aggressive behaviour. This study aimed to identify the key gene associated with nucleolar prominence (NP) in breast cancer (BC) and determine its prognostic significance. METHODS From The Cancer Genome Atlas (TCGA) cohort, digital whole slide images identified cancers having NP served as label and an information theory algorithm was applied to find which mRNA gene best explained NP. Dyskerin Pseudouridine Synthase 1 (DKC1) was identified. DKC1 expression was assessed using mRNA data of Molecular Taxonomy of Breast Cancer International Consortium (METABRIC, n = 1980) and TCGA (n = 855). DKC1 protein expression was assessed using immunohistochemistry in Nottingham BC cohort (n = 943). RESULTS Nuclear and nucleolar expressions of DKC1 protein were significantly associated with higher tumour grade (p < 0.0001), high nucleolar score (p < 0.001) and poor Nottingham Prognostic Index (p < 0.0001). High DKC1 expression was associated with shorter BC-specific survival (BCSS). In multivariate analysis, DKC1 mRNA and protein expressions were independent risk factors for BCSS (p < 0.01). CONCLUSION DKC1 expression is strongly correlated with NP and its overexpression in BC is associated with unfavourable clinicopathological characteristics and poor outcome. This has been a detailed example in the correlation of phenotype with genotype.
Collapse
Affiliation(s)
- Khloud A Elsharawy
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
- Faculty of Science, Damietta University, Damietta, Egypt
| | - Omar J Mohammed
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Mohammed A Aleskandarany
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Ayman Hyder
- Faculty of Science, Damietta University, Damietta, Egypt
| | | | | | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Leslie W Dalton
- Department of Histopathology, South Austin Hospital, Austin, TX, USA
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK.
| |
Collapse
|
6
|
Belli V, Matrone N, Sagliocchi S, Incarnato R, Conte A, Pizzo E, Turano M, Angrisani A, Furia M. A dynamic link between H/ACA snoRNP components and cytoplasmic stress granules. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118529. [DOI: 10.1016/j.bbamcr.2019.118529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/08/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
|
7
|
Jantas D, Grygier B, Gołda S, Chwastek J, Zatorska J, Tertil M. An endogenous and ectopic expression of metabotropic glutamate receptor 8 (mGluR8) inhibits proliferation and increases chemosensitivity of human neuroblastoma and glioma cells. Cancer Lett 2018; 432:1-16. [DOI: 10.1016/j.canlet.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/06/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
|
8
|
Jantas D, Grygier B, Zatorska J, Lasoń W. Allosteric and Orthosteric Activators of mGluR8 Differentially Affect the Chemotherapeutic-Induced Human Neuroblastoma SH-SY5Y Cell Damage: The Impact of Cell Differentiation State. Basic Clin Pharmacol Toxicol 2018; 123:443-451. [PMID: 29753314 DOI: 10.1111/bcpt.13041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/29/2018] [Indexed: 12/25/2022]
Abstract
The participation of group III metabotropic glutamate receptors (mGluRs) in cancer growth and progression is still an understudied issue. Based on our recent data on high expression of mGluR8 in human neuroblastoma SH-SY5Y cells, in this study, we evaluated the effect of an mGluR8-specific positive allosteric modulator (PAM: AZ12216052) and orthosteric agonist [(S)-3,4-DCPG ((S)-3,4-dicarboxyphenylglycine)] on chemotherapeutic (doxorubicin, irinotecan or cisplatin)-evoked cell damage in undifferentiated (UN-) and retinoic acid-differentiated (RA-) SH-SY5Y cells. The data showed that AZ12216052 as well as a group III mGluR antagonist (UBP1112) but not (S)-3,4-DCPG partially inhibited the cell damage evoked by doxorubicin, irinotecan or cisplatin in UN-SH-SY5Y cells. In RA-SH-SY5Y, we observed only a modest protective effect of mGluR8 PAM. In contrast, both types of mGluR8 activators significantly enhanced toxic effects of doxorubicin and irinotecan in RA-SH-SY5Y cells. These data suggest that in undifferentiated neuroblastoma malignant cells, some mGluR8 modulators can decrease cytotoxic effects of chemotherapeutics which exclude them from the group of putative anticancer agents. On the other hand, in SH-SY5Y cells differentiated to a more mature neuron-like phenotype, that is non-malignant cells, the mGluR8 activators can aggravate the chemotherapeutic neurotoxicity which is a well-known undesired effect of these drugs. Our pharmacological data add new observations to the unexplored field of research on the role of mGluR8 in cancer, pointing to complexity of response which could be mediated by particular types of mGluR8 ligands at least in neuroblastoma cells.
Collapse
Affiliation(s)
- Danuta Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Beata Grygier
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Justyna Zatorska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
9
|
Abstract
Neuroblastomas (NB) are one of the most common extracranial solid tumors in children, and they frequently display high heterogeneity in the disease course. With ongoing research, more information regarding the genetic etiology and molecular mechanisms underlying these contrasting phenotypes is being uncovered. The proto-oncogene MYCN is amplified in approximately 20% of NB cases and is considered a indicator of poor prognosis and an indicator of high-risk NB. The poor prognosis of high risk NB is incompletely explained by MYCN amplification. Recently, massive parallel sequencing studies reported several relatively common gene alterations, such as ATRX mutation and TERT rearrangement that are involved in telomere maintenance through telomerase activity and alternative lengthening of telomeres. Thus, these are important for understanding the etiology and molecular pathogenesis of NB, and hence, for identifying diagnostic and treatment markers. Development of telomerase inhibitors and identification of alternative lengthening of telomeres related targets will contribute to the individualized treatment for high-risk NB. In this mini-review, we will discuss the research progress of TERT-mediated and ATRX-mediated telomere maintenance and NB, especially high-risk tumors.
Collapse
|
10
|
Angrisani A, Matrone N, Belli V, Vicidomini R, Di Maio N, Turano M, Scialò F, Netti PA, Porcellini A, Furia M. A functional connection between dyskerin and energy metabolism. Redox Biol 2017; 14:557-565. [PMID: 29132127 PMCID: PMC5684492 DOI: 10.1016/j.redox.2017.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/12/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023] Open
Abstract
The human DKC1 gene encodes dyskerin, an evolutionarily conserved nuclear protein whose overexpression represents a common trait of many types of aggressive sporadic cancers. As a crucial component of the nuclear H/ACA snoRNP complexes, dyskerin is involved in a variety of essential processes, including telomere maintenance, splicing efficiency, ribosome biogenesis, snoRNAs stabilization and stress response. Although multiple minor dyskerin splicing isoforms have been identified, their functions remain to be defined. Considering that low-abundance splice variants could contribute to the wide functional repertoire attributed to dyskerin, possibly having more specialized tasks or playing significant roles in changing cell status, we investigated in more detail the biological roles of a truncated dyskerin isoform that lacks the C-terminal nuclear localization signal and shows a prevalent cytoplasmic localization. Here we show that this dyskerin variant can boost energy metabolism and improve respiration, ultimately conferring a ROS adaptive response and a growth advantage to cells. These results reveal an unexpected involvement of DKC1 in energy metabolism, highlighting a previously underscored role in the regulation of metabolic cell homeostasis. Human dyskerin is an evolutionary conserved component of nuclear H/ACA snoRNPs. The functional role of a truncated dyskerin isoform (Iso3) is analyzed. Iso3 overexpression boosts energy metabolism and induces a ROS adaptive response. Iso3 connects dyskerin with mitochondrial functionality and redox homeostasis.
Collapse
Affiliation(s)
- Alberto Angrisani
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, 80126 Napoli, Italy.
| | - Nunzia Matrone
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, 80126 Napoli, Italy
| | - Valentina Belli
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
| | - Rosario Vicidomini
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, 80126 Napoli, Italy
| | - Nunzia Di Maio
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, 80126 Napoli, Italy
| | - Mimmo Turano
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, 80126 Napoli, Italy
| | - Filippo Scialò
- Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, University of Newcastle, Newcastle-upon-Tyne NE4 5PL, United Kingdom
| | - Paolo Antonio Netti
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy; Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy
| | - Antonio Porcellini
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, 80126 Napoli, Italy
| | - Maria Furia
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, 80126 Napoli, Italy; Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy.
| |
Collapse
|
11
|
Ibáñez-Cabellos JS, Pérez-Machado G, Seco-Cervera M, Berenguer-Pascual E, García-Giménez JL, Pallardó FV. Acute telomerase components depletion triggers oxidative stress as an early event previous to telomeric shortening. Redox Biol 2017; 14:398-408. [PMID: 29055871 PMCID: PMC5650655 DOI: 10.1016/j.redox.2017.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/13/2023] Open
Abstract
Loss of function of dyskerin (DKC1), NOP10 and TIN2 are responsible for different inheritance patterns of Dyskeratosis congenita (DC; ORPHA1775). They are key components of telomerase (DKC1 and NOP10) and shelterin (TIN2), and play an important role in telomere homeostasis. They participate in several fundamental cellular processes by contributing to Dyskeratosis congenita through mechanisms that are not fully understood. Presence of oxidative stress was postulated to result from telomerase ablation. However, the resulting disturbed redox status can promote telomere attrition by generating a vicious circle, which promotes cellular senescence. This fact prompted us to study if acute loss of DKC1, NOP10 and TINF2 can promote redox disequilibrium as an early event when telomere shortening has not yet taken place. We generated siRNA-mediated (DKC1, NOP10 and TINF2) cell lines by RNA interference, which was confirmed by mRNA and protein expression analyses. No telomere shortening occurred in any silenced cell line. Depletion of H/ACA ribonucleoproteins DKC1 and NOP10 diminished telomerase activity via TERC down-regulation, and produced alterations in pseudouridylation and ribosomal biogenesis. An increase in the GSSG/GSH ratio, carbonylated proteins and oxidized peroxiredoxin-6 was observed, in addition to MnSOD and TRX1 overexpression in the siRNA DC cells. Likewise, high PARylation levels and high PARP1 protein expression were detected. In contrast, the silenced TINF2 cells did not alter any evaluated oxidative stress marker. Altogether these findings lead us to conclude that loss of DKC1 and NOP10 functions induces oxidative stress in a telomere shortening independent manner. Transient silencing of DKC1 and NOP10 genes produce oxidative stress. Cells depleted of DKC1 and NOP10 are susceptible to DNA damage. Acute DKC1 and NOP10 depletion disrupts RNA maturation. Oxidative stress is an early event previous to telomere shortening.
Collapse
Affiliation(s)
- José Santiago Ibáñez-Cabellos
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Giselle Pérez-Machado
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Marta Seco-Cervera
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Ester Berenguer-Pascual
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| |
Collapse
|
12
|
Di Maio N, Vicidomini R, Angrisani A, Belli V, Furia M, Turano M. A new role for human dyskerin in vesicular trafficking. FEBS Open Bio 2017; 7:1453-1468. [PMID: 28979836 PMCID: PMC5623704 DOI: 10.1002/2211-5463.12307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 11/11/2022] Open
Abstract
Dyskerin is an essential, conserved, multifunctional protein found in the nucleolus, whose loss of function causes the rare genetic diseases X‐linked dyskeratosis congenita and Hoyeraal‐Hreidarsson syndrome. To further investigate the wide range of dyskerin's biological roles, we set up stable cell lines able to trigger inducible protein knockdown and allow a detailed analysis of the cascade of events occurring within a short time frame. We report that dyskerin depletion quickly induces cytoskeleton remodeling and significant alterations in endocytic Ras‐related protein Rab‐5A/Rab11 trafficking. These effects arise in different cell lines well before the onset of telomere shortening, which is widely considered the main cause of dyskerin‐related diseases. Given that vesicular trafficking affects many homeostatic and differentiative processes, these findings add novel insights into the molecular mechanisms underlining the pleiotropic manifestation of the dyskerin loss‐of‐function phenotype.
Collapse
Affiliation(s)
- Nunzia Di Maio
- Department of BiologyUniversity of Naples 'Federico II'NapoliItaly
| | - Rosario Vicidomini
- Department of BiologyUniversity of Naples 'Federico II'NapoliItaly.,Present address: NICHD (National Institute of Child Health and Human Development)- Section on Metabolic Regulation -NIH-35 Convent DRBethesdaMDUSA
| | | | - Valentina Belli
- Department of BiologyUniversity of Naples 'Federico II'NapoliItaly.,Present address: Medical OncologyDepartment of Clinical and Experimental Medicine "F. Magrassi"Universitá degli Studi della Campania "Luigi Vanvitelli"NaplesItaly
| | - Maria Furia
- Department of BiologyUniversity of Naples 'Federico II'NapoliItaly
| | - Mimmo Turano
- Department of BiologyUniversity of Naples 'Federico II'NapoliItaly
| |
Collapse
|
13
|
Persson CU, von Stedingk K, Bexell D, Merselius M, Braekeveldt N, Gisselsson D, Arsenian-Henriksson M, Påhlman S, Wigerup C. Neuroblastoma patient-derived xenograft cells cultured in stem-cell promoting medium retain tumorigenic and metastatic capacities but differentiate in serum. Sci Rep 2017; 7:10274. [PMID: 28860499 PMCID: PMC5579187 DOI: 10.1038/s41598-017-09662-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/19/2017] [Indexed: 12/26/2022] Open
Abstract
Cultured cancer cells serve as important models for preclinical testing of anti-cancer compounds. However, the optimal conditions for retaining original tumor features during in vitro culturing of cancer cells have not been investigated in detail. Here we show that serum-free conditions are critical for maintaining an immature phenotype of neuroblastoma cells isolated from orthotopic patient-derived xenografts (PDXs). PDX cells could be grown either as spheres or adherent on laminin in serum-free conditions with retained patient-specific genomic aberrations as well as tumorigenic and metastatic capabilities. However, addition of serum led to morphological changes, neuronal differentiation and reduced cell proliferation. The epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) were central for PDX cell proliferation and MYCN expression, and also hindered the serum-induced differentiation. Although serum induced a robust expression of neurotrophin receptors, stimulation with their cognate ligands did not induce further sympathetic differentiation, which likely reflects a block in PDX cell differentiation capacity coupled to their tumor genotype. Finally, PDX cells cultured as spheres or adherent on laminin responded similarly to various cytotoxic drugs, suggesting that both conditions are suitable in vitro screening models for neuroblastoma-targeting compounds.
Collapse
Affiliation(s)
- Camilla U Persson
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | | | - Daniel Bexell
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | - My Merselius
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | - Noémie Braekeveldt
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | - David Gisselsson
- Department of Clinical Genetics, Lund University, Department of Pathology, University and Regional Laboratories, Lund, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Sven Påhlman
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | - Caroline Wigerup
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden.
| |
Collapse
|
14
|
Dos Santos PC, Panero J, Stanganelli C, Palau Nagore V, Stella F, Bezares R, Slavutsky I. Dysregulation of H/ACA ribonucleoprotein components in chronic lymphocytic leukemia. PLoS One 2017; 12:e0179883. [PMID: 28666010 PMCID: PMC5493334 DOI: 10.1371/journal.pone.0179883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/06/2017] [Indexed: 11/18/2022] Open
Abstract
Telomeres are protective repeats of TTAGGG sequences located at the end of human chromosomes. They are essential to maintain chromosomal integrity and genome stability. Telomerase is a ribonucleoprotein complex containing an internal RNA template (hTR) and a catalytic subunit (hTERT). The human hTR gene consists of three major domains; among them the H/ACA domain is essential for telomere biogenesis. H/ACA ribonucleoprotein (RNP) complex is composed of four evolutionary conserved proteins, including dyskerin (encoded by DKC1 gene), NOP10, NHP2 and GAR1. In this study, we have evaluated the expression profile of the H/ACA RNP complex genes: DKC1, NOP10, NHP2 and GAR1, as well as hTERT and hTR mRNA levels, in patients with chronic lymphocytic leukemia (CLL). Results were correlated with the number and type of genetic alteration detected by conventional cytogenetics and FISH (fluorescence in situ hybridization), IGHV (immunoglobulin heavy chain variable region) mutational status, telomere length (TL) and clinico-pathological characteristics of patients. Our results showed significant decreased expression of GAR1, NOP10, DKC1 and hTR, as well as increased mRNA levels of hTERT in patients compared to controls (p≤0.04). A positive correlation between the expression of GAR1-NHP2, GAR1-NOP10, and NOP10-NHP2 (p<0.0001), were observed. The analysis taking into account prognostic factors showed a significant increased expression of hTERT gene in unmutated-IGHV cases compared to mutated-CLL patients (p = 0.0185). The comparisons among FISH groups exhibited increased expression of DKC1 in cases with two or more alterations with respect to no abnormalities, trisomy 12 and del13q14, and of NHP2 and NOP10 compared to those with del13q14 (p = 0.03). The analysis according to TL showed a significant increased expression of hTERT (p = 0.0074) and DKC1 (p = 0.0036) in patients with short telomeres compared to those with long TL. No association between gene expression and clinical parameters was found. Our results suggest a role for these telomere associated genes in genomic instability and telomere dysfunction in CLL.
Collapse
Affiliation(s)
- Patricia Carolina Dos Santos
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Julieta Panero
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carmen Stanganelli
- División Patología Molecular, Instituto de Investigaciones Hematológicas-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Virginia Palau Nagore
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Flavia Stella
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Raimundo Bezares
- Servicio de Hematología, Hospital Teodoro Álvarez, Buenos Aires, Argentina
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
15
|
Transcript signatures that predict outcome and identify targetable pathways in MYCN-amplified neuroblastoma. Mol Oncol 2016; 10:1461-1472. [PMID: 27599694 DOI: 10.1016/j.molonc.2016.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND In the pediatric cancer neuroblastoma (NB), patients are stratified into low, intermediate or high-risk subsets based in part on MYCN amplification status. While MYCN amplification in general predicts unfavorable outcome, no clinical or genomic factors have been identified that predict outcome within these cohorts of high-risk patients. In particular, it is currently not possible at diagnosis to determine which high-risk neuroblastoma patients will ultimately fail upfront therapy. EXPERIMENTAL DESIGN We analyzed the prognostic potential of most published gene expression signatures for NB and developed a new prognostic signature to predict outcome for patients with MYCN amplification. Network and pathway analyses identified candidate therapeutic targets for this MYCN-amplified patient subset with poor outcome. RESULTS Most signatures have a high capacity to predict outcome of unselected NB patients. However, the majority of published signatures, as well as most randomly generated signatures, are highly confounded by MYCN amplification, and fail to predict outcome in subpopulations of high-risk patients with MYCN-amplified NB. We identify a MYCN module signature that predicts patient outcome for those with MYCN-amplified tumors, that also predicts potential tractable therapeutic signaling pathways and targets including the DNA repair enzyme Poly [ADP-ribose] polymerase 1 (PARP1). CONCLUSION Many prognostic signatures for NB are confounded by MYCN amplification and fail to predict outcome for the subset of high-risk patients with MYCN amplification. We report a MYCN module signature that is associated with distinct patient outcomes, and predicts candidate therapeutic targets in DNA repair pathways, including PARP1 in MYCN-amplified NB.
Collapse
|
16
|
Abstract
Telomerase activity is responsible for the maintenance of chromosome end structures (telomeres) and cancer cell immortality in most human malignancies, making telomerase an attractive therapeutic target. The rationale for targeting components of the telomerase holoenzyme has been strengthened by accumulating evidence indicating that these molecules have extra-telomeric functions in tumour cell survival and proliferation. This Review discusses current knowledge of the biogenesis, structure and multiple functions of telomerase-associated molecules intertwined with recent advances in drug discovery approaches. We also describe the fertile ground available for the pursuit of next-generation small-molecule inhibitors of telomerase.
Collapse
Affiliation(s)
- Greg M Arndt
- Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Karen L MacKenzie
- Personalised Medicine Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| |
Collapse
|
17
|
Intratumoral diversity of telomere length in individual neuroblastoma tumors. Oncotarget 2016; 6:7493-503. [PMID: 25595889 PMCID: PMC4480695 DOI: 10.18632/oncotarget.2115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/17/2014] [Indexed: 12/21/2022] Open
Abstract
The purpose of the work was to investigate telomere length (TL) and mechanisms involved in TL maintenance in individual neuroblastoma (NB) tumors. Primary NB tumors from 102 patients, ninety Italian and twelve Spanish, diagnosed from 2000 to 2008 were studied. TL was investigated by quantitative fluorescence in situ hybridization (IQ-FISH) that allows to analyze individual cells in paraffin-embedded tissues. Fluorescence intensity of chromosome 2 centromere was used as internal control to normalize TL values to ploidy. Human telomerase reverse transcriptase (hTERT) expression was detected by immunofluorescence in 99/102 NB specimens. The main findings are the following: 1) two intratumoral subpopulations of cancer cells displaying telomeres of different length were identified in 32/102 tumors belonging to all stages. 2) hTERT expression was detected in 99/102 tumors, of which 31 displayed high expression and 68 low expression. Alternative lengthening of telomeres (ALT)-mechanism was present in 60/102 tumors, 20 of which showed high hTERT expression. Neither ALT-mechanism nor hTERT expression correlated with heterogeneous TL. 3) High hTERT expression and ALT positivity were associated with significantly reduced Overall Survival. 4) High hTERT expression predicted relapse irrespective of patient age. Intratumoral diversity in TL represents a novel feature in NB. In conclusion, diversity of TL in individual NB tumors was strongly associated with disease progression and death, suggesting that these findings are of translational relevance. The combination of high hTERT expression and ALT positivity may represent a novel biomarker of poor prognosis that deserves further investigation.
Collapse
|
18
|
O'Brien R, Tran SL, Maritz MF, Liu B, Kong CF, Purgato S, Yang C, Murray J, Russell AJ, Flemming CL, von Jonquieres G, Pickett HA, London WB, Haber M, Gunaratne PH, Norris MD, Perini G, Fletcher JI, MacKenzie KL. MYC-Driven Neuroblastomas Are Addicted to a Telomerase-Independent Function of Dyskerin. Cancer Res 2016; 76:3604-17. [PMID: 27197171 DOI: 10.1158/0008-5472.can-15-0879] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 03/14/2016] [Indexed: 11/16/2022]
Abstract
The RNA-binding protein dyskerin, encoded by the DKC1 gene, functions as a core component of the telomerase holoenzyme as well as ribonuclear protein complexes involved in RNA processing and ribosome biogenesis. The diverse roles of dyskerin across many facets of RNA biology implicate its potential contribution to malignancy. In this study, we examined the expression and function of dyskerin in neuroblastoma. We show that DKC1 mRNA levels were elevated relative to normal cells across a panel of 15 neuroblastoma cell lines, where both N-Myc and c-Myc directly targeted the DKC1 promoter. Upregulation of MYCN was shown to dramatically increase DKC1 expression. In two independent neuroblastoma patient cohorts, high DKC1 expression correlated strongly with poor event-free and overall survival (P < 0.0001), independently of established prognostic factors. RNAi-mediated depletion of dyskerin inhibited neuroblastoma cell proliferation, including cells immortalized via the telomerase-independent ALT mechanism. Furthermore, dyskerin attenuation impaired anchorage-independent proliferation and tumor growth. Overexpression of the telomerase RNA component, hTR, demonstrated that this proliferative impairment was not a consequence of telomerase suppression. Instead, ribosomal stress, evidenced by depletion of small nucleolar RNAs and nuclear dispersal of ribosomal proteins, was the likely cause of the proliferative impairment in dyskerin-depleted cells. Accordingly, dyskerin suppression caused p53-dependent G1 cell-cycle arrest in p53 wild-type cells, and a p53-independent pathway impaired proliferation in cells with p53 dysfunction. Together, our findings highlight dyskerin as a new therapeutic target in neuroblastoma with crucial telomerase-independent functions and broader implications for the spectrum of malignancies driven by MYC family oncogenes. Cancer Res; 76(12); 3604-17. ©2016 AACR.
Collapse
Affiliation(s)
- Rosemary O'Brien
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Sieu L Tran
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Michelle F Maritz
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Bing Liu
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Cheng Fei Kong
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Stefania Purgato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Chen Yang
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Jayne Murray
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Amanda J Russell
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Claudia L Flemming
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Georg von Jonquieres
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Laboratory, Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Michelle Haber
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Murray D Norris
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Karen L MacKenzie
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia.
| |
Collapse
|
19
|
Lin P, Mobasher ME, Hakakian Y, Kakarla V, Naseem AF, Ziai H, Alawi F. Differential requirements for H/ACA ribonucleoprotein components in cell proliferation and response to DNA damage. Histochem Cell Biol 2015; 144:543-58. [PMID: 26265134 DOI: 10.1007/s00418-015-1359-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2015] [Indexed: 02/07/2023]
Abstract
H/ACA ribonucleoproteins (RNPs) are comprised of four conserved proteins, dyskerin, NHP2, NOP10, and GAR1, and a function-specifying, noncoding H/ACA RNA. H/ACA RNPs contribute to telomerase assembly and stabilization, and posttranscriptional processing of nascent ribosomal RNA and spliceosomal RNA. However, very little is known about the coordinated action of the four proteins in other biologic processes. As described herein, we observed a differential requirement for the proteins in cell proliferation and identified a possible reliance for these factors in regulation of specific DNA damage biomarkers. In particular, GAR1 expression was upregulated following exposure to all forms of genotoxic stress tested. In contrast, levels of the other proteins were either reduced or unaffected. Only GAR1 showed an altered subcellular localization with a shift from the nucleolus to the nucleoplasm after ultraviolet-C irradiation and doxorubicin treatments. Transient siRNA-mediated depletion of GAR1 and dyskerin arrested cell proliferation, whereas loss of either NHP2 or NOP10 had no effect. Finally, loss of dyskerin, GAR1, NHP2, and NOP10, respectively, limited the accumulation of DNA damage biomarkers. However, the individual responses were dependent upon the specific type of damage incurred. In general, loss of GAR1 had the most suppressive effect on the biomarkers tested. Since the specific responses to genotoxic stress, the contribution of each protein to cell proliferation, and the activation of DNA damage biomarkers were not equivalent, this suggests the possibility that at least some of the proteins, most notably GAR1, may potentially function independently of their respective roles within H/ACA RNP complexes.
Collapse
Affiliation(s)
- Ping Lin
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Levy Building - Room 328B, Philadelphia, PA, 19104, USA
| | - Maral E Mobasher
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Levy Building - Room 328B, Philadelphia, PA, 19104, USA
| | - Yasaman Hakakian
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Levy Building - Room 328B, Philadelphia, PA, 19104, USA
| | - Veena Kakarla
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Levy Building - Room 328B, Philadelphia, PA, 19104, USA
| | - Anum F Naseem
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Levy Building - Room 328B, Philadelphia, PA, 19104, USA
| | - Heliya Ziai
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Levy Building - Room 328B, Philadelphia, PA, 19104, USA
| | - Faizan Alawi
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Levy Building - Room 328B, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
von Stedingk K, De Preter K, Vandesompele J, Noguera R, Øra I, Koster J, Versteeg R, Påhlman S, Lindgren D, Axelson H. Individual patient risk stratification of high-risk neuroblastomas using a two-gene score suited for clinical use. Int J Cancer 2015; 137:868-77. [PMID: 25652004 DOI: 10.1002/ijc.29461] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/08/2015] [Indexed: 11/11/2022]
Abstract
Several gene expression-based prognostic signatures have been described in neuroblastoma, but none have successfully been applied in the clinic. Here we have developed a clinically applicable prognostic gene signature, both with regards to number of genes and analysis platform. Importantly, it does not require comparison between patients and is applicable amongst high-risk patients. The signature is based on a two-gene score (R-score) with prognostic power in high-stage tumours (stage 4 and/or MYCN-amplified diagnosed after 18 months of age). QPCR-based and array-based analyses of matched cDNAs confirmed cross platform (array-qPCR) transferability. We also defined a fixed cut-off value identifying prognostically differing subsets of high-risk patients on an individual patient basis. This gene expression signature independently contributes to the current neuroblastoma classification system, and if prospectively validated could provide further stratification of high-risk patients, and potential upfront identification of a group of patients that are in need of new/additional treatment regimens.
Collapse
Affiliation(s)
- Kristoffer von Stedingk
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Pediatric Oncology and Hematology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Katleen De Preter
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
| | - Ingrid Øra
- Department of Pediatric Oncology and Hematology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, Amsterdam, The Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center, Amsterdam, The Netherlands
| | - Sven Påhlman
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - David Lindgren
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Håkan Axelson
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis. Biochem Biophys Res Commun 2014; 446:1268-75. [PMID: 24690175 DOI: 10.1016/j.bbrc.2014.03.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 03/22/2014] [Indexed: 01/02/2023]
Abstract
Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However, the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.
Collapse
|