1
|
Reagin KL, Funk KE. The role of antiviral CD8 + T cells in cognitive impairment. Curr Opin Neurobiol 2022; 76:102603. [PMID: 35810534 DOI: 10.1016/j.conb.2022.102603] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
The impact of the immune system on the etiopathogenesis of neurodegenerative diseases, including Alzheimer's disease, is a rapidly growing area of investigation. Evidence from human patients and animal models implicates neurotropic viral infections, and specifically the antiviral immune response of brain-infiltrating CD8+ T cells, as potential drivers of disease pathology. While infiltration and retention of CD8+ T cells within the brain following viral infection is associated with improved survival, CD8+ T cells also contribute to neuronal death and gliosis which underlie cognitive impairment in several disease models. Here we review the role of antiviral CD8+ T cells as potential mediators of cognitive impairment and highlight the mechanisms by which brain-resident CD8+ T cells may contribute to neurodegenerative disease pathology.
Collapse
Affiliation(s)
- Katie L Reagin
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA
| | - Kristen E Funk
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA.
| |
Collapse
|
2
|
Maxwell R, Luksik AS, Garzon-Muvdi T, Hung AL, Kim ES, Wu A, Xia Y, Belcaid Z, Gorelick N, Choi J, Theodros D, Jackson CM, Mathios D, Ye X, Tran PT, Redmond KJ, Brem H, Pardoll DM, Kleinberg LR, Lim M. Contrasting impact of corticosteroids on anti-PD-1 immunotherapy efficacy for tumor histologies located within or outside the central nervous system. Oncoimmunology 2018; 7:e1500108. [PMID: 30524891 PMCID: PMC6279341 DOI: 10.1080/2162402x.2018.1500108] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint blockade targeting programmed cell death protein 1 (PD-1) is emerging as an important treatment strategy in a growing list of cancers, yet its clinical benefits are limited to a subset of patients. Further investigation of tumor-intrinsic predictors of response and how extrinsic factors, such as iatrogenic immunosuppression caused by conventional therapies, impact the efficacy of anti-PD-1 therapy are paramount. Given the widespread use of corticosteroids in cancer management and their immunosuppressive nature, this study sought to determine how corticosteroids influence anti-PD-1 responses and whether their effects were dependent on tumor location within the periphery versus central nervous system (CNS), which may have a more limiting immune environment. In well-established anti-PD-1-responsive murine tumor models, corticosteroid therapy resulted in systemic immune effects, including severe and persistent reductions in peripheral CD4+ and CD8 + T cells. Corticosteroid treatment was found to diminish the efficacy of anti-PD-1 therapy in mice bearing peripheral tumors with responses correlating with peripheral CD8/Treg ratio changes. In contrast, in mice bearing intracranial tumors, corticosteroids did not abrogate the benefits conferred by anti-PD-1 therapy. Despite systemic immune changes, anti-PD-1-mediated antitumor immune responses remained intact during corticosteroid treatment in mice bearing intracranial tumors. These findings suggest that anti-PD-1 responses may be differentially impacted by concomitant corticosteroid use depending on tumor location within or outside the CNS. As an immune-specialized site, the CNS may potentially play a protective role against the immunosuppressive effects of corticosteroids, thus sustaining antitumor immune responses mediated by PD-1 blockade.
Collapse
Affiliation(s)
- Russell Maxwell
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA.,Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, USA
| | - Andrew S Luksik
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | | | - Alice L Hung
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Eileen S Kim
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Adela Wu
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Yuanxuan Xia
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Zineb Belcaid
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Noah Gorelick
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - John Choi
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Debebe Theodros
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | | | | | - Xiaobu Ye
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, USA
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, USA
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins Hospital, Baltimore, USA
| | - Lawrence R Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| |
Collapse
|
3
|
Pathology after Chlamydia trachomatis infection is driven by nonprotective immune cells that are distinct from protective populations. Proc Natl Acad Sci U S A 2018; 115:2216-2221. [PMID: 29440378 DOI: 10.1073/pnas.1711356115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Infection with Chlamydia trachomatis drives severe mucosal immunopathology; however, the immune responses that are required for mediating pathology vs. protection are not well understood. Here, we employed a mouse model to identify immune responses required for C. trachomatis-induced upper genital tract pathology and to determine whether these responses are also required for bacterial clearance. In mice as in humans, immunopathology was characterized by extravasation of leukocytes into the upper genital tract that occluded luminal spaces in the uterus and ovaries. Flow cytometry identified these cells as neutrophils at early time points and CD4+ and CD8+ T cells at later time points. To determine what draws these cells to C. trachomatis-infected tissue, we measured the expression of 700 inflammation-related genes in the upper genital tract and found an up-regulation of many chemokines, including a node of interaction between CXCL9/10/11 and their common receptor CXCR3. Either depleting neutrophils or reducing T-cell numbers by CXCR3 blockade was sufficient to significantly ameliorate immunopathology but had no effect on bacterial burden, demonstrating that these responses are necessary for mucosal pathology but dispensable for C. trachomatis clearance. Therapies that specifically target these host responses may therefore prove useful in ameliorating C. trachomatis-induced pathology without exacerbating infection or transmission.
Collapse
|
4
|
Abstract
The fate of T lymphocytes revolves around a continuous stream of interactions between the T-cell receptor (TCR) and peptide-major histocompatibility complex (MHC) molecules. Beginning in the thymus and continuing into the periphery, these interactions, refined by accessory molecules, direct the expansion, differentiation, and function of T-cell subsets. The cellular context of T-cell engagement with antigen-presenting cells, either in lymphoid or non-lymphoid tissues, plays an important role in determining how these cells respond to antigen encounters. CD8(+) T cells are essential for clearance of a lymphocytic choriomeningitis virus (LCMV) infection, but the virus can present a number of unique challenges that antiviral T cells must overcome. Peripheral LCMV infection can lead to rapid cytolytic clearance or chronic viral persistence; central nervous system infection can result in T-cell-dependent fatal meningitis or an asymptomatic carrier state amenable to immunotherapeutic clearance. These diverse outcomes all depend on interactions that require TCR engagement of cognate peptide-MHC complexes. In this review, we explore the diversity in antiviral T-cell behaviors resulting from TCR engagement, beginning with an overview of the immunological synapse and progressing to regulators of TCR signaling that shape the delicate balance between immunopathology and viral clearance.
Collapse
Affiliation(s)
- E. Ashley Moseman
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Dorian B. McGavern
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
5
|
Oldstone MBA, Edelmann KH, McGavern DB, Cruite JT, Welch MJ. Molecular anatomy and number of antigen specific CD8 T cells required to cause type 1 diabetes. PLoS Pathog 2012; 8:e1003044. [PMID: 23209415 PMCID: PMC3510245 DOI: 10.1371/journal.ppat.1003044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/04/2012] [Indexed: 12/13/2022] Open
Abstract
We quantified CD8 T cells needed to cause type 1 diabetes and studied the anatomy of the CD8 T cell/beta (β) cell interaction at the immunologic synapse. We used a transgenic model, in situ tetramer staining to distinguish antigen specific CD8 T cells from total T cells infiltrating islets and a variety of viral mutants selected for functional deletion(s) of various CD8 T cell epitopes. Twenty percent of CD8 T cells in the spleen were specific for all immunodominant and subdominant viral glycoprotein (GP) epitopes. CTLs to the immunodominant LCMV GP33-41 epitope accounted for 63% of the total (12.5% of tetramers). In situ hybridization analysis demonstrated only 1 to 2% of total infiltrating CD8 T cells were specific for GP33 CD8 T cell epitope, yet diabetes occurred in 94% of mice. The immunologic synapse between GP33 CD8 CTL and β cell contained LFA-1 and perforin. Silencing both immunodominant epitopes (GP33, GP276–286) in the infecting virus led to a four-fold reduction in viral specific CD8 CTL responses, negligible lymphocyte infiltration into islets and absence of diabetes. Insulin-dependent type 1 diabetes (T1D) is characterized by elevated blood sugar, lymphocytic infiltration into the islets of Langerhans and T cell destruction of beta (β) cells. β cells produce insulin whose function is to maintain and regulate glucose hemostasis. However, in vivo, the numbers of antigen specific T cells that migrate to the islets to cause T1D, the engagement of such T cells with β cells at the immunologic synapse and the molecules expressed at the synapse are not clear. Using a transgenic model of virus induced T1D, a panel of viruses with CD8 T cell epitope mutations and in situ tetramer hybridization, we note of the total CD8 T cells infiltrating the islets, only 1–2% are antigen specific recognizing the immunodominant virus CD8 T cell epitope expressed on β cells. Immunohistochemical analysis of the synapse found between antigen specific CD8 T cells and β cells displays attachment by LFA-1 and presence of perforin, the molecule indicative of lytic activity.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Immunological Synapses/genetics
- Immunological Synapses/immunology
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/pathology
- Mice
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
Collapse
Affiliation(s)
- Michael B A Oldstone
- Viral-Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America.
| | | | | | | | | |
Collapse
|
6
|
Pinschewer DD, Schedensack M, Bergthaler A, Horvath E, Brück W, Löhning M, Merkler D. T cells can mediate viral clearance from ependyma but not from brain parenchyma in a major histocompatibility class I- and perforin-independent manner. ACTA ACUST UNITED AC 2010; 133:1054-66. [PMID: 20354003 PMCID: PMC7110187 DOI: 10.1093/brain/awq028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Viral infection of the central nervous system can lead to disability and death. Yet the majority of viral infections with central nervous system involvement resolve with only mild clinical manifestations, if any. This is generally attributed to efficient elimination of the infection from the brain coverings, i.e. the meninges, ependyma and chorioplexus, which are the primary targets of haematogeneous viral spread. How the immune system is able to purge these structures from viral infection with only minimal detrimental effects is still poorly understood. In the present work we studied how an attenuated lymphocytic choriomeningitis virus can be cleared from the central nervous system in the absence of overt disease. We show that elimination of the virus from brain ependyma, but not from brain parenchyma, could be achieved by a T cell-dependent mechanism operating independently of major histocompatibility class I antigens and perforin. Considering that cytotoxic T lymphocyte-mediated cytotoxicity is a leading cause of viral immunopathology and tissue damage, our findings may explain why the most common viral intruders of the central nervous system rarely represent a serious threat to our health.
Collapse
Affiliation(s)
- Daniel D Pinschewer
- Department of Pathology and Immunology, W.H.O. Collaborating Centre for Neonatal Vaccinology, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|