1
|
Carulli E, McGarvey M, Chabok M, Panoulas V, Rosser G, Akhtar M, Smith R, Chandra N, Al-Hussaini A, Kabir T, Barker L, Bruno F, Konstantinou K, de Silva R, Hill J, Xu Y, Lane R, Bucciarelli-Ducci C, Luescher T, Dalby M. Transcoronary cooling and dilution for cardioprotection during revascularisation for ST-segment elevation myocardial infarction: Design and rationale of the STEMI-Cool study. Am Heart J 2025; 282:40-50. [PMID: 39742936 DOI: 10.1016/j.ahj.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND ST-segment elevation myocardial infarction (STEMI) is treated with immediate primary percutaneous coronary intervention (pPCI) to restore coronary blood flow in the acutely ischaemic territory, but is associated with reperfusion injury limiting the benefit of the therapy. No treatment has proven effective in reducing reperfusion injury. Transcoronary hypothermia has been tested in clinical studies and is well tolerated, but is generally established after crossing the occlusion with a guidewire therefore after initial reperfusion, which might have contributed to the neutral outcomes. Transcatheter strategies may also offer additional benefit through haemodilution and the resultant controlled reperfusion, but this has not been fully investigated for pPCI. DESIGN STEMI-Cool is a pragmatic, registry-based randomised clinical pilot trial to test the recruitment rate, feasibility, and safety of a simple transcoronary cooling and dilution protocol. Sixty STEMI patients undergoing pPCI will be randomised 1:1 to standard of care or continuous infusion of room temperature saline through the guiding catheter to achieve intracoronary temperature reductions of 6 to 8°C, commencing before crossing the coronary occlusion with a guidewire. Mechanistic outcome measures will include microvascular resistance, biomarkers of inflammation before infusion and at 24 hour, and magnetic resonance imaging of myocardial salvage and infarct size. CONCLUSIONS STEMI-Cool will investigate the recruitment rate, feasibility and safety of an innovative and simple cooling and diluting strategy for cardioprotection before and during reperfusion with pPCI, aiming to address limitations faced in other studies. Mechanistic outcome measures will allow insight into inflammatory, microvascular and structural changes induced by transcoronary cooling and dilution.
Collapse
Affiliation(s)
- Ermes Carulli
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK; Doctoral school in Translational Medicine, University of Milan, Milan, Italy.
| | - Michael McGarvey
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK; Department of Cardiovascular Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Mohssen Chabok
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Vasileios Panoulas
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Gareth Rosser
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Mohammed Akhtar
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Robert Smith
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Navin Chandra
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Abtehale Al-Hussaini
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Tito Kabir
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Laura Barker
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Francesco Bruno
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | | | - Ranil de Silva
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Jonathan Hill
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Rebecca Lane
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Chiara Bucciarelli-Ducci
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK; School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Thomas Luescher
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK; Cardiovascular Academic Group, King's College London, London, UK
| | - Miles Dalby
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK; Cardiovascular Academic Group, King's College London, London, UK
| |
Collapse
|
2
|
Li T, Su D, Lu H, Gao Y, Liu Y, Wang S, Hou Y, Qin K, Que X, Chen X, Qin B, Wang Z, Deng Y. Recombinant human brain natriuretic peptide attenuates ischemic brain injury in mice by inhibiting oxidative stress and cell apoptosis via activation of PI3K/AKT/Nrf2/HO-1 pathway. Exp Brain Res 2023; 241:2751-2763. [PMID: 37847304 DOI: 10.1007/s00221-023-06716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023]
Abstract
Ischemic stroke followed by cerebral artery occlusion is a main cause of chronic disability worldwide. Recombinant human brain natriuretic peptide (rhBNP) has been reported to alleviate sepsis-induced cognitive dysfunction and brain I/R injury. However, the function and molecular mechanisms of rhBNP in ischemic brain injury have not been clarified. For establishment of an animal model of ischemic brain injury, C57BL/6 mice were treated with middle cerebral artery occlusion (MCAO) surgery for 1 h and reperfusion for 24 h. After subcutaneous injection of rhBNP into model mice, neurologic deficits were assessed by evaluating behavior of mice according to Longa scoring system, and TTC staining was utilized to determine the brain infarct size of mice. The levels of oxidative stress markers, superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondialdehyde (MDA), were detected in hippocampal tissues of mice by corresponding kits. Cell apoptosis in hippocampus tissues was examined by TUNEL staining. Protein levels of antioxidant enzymes (HO-1 and NQO1) in cerebral cortex, apoptotic markers (Bax, Bcl-2, and cleaved caspase), and PI3K/AKT pathway-associated factors in hippocampus were tested by western blot analysis. The results revealed that injection of rhBNP decreased neurologic deficit scores, the percent of brain water content, and infarct volume. Additionally, rhBNP downregulated MDA level, upregulated the levels of SOD, CAT, and GSH in hippocampus of mice, and increased protein levels of HO-1 and NQO1 in the cortex. Cell apoptosis in hippocampus tissues of model mice was inhibited by rhBNP which was shown as the reduced TUNEL-positive cells, the decreased Bax, cleaved caspase-3, and cleaved caspase-9 protein levels, and the enhanced Bcl-2 protein level. In addition, rhBNP treatment activated the PI3K/AKT signaling pathway and upregulated the protein levels of HO-1 and NRF2. Overall, rhBNP activates the PI3K/AKT/HO-1/NRF2 pathway to attenuate ischemic brain injury in mice after MCAO by suppression of cell apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Tong Li
- Department of Neurology, Nanning Second People's Hospital, Nanning, 530031, China
| | - DaJing Su
- Department of Neurology, Nanning Second People's Hospital, Nanning, 530031, China
| | - HuaWen Lu
- Department of Neurology, Nanning Second People's Hospital, Nanning, 530031, China
| | - YunQing Gao
- Department of Neurology, Nanning Second People's Hospital, Nanning, 530031, China
| | - YongGang Liu
- Department of Urology Surgery, Nanning Second People's Hospital, Nanning, 530031, China
| | - ShaoHua Wang
- Department of Neurology, Nanning Second People's Hospital, Nanning, 530031, China
| | - YuTing Hou
- Department of Neurology, Nanning Second People's Hospital, Nanning, 530031, China
| | - KeMin Qin
- Department of Neurology, Nanning Second People's Hospital, Nanning, 530031, China
| | - XianTing Que
- Department of Neurology, Nanning Second People's Hospital, Nanning, 530031, China
| | - XiaoPing Chen
- Department of Neurology, Nanning Second People's Hospital, Nanning, 530031, China
| | - BaiLing Qin
- Department of Neurology, Nanning Second People's Hospital, Nanning, 530031, China
| | - ZiJun Wang
- Department of Neurology, Nanning Second People's Hospital, Nanning, 530031, China
| | - Yan Deng
- Department of Medical Records, Nanning Second People's Hospital, No. 13, Dancun Road, Jiangnan District, Nanning, 530031, Guangxi, China.
| |
Collapse
|
3
|
Bouzazi D, Mami W, Mosbah A, Marrakchi N, Ben Ahmed M, Messadi E. Natriuretic-like Peptide Lebetin 2 Mediates M2 Macrophage Polarization in LPS-Activated RAW264.7 Cells in an IL-10-Dependent Manner. Toxins (Basel) 2023; 15:toxins15040298. [PMID: 37104236 PMCID: PMC10142756 DOI: 10.3390/toxins15040298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Snake natriuretic peptide (NP) Lebetin 2 (L2) has been shown to improve cardiac function and reduce fibrosis as well as inflammation by promoting M2-type macrophages in a reperfused myocardial infarction (MI) model. However, the inflammatory mechanism of L2 remains unclear. Therefore, we investigated the effect of L2 on macrophage polarization in lipopolysaccharide (LPS)-activated RAW264.7 cells in vitro and explored the associated underlying mechanisms. TNF-α, IL-6 and IL-10 levels were assessed using an ELISA assay, and M2 macrophage polarization was determined by flow cytometry. L2 was used at non-cytotoxic concentrations determined by a preliminary MTT cell viability assay, and compared to B-type natriuretic peptide (BNP). In LPS-activated cells, both peptides reduced TNF-α and IL-6 release compared to controls. However, only L2 increased IL-10 release in a sustained manner and promoted downstream M2 macrophage polarization. Pretreatment of LPS-activated RAW264.7 cells with the selective NP receptor (NPR) antagonist isatin abolished both IL-10 and M2-like macrophage potentiation provided by L2. In addition, cell pretreatment with the IL-10 inhibitor suppressed L2-induced M2 macrophage polarization. We conclude that L2 exerts an anti-inflammatory response to LPS by regulating the release of inflammatory cytokines via stimulating of NP receptors and promoting M2 macrophage polarization through activation of IL-10 signaling.
Collapse
Affiliation(s)
- Dorsaf Bouzazi
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| | - Wael Mami
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| | - Amor Mosbah
- Laboratory of Biotechnology and Bio-Geo Resources Valorization (LR11ES31), Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Tunis 2010, Tunisia
| | - Naziha Marrakchi
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| | - Melika Ben Ahmed
- Laboratoire de Transmission, Department of Clinical Immunology, Contrôle et Immunobiologie des Infections, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| | - Erij Messadi
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
4
|
Bon-Mathier AC, Déglise T, Rignault-Clerc S, Bielmann C, Mazzolai L, Rosenblatt-Velin N. Brain Natriuretic Peptide Protects Cardiomyocytes from Apoptosis and Stimulates Their Cell Cycle Re-Entry in Mouse Infarcted Hearts. Cells 2022; 12:cells12010007. [PMID: 36611800 PMCID: PMC9818267 DOI: 10.3390/cells12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Brain Natriuretic Peptide (BNP) supplementation after infarction increases heart function and decreases heart remodeling. BNP receptors, NPR-A and NPR-B are expressed on adult cardiomyocytes (CMs). We investigated whether a part of the BNP cardioprotective effect in infarcted and unmanipulated hearts is due to modulation of the CM fate. For this purpose, infarcted adult male mice were intraperitoneally injected every two days during 2 weeks with BNP or saline. Mice were sacrificed 1 and 14 days after surgery. BNP or saline was also injected intraperitoneally every two days into neonatal pups (3 days after birth) for 10 days and in unmanipulated 8-week-old male mice for 2 weeks. At sacrifice, CMs were isolated, counted, measured, and characterized by qRT-PCR. The proportion of mononucleated CMs was determined. Immunostainings aimed to detect CM re-entry in the cell cycle were performed on the different hearts. Finally, the signaling pathway activated by BNP treatment was identified in in vitro BNP-treated adult CMs and in CMs isolated from BNP-treated hearts. An increased number of CMs was detected in the hypoxic area of infarcted hearts, and in unmanipulated neonatal and adult hearts after BNP treatment. Accordingly, Troponin T plasma concentration was significantly reduced 1 and 3 days after infarction in BNP-treated mice, demonstrating less CM death. Furthermore, higher number of small, dedifferentiated and mononucleated CMs were identified in adult BNP-treated hearts when compared to saline-treated hearts. BNP-treated CMs express higher levels of mRNAs coding for hif1 alpha and for the different cyclins than CMs isolated from saline-treated hearts. Higher percentages of CMs undergoing DNA synthesis, expressing Ki67, phospho histone3 and Aurora B were detected in all BNP-treated hearts, demonstrating that CMs re-enter into the cell cycle. BNP effect on adult CMs in vivo is mediated by NPR-A binding and activation of the ERK MAP kinase pathway. Interestingly, an increased number of CMs was also detected in adult infarcted hearts treated with LCZ696, an inhibitor of the natriuretic peptide degradation. Altogether, our results identified BNP and all therapies aimed to increase BNP's bioavailability as new cardioprotective targets as BNP treatment leads to an increased number of CMs in neonatal, adult unmanipulated and infarcted hearts.
Collapse
|
5
|
Li N, Rignault-Clerc S, Bielmann C, Bon-Mathier AC, Déglise T, Carboni A, Ducrest M, Rosenblatt-Velin N. Increasing heart vascularisation after myocardial infarction using brain natriuretic peptide stimulation of endothelial and WT1 + epicardial cells. eLife 2020; 9:61050. [PMID: 33245046 PMCID: PMC7695454 DOI: 10.7554/elife.61050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Brain natriuretic peptide (BNP) treatment increases heart function and decreases heart dilation after myocardial infarction (MI). Here, we investigated whether part of the cardioprotective effect of BNP in infarcted hearts related to improved neovascularisation. Infarcted mice were treated with saline or BNP for 10 days. BNP treatment increased vascularisation and the number of endothelial cells in all areas of infarcted hearts. Endothelial cell lineage tracing showed that BNP directly stimulated the proliferation of resident endothelial cells via NPR-A binding and p38 MAP kinase activation. BNP also stimulated the proliferation of WT1+ epicardium-derived cells but only in the hypoxic area of infarcted hearts. Our results demonstrated that these immature cells have a natural capacity to differentiate into endothelial cells in infarcted hearts. BNP treatment increased their proliferation but not their differentiation capacity. We identified new roles for BNP that hold potential for new therapeutic strategies to improve recovery and clinical outcome after MI.
Collapse
Affiliation(s)
- Na Li
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Stephanie Rignault-Clerc
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Christelle Bielmann
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Anne-Charlotte Bon-Mathier
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Tamara Déglise
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Alexia Carboni
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Mégane Ducrest
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Nathalie Rosenblatt-Velin
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Gunata M, Parlakpinar H. A review of myocardial ischaemia/reperfusion injury: Pathophysiology, experimental models, biomarkers, genetics and pharmacological treatment. Cell Biochem Funct 2020; 39:190-217. [PMID: 32892450 DOI: 10.1002/cbf.3587] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases are known to be the most fatal diseases worldwide. Ischaemia/reperfusion (I/R) injury is at the centre of the pathology of the most common cardiovascular diseases. According to the World Health Organization estimates, ischaemic heart disease is the leading global cause of death, causing more than 9 million deaths in 2016. After cardiovascular events, thrombolysis, percutaneous transluminal coronary angioplasty or coronary bypass surgery are applied as treatment. However, after restoring coronary blood flow, myocardial I/R injury may occur. It is known that this damage occurs due to many pathophysiological mechanisms, especially increasing reactive oxygen types. Besides causing cardiomyocyte death through multiple mechanisms, it may be an important reason for affecting other cell types such as platelets, fibroblasts, endothelial and smooth muscle cells and immune cells. Also, polymorphonuclear leukocytes are associated with myocardial I/R damage during reperfusion. This damage may be insufficient in patients with co-morbidity, as it is demonstrated that it can be prevented by various endogenous antioxidant systems. In this context, the resulting data suggest that optimal cardioprotection may require a combination of additional or synergistic multi-target treatments. In this review, we discussed the pathophysiology, experimental models, biomarkers, treatment and its relationship with genetics in myocardial I/R injury. SIGNIFICANCE OF THE STUDY: This review summarized current information on myocardial ischaemia/reperfusion injury (pathophysiology, experimental models, biomarkers, genetics and pharmacological therapy) for researchers and reveals guiding data for researchers, especially in the field of cardiovascular system and pharmacology.
Collapse
Affiliation(s)
- Mehmet Gunata
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
7
|
Krylatov AV, Tsibulnikov SY, Mukhomedzyanov AV, Boshchenko AA, Goldberg VE, Jaggi AS, Erben RG, Maslov LN. The Role of Natriuretic Peptides in the Regulation of Cardiac Tolerance to Ischemia/Reperfusion and Postinfarction Heart Remodeling. J Cardiovasc Pharmacol Ther 2020; 26:131-148. [PMID: 32840121 DOI: 10.1177/1074248420952243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the past 10 years, mortality from acute myocardial infarction has not decreased despite the widespread introduction of percutaneous coronary intervention. The reason for this situation is the absence in clinical practice of drugs capable of preventing reperfusion injury of the heart with high efficiency. In this regard, noteworthy natriuretic peptides (NPs) which have the infarct-limiting effect, prevent reperfusion cardiac injury, prevent adverse post-infarction remodeling of the heart. Atrial natriuretic peptide does not have the infarct-reducing effect in rats with alloxan-induced diabetes mellitus. NPs have the anti-apoptotic and anti-inflammatory effects. There is indirect evidence that NPs inhibit pyroptosis and autophagy. Published data indicate that NPs inhibit reactive oxygen species production in cardiomyocytes, aorta, heart, kidney and the endothelial cells. NPs can suppress aldosterone, angiotensin II, endothelin-1 synthesize and secretion. NPs inhibit the effects aldosterone, angiotensin II on the post-receptor level through intracellular signaling events. NPs activate guanylyl cyclase, protein kinase G and protein kinase A, and reduce phosphodiesterase 3 activity. NO-synthase and soluble guanylyl cyclase are involved in the cardioprotective effect of NPs. The cardioprotective effect of natriuretic peptides is mediated via activation of kinases (AMPK, PKC, PI3 K, ERK1/2, p70s6 k, Akt) and inhibition of glycogen synthase kinase 3β. The cardioprotective effect of NPs is mediated via sarcolemmal KATP channel and mitochondrial KATP channel opening. The cardioprotective effect of brain natriuretic peptide is mediated via MPT pore closing. The anti-fibrotic effect of NPs may be mediated through inhibition TGF-β1 expression. Natriuretic peptides can inhibit NF-κB activity and activate GATA. Hemeoxygenase-1 and peroxisome proliferator-activated receptor γ may be involved in the infarct-reducing effect of NPs. NPs exhibit the infarct-limiting effect in patients with acute myocardial infarction. NPs prevent post-infarction remodeling of the heart. To finally resolve the question of the feasibility of using NPs in AMI, a multicenter, randomized, blind, placebo-controlled study is needed to assess the effect of NPs on the mortality of patients after AMI.
Collapse
Affiliation(s)
- Andrey V Krylatov
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Sergey Y Tsibulnikov
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | | | - Alla A Boshchenko
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Victor E Goldberg
- Cancer Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Amteshwar S Jaggi
- 429174Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Reinhold G Erben
- Department of Biomedical Research, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Leonid N Maslov
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| |
Collapse
|
8
|
Recombinant Human Brain Natriuretic Peptide Attenuates Myocardial Ischemia-Reperfusion Injury by Inhibiting CD4 + T Cell Proliferation via PI3K/AKT/mTOR Pathway Activation. Cardiovasc Ther 2020; 2020:1389312. [PMID: 32788926 PMCID: PMC7330653 DOI: 10.1155/2020/1389312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/23/2020] [Accepted: 05/27/2020] [Indexed: 11/28/2022] Open
Abstract
Inflammation plays a major role in the development of myocardial ischemia-reperfusion (IR) injury. Recombinant human brain natriuretic peptide (rhBNP), a man-made version of a peptide that is elevated in heart failure, exhibits anti-inflammatory effects in various tissues. However, its role in myocardial IR injury remains unclear. In this study, we demonstrate that treatment with rhBNP provided protection for mice against myocardial IR injury as manifested by reduced infarct size and well-preserved myocardial, attenuated inflammatory infiltration and CD4+ T cell proliferation function, and inhibited expression of proinflammatory related genes. Furthermore, mechanistic studies revealed that rhBNP inhibited Jurkat T proliferation by promoting PI3K/AKT/mTOR phosphorylation. Collectively, our data suggest that the administration of rhBNP during IR injury could expand our understanding of the cardioprotective effects of rhBNP.
Collapse
|
9
|
Wang JH, Wei ZF, Gao YL, Liu CC, Sun JH. Activation of the mammalian target of rapamycin signaling pathway underlies a novel inhibitory role of ring finger protein 182 in ventricular remodeling after myocardial ischemia-reperfusion injury. J Cell Biochem 2019; 120:7635-7648. [PMID: 30450663 DOI: 10.1002/jcb.28038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a major cause of cardiovascular disease, leading to mortality and disability associated with coronary occlusion worldwide. A correlation of mammalian target of rapamycin (mTOR)/nuclear factor-kappa B (NF-κB) signaling pathway has been observed with brain damage resulting from myocardial ischemia. Therefore, by establishing MIRI rat model, this study aimed to explore whether ring finger protein 182 (RNF182) regulates the mTOR signaling pathway affecting MIRI. Initially, MIRI rat model was successfully established, followed by either treatment of shRNF182 or phosphoesterase (PITE) (inhibitor of the mTOR signaling pathway). Then, the serum levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA), left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular systolic pressure (LVSP), and left ventricular end-diastolic pressure (LVEDP) were determined, followed by detection of myocardial infarct sizes and myocardial cell apoptosis. Moreover, the levels of related genes/proteins were determined to further determine the mechanisms of RNF182 in MIRI. First, RNF182 was upregulated in MIRI. Another key observation of this study was that rats with shRNF182 presented with downregulated SOD, GSH-Px, and MDA in serum, accompanied by decreased levels of LVEF, LVFS, LVSP, and LVEDP. In addition, both reduced myocardial infarct sizes and apoptosis of myocardial cells were observed after silencing RNF182. Furthermore, silencing of the RNF182 was observed to downregulate Bcl 2-associated X and cysteine proteinase 3 but upregulate mTOR, ribosome protein subunit 6 kinase 1, eukaryotic elongation factor 2, and B-cell lymphoma-2. Importantly, the effects of RNF182 silencing were reversed after PITE treatment. In conclusion, our study demonstrates that RNF182 silencing can prevent ventricular remodeling in rats after MIRI by activating the mTOR signaling pathway.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Zhi-Feng Wei
- Department of Cardiology, FAW General Hospital, Changchun, China
| | - Yan-Li Gao
- Department of Science and Education, The First Hospital of Jilin University, Changchun, China
| | - Cong-Cong Liu
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Jing-Hui Sun
- Department of Pediatric Cardiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Chang P, Zhang M, Zhang X, Li G, Hu H, Wu J, Wang X, Yang Z, Zhang J, Chen W, Ren M, Li X, Zhu M, Chen B, Yu J. B-type natriuretic peptide attenuates endoplasmic reticulum stress in H9c2 cardiomyocytes underwent hypoxia/reoxygenation injury under high glucose/high fat conditions. Peptides 2019; 111:103-111. [PMID: 29689346 DOI: 10.1016/j.peptides.2018.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023]
Abstract
Exogenously administered B-type natriuretic peptide (BNP) has been shown to provide cardioprotection against various heart diseases. However, the underlying mechanisms remain elusive. This study explores whether BNP exerts its cardioprotection against hypoxia/reoxygenation (H/R) injury under high glucose/high fat (HG/HF) conditions in cardiac H9c2 cells and uncovers the underlying mechanisms. Our data revealed that BNP significantly increased the cell viability and decreased the release of lactate dehydrogenase (LDH) and creatine kinase (CK), with a maximal effect at the BNP concentration of 10-7 mol/L. In addition, by analyzing the activation of cleaved caspase-3 and by Annexin V-FITC/PI staining, we showed that BNP attenuated H/R-induced cell apoptosis in HG/HF conditions. Western blot analysis showed enhanced phosphorylation of protein kinase RNA (PKR)-like endoplastmic reticulum (ER) kinase (PERK) and eukaryotic initiation factor 2α (eIF2α)(one of the three main signaling pathways in endoplastmic reticulum (ER) stress), and increased expression of GRP78 and CHOP proteins (ER stress-related proteins) in H9c2 cells which underwent H/R in HG/HF conditions. Treatment with BNP or 8-Br-cGMP (an analog of cGMP) reversed this activation. However, this effect was significantly weakened by KT-5823, a selective cGMP-dependent protein kinase G (PKG) inhibitor. In addition, similar to BNP, treatment with a specific inhibitor of ER stress tauroursodeoxycholic acid (TUDCA) protected the cells against H/R injury exposed to HG/HF conditions. In conclusion, these findings demonstrated that BNP effectively protected cells against H/R injury under HG/HF conditions by inhibiting the ER stress via activation of the cGMP-PKG signaling pathway.
Collapse
Affiliation(s)
- Pan Chang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, China; Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China; Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Soochow University, Suzhou, China
| | - Xiaomeng Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guohua Li
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Haiyan Hu
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Juan Wu
- Department of General Practitioner, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Xihui Wang
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Zihua Yang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Jing Zhang
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Weiguo Chen
- Department of General Practitioner, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Minggang Ren
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Xin Li
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Miaozhang Zhu
- Department of Physiology, Fourth Military Medical University, Xi'an, China.
| | - Baoying Chen
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Jun Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, China; Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
11
|
Rignault-Clerc S, Bielmann C, Liaudet L, Waeber B, Feihl F, Rosenblatt-Velin N. Natriuretic Peptide Receptor B modulates the proliferation of the cardiac cells expressing the Stem Cell Antigen-1. Sci Rep 2017; 7:41936. [PMID: 28181511 PMCID: PMC5299447 DOI: 10.1038/srep41936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/04/2017] [Indexed: 12/21/2022] Open
Abstract
Brain Natriuretic Peptide (BNP) injections in adult “healthy” or infarcted mice led to increased number of non-myocyte cells (NMCs) expressing the nuclear transcription factor Nkx2.5. The aim of this study was to identify the nature of the cells able to respond to BNP as well as the signaling pathway involved. BNP treatment of neonatal mouse NMCs stimulated Sca-1+ cell proliferation. The Sca-1+ cells were characterized as being a mixed cell population involving fibroblasts and multipotent precursor cells. Thus, BNP treatment led also to increased number of Sca-1+ cells expressing Nkx2.5, in Sca-1+ cell cultures in vitro and in vivo, in the hearts of neonatal and adult infarcted mice. Whereas BNP induced Sca-1+ cell proliferation via NPR-B receptor and protein kinase G activation, CNP stimulated Sca-1+ cell proliferation via NPR-B and a PKG-independent mechanism. We highlighted here a new role for the natriuretic peptide receptor B which was identified as a target able to modulate the proliferation of the Sca-1+ cells. The involvement of NPR-B signaling in heart regeneration has, however, to be further investigated.
Collapse
Affiliation(s)
- Stéphanie Rignault-Clerc
- Unité de Physiopathologie Clinique Centre Hospitalier Universitaire Vaudois and University of Lausanne, Bugnon 7a, 1005 Lausanne, Switzerland
| | - Christelle Bielmann
- Unité de Physiopathologie Clinique Centre Hospitalier Universitaire Vaudois and University of Lausanne, Bugnon 7a, 1005 Lausanne, Switzerland
| | - Lucas Liaudet
- Service de Médecine Intensive Adulte, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland
| | - Bernard Waeber
- Unité de Physiopathologie Clinique Centre Hospitalier Universitaire Vaudois and University of Lausanne, Bugnon 7a, 1005 Lausanne, Switzerland
| | - François Feihl
- Unité de Physiopathologie Clinique Centre Hospitalier Universitaire Vaudois and University of Lausanne, Bugnon 7a, 1005 Lausanne, Switzerland
| | - Nathalie Rosenblatt-Velin
- Unité de Physiopathologie Clinique Centre Hospitalier Universitaire Vaudois and University of Lausanne, Bugnon 7a, 1005 Lausanne, Switzerland
| |
Collapse
|
12
|
Tourki B, Matéo P, Morand J, Elayeb M, Godin-Ribuot D, Marrakchi N, Belaidi E, Messadi E. Lebetin 2, a Snake Venom-Derived Natriuretic Peptide, Attenuates Acute Myocardial Ischemic Injury through the Modulation of Mitochondrial Permeability Transition Pore at the Time of Reperfusion. PLoS One 2016; 11:e0162632. [PMID: 27618302 PMCID: PMC5019389 DOI: 10.1371/journal.pone.0162632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/25/2016] [Indexed: 12/28/2022] Open
Abstract
Cardiac ischemia is one of the leading causes of death worldwide. It is now well established that natriuretic peptides can attenuate the development of irreversible ischemic injury during myocardial infarction. Lebetin 2 (L2) is a new discovered peptide isolated from Macrovipera lebetina venom with structural similarity to B-type natriuretic peptide (BNP). Our objectives were to define the acute cardioprotective actions of L2 in isolated Langendorff-perfused rat hearts after regional or global ischemia-reperfusion (IR). We studied infarct size, left ventricular contractile recovery, survival protein kinases and mitochondrial permeability transition pore (mPTP) opening in injured myocardium. L2 dosage was determined by preliminary experiments at its ability to induce cyclic guanosine monophosphate (cGMP) release without changing hemodynamic effects in normoxic hearts. L2 was found to be as effective as BNP in reducing infarct size after the induction of either regional or global IR. Both peptides equally improved contractile recovery after regional IR, but only L2 increased coronary flow and reduced severe contractile dysfunction after global ischemia. Cardioprotection afforded by L2 was abolished after isatin or 5-hydroxydecanote pretreatment suggesting the involvement of natriuretic peptide receptors and mitochondrial KATP (mitoKATP) channels in the L2-induced effects. L2 also increased survival protein expression in the reperfused myocardium as evidenced by phosphorylation of signaling pathways PKCε/ERK/GSK3β and PI3K/Akt/eNOS. IR induced mitochondrial pore opening, but this effect was markedly prevented by L2 treatment. These data show that L2 has strong cardioprotective effect in acute ischemia through stimulation of natriuretic peptide receptors. These beneficial effects are mediated, at least in part, by mitoKATP channel opening and downstream activated survival kinases, thus delaying mPTP opening and improving IR-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Bochra Tourki
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08) et Plateforme de Physiologie et de Physiopathologie Cardiovasculaires (P2C), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
- Université Carthage Tunis, Bizerte, Tunisia
| | - Philippe Matéo
- Laboratoire de Signalisation et Physiopathologie Cardiovasculaire, UMR-S 1180, Faculté de Pharmacie, Université Paris Sud, Paris, France
| | - Jessica Morand
- Laboratoire d’Hypoxie et Physiopathologie Cardiaque, Inserm U1042, Faculté de Pharmacie, Université Grenoble Alpes, Grenoble, France
| | - Mohamed Elayeb
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08) et Plateforme de Physiologie et de Physiopathologie Cardiovasculaires (P2C), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Diane Godin-Ribuot
- Laboratoire d’Hypoxie et Physiopathologie Cardiaque, Inserm U1042, Faculté de Pharmacie, Université Grenoble Alpes, Grenoble, France
| | - Naziha Marrakchi
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08) et Plateforme de Physiologie et de Physiopathologie Cardiovasculaires (P2C), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Elise Belaidi
- Laboratoire d’Hypoxie et Physiopathologie Cardiaque, Inserm U1042, Faculté de Pharmacie, Université Grenoble Alpes, Grenoble, France
| | - Erij Messadi
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08) et Plateforme de Physiologie et de Physiopathologie Cardiovasculaires (P2C), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
- * E-mail:
| |
Collapse
|
13
|
Kiss K, Csonka C, Pálóczi J, Pipis J, Görbe A, Kocsis GF, Murlasits Z, Sárközy M, Szűcs G, Holmes CP, Pan Y, Bhandari A, Csont T, Shamloo M, Woodburn KW, Ferdinandy P, Bencsik P. Novel, selective EPO receptor ligands lacking erythropoietic activity reduce infarct size in acute myocardial infarction in rats. Pharmacol Res 2016; 113:62-70. [PMID: 27521836 DOI: 10.1016/j.phrs.2016.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
Erythropoietin (EPO) has been shown to protect the heart against acute myocardial infarction in pre-clinical studies, however, EPO failed to reduce infarct size in clinical trials and showed significant safety problems. Here, we investigated cardioprotective effects of two selective non-erythropoietic EPO receptor ligand dimeric peptides (AF41676 and AF43136) lacking erythropoietic activity, EPO, and the prolonged half-life EPO analogue, darbepoetin in acute myocardial infarction (AMI) in rats. In a pilot study, EPO at 100U/mL significantly decreased cell death compared to vehicle (33.8±2.3% vs. 40.3±1.5%, p<0.05) in rat neonatal cardiomyocytes subjected to simulated ischemia/reperfusion. In further studies (studies 1-4), in vivo AMI was induced by 30min coronary occlusion and 120min reperfusion in male Wistar rats. Test compounds and positive controls for model validation (B-type natriuretic peptide, BNP or cyclosporine A, CsA) were administered iv. before the onset of reperfusion. Infarct size (IS) was measured by standard TTC staining. In study 1, 5000U/kg EPO reduced infarct size significantly compared to vehicle (45.3±4.8% vs. 59.8±4.5%, p<0.05). In study 2, darbepoetin showed a U-shaped dose-response curve with maximal infarct size-reducing effect at 5μg/kg compared to the vehicle (44.4±5.7% vs. 65.9±2.7%, p<0.01). In study 3, AF41676 showed a U-shaped dose-response curve, where 3mg/kg was the most effective dose compared to the vehicle (24.1±3.9% vs. 44.3±2.5%, p<0.001). The positive control BNP significantly decreased infarct size in studies 1-3 by approximately 35%. In study 4, AF43136 at 10mg/kg decreased infarct size, similarly to the positive control CsA compared to the appropriate vehicle (39.4±5.9% vs. 58.1±5.4% and 45.9±2.4% vs. 63.8±4.1%, p<0.05, respectively). This is the first demonstration that selective, non-erythropoietic EPO receptor ligand dimeric peptides AF41676 and AF43136 administered before reperfusion are able to reduce infarct size in a rat model of AMI. Therefore, non-erythropoietic EPO receptor peptide ligands may be promising cardioprotective agents.
Collapse
Affiliation(s)
- Krisztina Kiss
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary.
| | - Csaba Csonka
- Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary.
| | - János Pálóczi
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary; Pharmahungary Group, Dom ter 9, Szeged H-6720, Hungary.
| | - Judit Pipis
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary; Pharmahungary Group, Dom ter 9, Szeged H-6720, Hungary.
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary; Pharmahungary Group, Dom ter 9, Szeged H-6720, Hungary.
| | - Gabriella F Kocsis
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary; Pharmahungary Group, Dom ter 9, Szeged H-6720, Hungary.
| | - Zsolt Murlasits
- Pharmahungary Group, Dom ter 9, Szeged H-6720, Hungary; Sports Science Program, Qatar University, Doha 00974, Qatar.
| | - Márta Sárközy
- Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary.
| | - Gergő Szűcs
- Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary.
| | | | - Yijun Pan
- Affymax, Inc., 4015 Miranda Ave Fl 1, Palo Alto, CA 94304, United States.
| | - Ashok Bhandari
- Affymax, Inc., 4015 Miranda Ave Fl 1, Palo Alto, CA 94304, United States.
| | - Tamás Csont
- Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary.
| | - Mehrdad Shamloo
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304, United States.
| | - Kathryn W Woodburn
- Affymax, Inc., 4015 Miranda Ave Fl 1, Palo Alto, CA 94304, United States; Avalanche Biotechnologies, 1035 O'Brien Drive, Menlo Park, CA 94025, United States.
| | - Péter Ferdinandy
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary; Pharmahungary Group, Dom ter 9, Szeged H-6720, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4, Budapest H-1089, Hungary.
| | - Péter Bencsik
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary; Pharmahungary Group, Dom ter 9, Szeged H-6720, Hungary.
| |
Collapse
|
14
|
Pharmacological Therapy in the Heart as an Alternative to Cellular Therapy: A Place for the Brain Natriuretic Peptide? Stem Cells Int 2016; 2016:5961342. [PMID: 26880973 PMCID: PMC4735943 DOI: 10.1155/2016/5961342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/08/2015] [Accepted: 10/08/2015] [Indexed: 02/08/2023] Open
Abstract
The discovery that stem cells isolated from different organs have the ability to differentiate into mature beating cardiomyocytes has fostered considerable interest in developing cellular regenerative therapies to treat cardiac diseases associated with the loss of viable myocardium. Clinical studies evaluating the potential of stem cells (from heart, blood, bone marrow, skeletal muscle, and fat) to regenerate the myocardium and improve its functional status indicated that although the method appeared generally safe, its overall efficacy has remained modest. Several issues raised by these studies were notably related to the nature and number of injected cells, as well as the route and timing of their administration, to cite only a few. Besides the direct administration of cardiac precursor cells, a distinct approach to cardiac regeneration could be based upon the stimulation of the heart's natural ability to regenerate, using pharmacological approaches. Indeed, differentiation and/or proliferation of cardiac precursor cells is controlled by various endogenous mediators, such as growth factors and cytokines, which could thus be used as pharmacological agents to promote regeneration. To illustrate such approach, we present recent results showing that the exogenous administration of the natriuretic peptide BNP triggers “endogenous” cardiac regeneration, following experimental myocardial infarction.
Collapse
|
15
|
Breivik L, Jensen A, Guvåg S, Aarnes EK, Aspevik A, Helgeland E, Hovland S, Brattelid T, Jonassen AK. B-type natriuretic peptide expression and cardioprotection is regulated by Akt dependent signaling at early reperfusion. Peptides 2015; 66:43-50. [PMID: 25698234 DOI: 10.1016/j.peptides.2015.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 01/16/2023]
Abstract
Exogenously administered B-type natriuretic peptide (BNP) has been shown to offer cardioprotection through activation of particulate guanylyl cyclase (pGC), protein kinase G (PKG) and KATP channel opening. The current study explores if cardioprotection afforded by short intermittent BNP administration involves PI3K/Akt/p70s6k dependent signaling, and whether this signaling pathway may participate in regulation of BNP mRNA expression at early reperfusion. Isolated Langendorff perfused rat hearts were subjected to 30min of regional ischemia and 120min of reperfusion (IR). Applying intermittent 3×30s infusion of BNP peptide in a postconditioning like manner (BNPPost) reduced infarct size by >50% compared to controls (BNPPost 17±2% vs. control 42±4%, p<0.001). Co-treatment with inhibitors of the PI3K/Akt/p70s6k pathway (wortmannin, SH-6 and rapamycin) completely abolished the infarct-limiting effect of BNP postconditioning (BNPPost+Wi 36±5%, BNPPost+SH-6 41±4%, BNPPost+Rap 37±6% vs. BNPPost 17±2%, p<0.001). Inhibition of natriuretic peptide receptors (NPR) by isatin also abrogated BNPPost cardioprotection (BNPPost+isatin 46±2% vs. BNPPost 17±2%, p<0.001). BNPPost also significantly phosphorylated Akt and p70s6k at early reperfusion, and Akt phosphorylation was inhibited by SH-6 and isatin. Myocardial BNP mRNA levels in the area at risk (AA) were significantly elevated at early reperfusion as compared to the non-ischemic area (ANA) (Ctr(AA) 2.7±0.5 vs. Ctr(ANA) 1.2±0.2, p<0.05) and the ischemic control tissue (Ctr(AA) 2.7±0.5 vs. ischemia 1.0±0.1, p<0.05). Additional experiments also revealed a significant higher BNP mRNA level in ischemic postconditioned (IPost) hearts as compared to ischemic controls (IPost 6.7±1.3 vs. ischemia 1.0±0.2, p<0.05), but showed no difference from controls run in parallel (Ctr 5.4±0.8). Akt inhibition by SH-6 completely abrogated this elevation (IPost 6.7±1.3 vs. IPost+SH-6 1.8±0.7, p<0.05) (Ctr 5.4±0.8 vs. SH-6 1.5±0.9, p<0.05). In conclusion, Akt dependent signaling is involved in mediating the cardioprotection afforded by intermittent BNP infusion at early reperfusion, and may also participate in regulation of reperfusion induced BNP expression.
Collapse
Affiliation(s)
- L Breivik
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Norway.
| | - A Jensen
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - S Guvåg
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - E K Aarnes
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - A Aspevik
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - E Helgeland
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - S Hovland
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - T Brattelid
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - A K Jonassen
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Norway
| |
Collapse
|
16
|
Frederich R, Alexander JH, Fiedorek FT, Donovan M, Berglind N, Harris S, Chen R, Wolf R, Mahaffey KW. A Systematic Assessment of Cardiovascular Outcomes in the Saxagliptin Drug Development Program for Type 2 Diabetes. Postgrad Med 2015; 122:16-27. [DOI: 10.3810/pgm.2010.05.2138] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Bielmann C, Rignault-Clerc S, Liaudet L, Li F, Kunieda T, Sogawa C, Zehnder T, Waeber B, Feihl F, Rosenblatt-Velin N. Brain natriuretic peptide is able to stimulate cardiac progenitor cell proliferation and differentiation in murine hearts after birth. Basic Res Cardiol 2014; 110:455. [DOI: 10.1007/s00395-014-0455-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/06/2014] [Accepted: 11/19/2014] [Indexed: 11/28/2022]
|
18
|
Anti-inflammatory Effect of B-Type Natriuretic Peptide Postconditioning During Myocardial Ischemia–Reperfusion: Involvement of PI3K/Akt Signaling Pathway. Inflammation 2014; 37:1669-74. [DOI: 10.1007/s10753-014-9895-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Matheeussen V, Jungraithmayr W, De Meester I. Dipeptidyl peptidase 4 as a therapeutic target in ischemia/reperfusion injury. Pharmacol Ther 2012; 136:267-82. [DOI: 10.1016/j.pharmthera.2012.07.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 01/21/2023]
|
20
|
Echtermeyer F, Harendza T, Hubrich S, Lorenz A, Herzog C, Mueller M, Schmitz M, Grund A, Larmann J, Stypmann J, Schieffer B, Lichtinghagen R, Hilfiker-Kleiner D, Wollert KC, Heineke J, Theilmeier G. Syndecan-4 signalling inhibits apoptosis and controls NFAT activity during myocardial damage and remodelling. Cardiovasc Res 2011; 92:123-31. [PMID: 21632883 DOI: 10.1093/cvr/cvr149] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Myocardial infarction (MI) results in acute impairment of left ventricular (LV) function through the initial development of cardiomyocyte death and subsequent progression of LV remodelling. The expression of syndecan-4 (Sdc4), a transmembrane proteoglycan, is up-regulated after MI, but its function in the heart remains unknown. Here, we characterize the effects of Sdc4 deficiency in murine myocardial ischaemia and permanent infarction. METHODS AND RESULTS Targeted deletion of Sdc4 (Sdc4(-/-)) leads to increased myocardial damage after ischaemic-reperfusion injury due to enhanced cardiomyocyte apoptosis associated with reduced activation of extracellular signal-regulated kinase in cardiomyocytes in vitro and in vivo. After ischaemic-reperfusion injury and permanent infarction, we observed an increase in cardiomyocyte area, nuclear translocation of nuclear factor of activated T cells (NFAT), and transcription of the NFAT target rcan1.4 in wild-type mice. NFAT pathway activation was enhanced in Sdc4(-/-) mice. In line with the in vivo data, NFAT activation and hypertrophy occurs in isolated cardiomyocytes with reduced Sdc4 expression during phenylephrine stimulation in vitro. Despite the initially increased myocardial damage, echocardiography revealed improved LV geometry and function in Sdc4(-/-) mice 7 days after MI. CONCLUSION Interception of the Sdc4 pathway enhances infarct expansion and hypertrophic remodelling during early infarct healing in ischaemic-reperfusion injury and permanent infarction mouse models and exerts net beneficial effects on LV function.
Collapse
Affiliation(s)
- Frank Echtermeyer
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|