1
|
Wu W, Wang X, Ma R, Huang S, Li H, Lyu X. Deciphering the roles of neddylation modification in hepatocellular carcinoma: Molecular mechanisms and targeted therapeutics. Genes Dis 2025; 12:101483. [PMID: 40290125 PMCID: PMC12022649 DOI: 10.1016/j.gendis.2024.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/05/2024] [Accepted: 11/02/2024] [Indexed: 04/30/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent type of malignant liver tumor with high morbidity and mortality and severely threatens human health and life quality. Thus, it is of great significance to investigate the molecular mechanism underlying the pathogenesis of HCC and seek biomarkers for early diagnosis. Neddylation, one of the most conserved post-translational modification types in eukaryotes, plays vital roles in the progression of HCC. During the process of neddylation, NEDD8 is covalently conjugated to its substrate proteins, thereby modulating multiple necessary biological processes. Currently, increasing evidence shows that the aberrant activation of neddylation is positively correlated with the occurrence and development of tumors and the poor clinical prognosis of HCC patients. Based on the current investigations, neddylation modification has been reported to target both the cullins and non-cullin substrates and subsequently affect HCC progression, including the virus infection, malignant transformation, tumor cell proliferation, migration and invasion ability, and tumor microenvironment. Therefore, inhibitors targeting the neddylation cascade have been developed and entered clinical trials, indicating satisfactory anti-HCC treatment effects. This review aims to summarize the latest progress in the molecular mechanism of pathologically aberrant neddylation in HCC, as well as the advances of neddylation-targeted inhibitors as potential drugs for HCC treatment.
Collapse
Affiliation(s)
- Wenxin Wu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
| | - Xuanyi Wang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
| | - Ruijie Ma
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
- Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
| | - Hongguang Li
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xinxing Lyu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong 250117, China
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
- Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
| |
Collapse
|
2
|
Hashemi M, Khosroshahi EM, Daneii P, Hassanpoor A, Eslami M, Koohpar ZK, Asadi S, Zabihi A, Jamali B, Ghorbani A, Nabavi N, Memarkashani MR, Salimimoghadam S, Taheriazam A, Tan SC, Entezari M, Farahani N, Hushmandi K. Emerging roles of CircRNA-miRNA networks in cancer development and therapeutic response. Noncoding RNA Res 2025; 10:98-115. [PMID: 39351450 PMCID: PMC11440256 DOI: 10.1016/j.ncrna.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The complex interplay of epigenetic factors is essential in regulating the hallmarks of cancer and orchestrating intricate molecular interactions during tumor progression. Circular RNAs (circRNAs), known for their covalently closed loop structures, are non-coding RNA molecules exceptionally resistant to enzymatic degradation, which enhances their stability and regulatory functions in cancer. Similarly, microRNAs (miRNAs) are endogenous non-coding RNAs with linear structures that regulate cellular biological processes akin to circRNAs. Both miRNAs and circRNAs exhibit aberrant expressions in various cancers. Notably, circRNAs can function as sponges for miRNAs, influencing their activity. The circRNA/miRNA interaction plays a pivotal role in the regulation of cancer progression, including in brain, gastrointestinal, gynecological, and urological cancers, influencing key processes such as proliferation, apoptosis, invasion, autophagy, epithelial-mesenchymal transition (EMT), and more. Additionally, this interaction impacts the response of tumor cells to radiotherapy and chemotherapy and contributes to immune evasion, a significant challenge in cancer therapy. Both circRNAs and miRNAs hold potential as biomarkers for cancer prognosis and diagnosis. In this review, we delve into the circRNA-miRNA circuit within human cancers, emphasizing their role in regulating cancer hallmarks and treatment responses. This discussion aims to provide insights for future research to better understand their functions and potentially guide targeted treatments for cancer patients using circRNA/miRNA-based strategies.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpoor
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maedeh Eslami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Zabihi
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Zhang F, Xiong X, Li Z, Wang H, Wang W, Zhao Y, Sun Y. RHEB neddylation by the UBE2F-SAG axis enhances mTORC1 activity and aggravates liver tumorigenesis. EMBO J 2025; 44:1185-1219. [PMID: 39762645 PMCID: PMC11832924 DOI: 10.1038/s44318-024-00353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 02/19/2025] Open
Abstract
Small GTPase RHEB is a well-known mTORC1 activator, whereas neddylation modifies cullins and non-cullin substrates to regulate their activity, subcellular localization and stability. Whether and how RHEB is subjected to neddylation modification remains unknown. Here, we report that RHEB is a substrate of NEDD8-conjugating E2 enzyme UBE2F. In cell culture, UBE2F depletion inactivates mTORC1, inhibiting cell cycle progression, cell growth and inducing autophagy. Mechanistically, UBE2F cooperates with E3 ligase SAG in neddylation of RHEB at K169 to enhance its lysosome localization and GTP-binding affinity. Furthermore, liver-specific Ube2f knockout attenuates steatosis and tumorigenesis induced by Pten loss in an mTORC1-dependent manner, suggesting a causal role of UBE2F in liver tumorigenesis. Finally, UBE2F expression levels and mTORC1 activity correlate with patient survival in hepatocellular carcinoma. Collectively, our study identifies RHEB as neddylation substrate of the UBE2F-SAG axis, and highlights the UBE2F-SAG axis as a potential target for the treatment of non-alcoholic fatty liver disease and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Fengwu Zhang
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China
| | - Xiufang Xiong
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China
| | - Zhijian Li
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China
| | - Haibo Wang
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China
| | - Weilin Wang
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
| | - Yongchao Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, China.
| | - Yi Sun
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, China.
- Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, Hangzhou, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, 310053, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Qin X, Han X, Sun Y. Discovery of small molecule inhibitors of neddylation catalyzing enzymes for anticancer therapy. Biomed Pharmacother 2024; 179:117356. [PMID: 39214012 DOI: 10.1016/j.biopha.2024.117356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Protein neddylation, a type of post-translational modifications, involves the transfer of the ubiquitin-like protein NEDD8 to the lysine residues of a target substrate, which is catalyzed by the NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). Cullin family proteins, core components of Cullin-RING E3 ubiquitin ligases (CRLs), are the most well-known physiological substrates of neddylation. CRLs, activated upon cullin neddylation, promote the ubiquitination of a variety of key signaling proteins for proteasome degradation, thereby regulating many critical biological functions. Abnormal activation of neddylation enzymes as well as CRLs has been frequently observed in various human cancers and is associated with poor prognosis for cancer patients. Consequently, targeting neddylation has emerged as a promising strategy for the development of novel anticancer therapeutics. This review first briefly introduces the properties of protein neddylation and its role in cancer, and then systematically summarizes all reported chemical inhibitors of the three neddylation enzymes, providing a focused, up to date, and comprehensive resource in the discovery and development of these small molecule inhibitors.
Collapse
Affiliation(s)
- Xiangshuo Qin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China
| | - Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
5
|
Fang Q, Xu M, Yao W, Wu R, Han R, Kawakita S, Shen A, Guan S, Zhang J, Sun X, Zhou M, Li N, Sun Q, Dong CS. The role of KLF5 in gut microbiota and lung adenocarcinoma: unveiling programmed cell death pathways and prognostic biomarkers. Discov Oncol 2024; 15:408. [PMID: 39235679 PMCID: PMC11377401 DOI: 10.1007/s12672-024-01257-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the most important subtype of lung cancer. It is well known that the gut microbiome plays an important role in the pathophysiology of various diseases, including cancer, but little research has been done on the intestinal microbiome associated with LUAD. Utilizing bioinformatics tools and data analysis, we identified novel potential prognostic biomarkers for LUAD. To integrate differentially expressed genes and clinical significance modules, we used a weighted correlation network analysis system. According to the Peryton database and the gutMGene database, the composition and structure of gut microbiota in LUAD patients differed from those in healthy individuals. LUAD was associated with 150 gut microbiota and 767 gut microbiota targets, with Krüppel-like factor 5 (KLF5) being the most closely related. KLF5 was associated with immune status and correlated well with the prognosis of LUAD patients. The identification of KLF5 as a potential prognostic biomarker suggests its utility in improving risk stratification and guiding personalized treatment strategies for LUAD patients. Altogether, KLF5 could be a potential prognostic biomarker in LUAD.
Collapse
Affiliation(s)
- Qingliang Fang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China
| | - Meijun Xu
- Acupuncture and Moxibustion Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Wenyi Yao
- Department of Oncology II, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Ruixin Wu
- Preclinical Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China
| | - Ruiqin Han
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Aidan Shen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Sisi Guan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China
| | - Jiliang Zhang
- Beijing Tong Ren Tang Chinese Medicine Co., LTD, Hong Kong, 999077, China
| | - Xiuqiao Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China
| | - Mingxi Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China
| | - Ning Li
- Preclinical Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China
| | - Qiaoli Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China.
- Teaching Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China.
| | - Chang-Sheng Dong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China.
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China.
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China.
| |
Collapse
|
6
|
Lin X, Sun D, Yang S, Cheng K, Wang X, Meng W, Wu H, Liu W, Wu X, Yang H, Wang X, Zhou L. UBE2M forms a positive feedback loop with estrogen receptor to drive breast cancer progression and drug resistance. Cell Death Dis 2024; 15:590. [PMID: 39138151 PMCID: PMC11322533 DOI: 10.1038/s41419-024-06979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
UBE2M, a NEDD8-conjugating enzyme, is dysregulated in various human cancers and promotes tumor cell proliferation. However, its role in estrogen receptor-positive (ER+) breast cancer remains unknown. We found that UBE2M expression was significantly higher in ER+ breast cancer tissues than in ER-negative (ER-) breast cancer tissues. Higher expression of UBE2M indicated a poorer prognosis in patients with ER+ breast cancer but not in those with ER- breast cancer. Of interest, a positive feedback loop was observed between UBE2M and ERα. Specifically, ERα enhanced the HIF-1α-mediated transcription of UBE2M. In turn, UBE2M maintained ERα expression by inhibiting its ubiquitination and degradation through UBE2M-CUL3/4A-E6AP-ERα axis. Functionally, silencing of UBE2M suppressed the growth of breast cancer cells by inducing cell cycle arrest and apoptosis and improved their sensitivity to fulvestrant both in vitro and in vivo. Altogether, our findings reveal that the UBE2M-ERα feedback loop drives breast cancer progression and fulvestrant resistance, suggesting UBE2M as a viable target for endocrine therapy of ER+ breast cancer.
Collapse
Affiliation(s)
- Xiongzhi Lin
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China
- Graduate School of Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Dongsheng Sun
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Shuhan Yang
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Kai Cheng
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - XingYi Wang
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Weijia Meng
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Haowei Wu
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Wenlin Liu
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Xiaoyu Wu
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaojun Wang
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China.
| | - Lisha Zhou
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China.
| |
Collapse
|
7
|
Zhang S, Yu Q, Li Z, Zhao Y, Sun Y. Protein neddylation and its role in health and diseases. Signal Transduct Target Ther 2024; 9:85. [PMID: 38575611 PMCID: PMC10995212 DOI: 10.1038/s41392-024-01800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
NEDD8 (Neural precursor cell expressed developmentally downregulated protein 8) is an ubiquitin-like protein that is covalently attached to a lysine residue of a protein substrate through a process known as neddylation, catalyzed by the enzyme cascade, namely NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). The substrates of neddylation are categorized into cullins and non-cullin proteins. Neddylation of cullins activates CRLs (cullin RING ligases), the largest family of E3 ligases, whereas neddylation of non-cullin substrates alters their stability and activity, as well as subcellular localization. Significantly, the neddylation pathway and/or many neddylation substrates are abnormally activated or over-expressed in various human diseases, such as metabolic disorders, liver dysfunction, neurodegenerative disorders, and cancers, among others. Thus, targeting neddylation becomes an attractive strategy for the treatment of these diseases. In this review, we first provide a general introduction on the neddylation cascade, its biochemical process and regulation, and the crystal structures of neddylation enzymes in complex with cullin substrates; then discuss how neddylation governs various key biological processes via the modification of cullins and non-cullin substrates. We further review the literature data on dysregulated neddylation in several human diseases, particularly cancer, followed by an outline of current efforts in the discovery of small molecule inhibitors of neddylation as a promising therapeutic approach. Finally, few perspectives were proposed for extensive future investigations.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Qing Yu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, 310022, China
| | - Zhijian Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yongchao Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
- Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, Hangzhou, 310024, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
8
|
Zhou L, Lin X, Zhu J, Zhang L, Chen S, Yang H, Jia L, Chen B. NEDD8-conjugating enzyme E2s: critical targets for cancer therapy. Cell Death Dis 2023; 9:23. [PMID: 36690633 PMCID: PMC9871045 DOI: 10.1038/s41420-023-01337-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
NEDD8-conjugating enzymes, E2s, include the well-studied ubiquitin-conjugating enzyme E2 M (UBE2M) and the poorly characterized ubiquitin-conjugating enzyme E2 F (UBE2F). UBE2M and UBE2F have distinct and prominent roles in catalyzing the neddylation of Cullin or non-Cullin substrates. These enzymes are overexpressed in various malignancies, conferring a worse overall survival. Targeting UBE2M to influence tumor growth by either modulating several biological responses of tumor cells (such as DNA-damage response, apoptosis, or senescence) or regulating the anti-tumor immunity holds strong therapeutic potential. Multiple inhibitors that target the interaction between UBE2M and defective cullin neddylation protein 1 (DCN1), a co-E3 for neddylation, exhibit promising anti-tumor effects. By contrast, the potential benefits of targeting UBE2F are still to be explored. It is currently reported to inhibit apoptosis and then induce cell growth; hence, targeting UBE2F serves as an effective chemo-/radiosensitizing strategy by triggering apoptosis. This review highlights the most recent advances in the roles of UBE2M and UBE2F in tumor progression, indicating these E2s as two promising anti-tumor targets.
Collapse
Affiliation(s)
- Lisha Zhou
- grid.440657.40000 0004 1762 5832Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang China
| | - Xiongzhi Lin
- grid.412026.30000 0004 1776 2036Graduate School of Medicine, Hebei North University, Zhangjiakou, Hebei China
| | - Jin Zhu
- grid.452533.60000 0004 1763 3891Department of Surgical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi China
| | - Luyi Zhang
- grid.440657.40000 0004 1762 5832Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang China
| | - Siyuan Chen
- grid.440657.40000 0004 1762 5832Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang China
| | - Hui Yang
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Lijun Jia
- grid.411480.80000 0004 1799 1816Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baofu Chen
- grid.440657.40000 0004 1762 5832Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang China
| |
Collapse
|
9
|
Zhou L, Lin X, Zhang L, Chen S, Chen J, Zhou Z, Tang A, Ruan J, Wang X, Chen B. Neddylation pathway promotes myeloid-derived suppressor cell infiltration via NF-κB-mCXCL5 signaling in lung cancer. Int Immunopharmacol 2022; 113:109329. [DOI: 10.1016/j.intimp.2022.109329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
10
|
Xu T, Ma Q, Li Y, Yu Q, Pan P, Zheng Y, Li Z, Xiong X, Hou T, Yu B, Liu H, Sun Y. A small molecule inhibitor of the UBE2F-CRL5 axis induces apoptosis and radiosensitization in lung cancer. Signal Transduct Target Ther 2022; 7:354. [PMID: 36253371 PMCID: PMC9576757 DOI: 10.1038/s41392-022-01182-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Protein neddylation is catalyzed by a neddylation activating enzyme (NAE, E1), an E2 conjugating enzyme, and an E3 ligase. In various types of human cancers, the neddylation pathway is abnormally activated. Our previous study validated that the neddylation E2 UBE2F is a promising therapeutic target in lung cancer. Although the NAE inhibitor MLN4924/pevonedistat is currently under clinical investigation as an anti-cancer agent, there are no small molecules available that selectively target UBE2F. Here, we report, for the first time, the discovery, via structure-based virtual screen and chemical optimization, of such a small molecule, designated as HA-9104. HA-9104 binds to UBE2F, reduces its protein levels, and consequently inhibits cullin-5 neddylation. Blockage of cullin-5 neddylation inactivates cullin-RING ligase-5 (CRL5) activity, leading to accumulation of the CRL5 substrate, NOXA, to induce apoptosis. Moreover, HA-9104 appears to form the DNA adduct via its 7-azaindole group to induce DNA damage and G2/M arrest. Biologically, HA-9104 effectively suppresses the growth and survival of lung cancer cells and confers radiosensitization in both in vitro cell culture and in vivo xenograft tumor models. In summary, we discovered a small molecule, designated HA-9104, that targets the UBE2F-CRL5 axis with anti-cancer activity alone or in combination with radiation.
Collapse
Affiliation(s)
- Tiantian Xu
- Cancer Institute, the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China.,Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Qisheng Ma
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanan Li
- Cancer Institute, the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Qing Yu
- Cancer Institute, the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Peichen Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yawen Zheng
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Zhijian Li
- Cancer Institute, the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China.,Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Xiufang Xiong
- Cancer Institute, the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China.,Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Yi Sun
- Cancer Institute, the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China. .,Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
11
|
FANG L, QI H, WANG P, WANG S, LI T, XIA T, PIAO H, GU C. UPF1 increases amino acid levels and promotes cell proliferation in lung adenocarcinoma via the eIF2α-ATF4 axis. J Zhejiang Univ Sci B 2022; 23:863-875. [PMID: 36226539 PMCID: PMC9561404 DOI: 10.1631/jzus.b2200144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Up-frameshift 1 (UPF1), as the most critical factor in nonsense-mediated messenger RNA (mRNA) decay (NMD), regulates tumor-associated molecular pathways in many cancers. However, the role of UPF1 in lung adenocarcinoma (LUAD) amino acid metabolism remains largely unknown. In this study, we found that UPF1 was significantly correlated with a portion of amino acid metabolic pathways in LUAD by integrating bioinformatics and metabolomics. We further confirmed that UPF1 knockdown inhibited activating transcription factor 4 (ATF4) and Ser51 phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), the core proteins in amino acid metabolism reprogramming. In addition, UPF1 promotes cell proliferation by increasing the amino-acid levels of LUAD cells, which depends on the function of ATF4. Clinically, UPF1 mRNA expression is abnormal in LUAD tissues, and higher expression of UPF1 and ATF4 was significantly correlated with poor overall survival (OS) in LUAD patients. Our findings reveal that UPF1 is a potential regulator of tumor-associated amino acid metabolism and may be a therapeutic target for LUAD.
Collapse
Affiliation(s)
- Lei FANG
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Huan QI
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Peng WANG
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Shiqing WANG
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Tianjiao LI
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Tian XIA
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Hailong PIAO
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China,Hailong PIAO,
| | - Chundong GU
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China,Chundong GU,
| |
Collapse
|
12
|
Yu M, Zhao Q, Li J, Xu F, Zhang Z, Liu Y, Dai L, Zhang B, Zhang J, Zhang J. BCAT1 promotes lung adenocarcinoma progression through enhanced mitochondrial function and NF-κB pathway activation. J Zhejiang Univ Sci B 2022; 23:760-769. [PMID: 36111572 DOI: 10.1631/jzus.b2100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lung cancer is one of the most prevalent and malignant cancers, among which lung adenocarcinoma (LUAD) accounts for the majority and remains a major cause of cancer-related mortality worldwide (Cui et al., 2019). Despite the growing intensity of research on the pathobiology and progression of lung cancer and the fact that many genes have been identified as potential drivers and targets for therapy (Luo et al., 2019; Zhang et al., 2019), the treatment and prognosis of lung cancer patients have hardly improved. Therefore, this study aimed to investigate the precise mechanism of lung cancer development and explore efficient diagnostic and therapeutic methods for clinical treatment.
Collapse
Affiliation(s)
- Mengdan Yu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China.,School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Qianwei Zhao
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Jinxia Li
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Fang Xu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Zhibiao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yixian Liu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China.,Henan Key Laboratory of Tumor Epidemiology, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Bingxia Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jianying Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China. , .,Henan Key Laboratory of Tumor Epidemiology, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China. ,
| | - Jintao Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Tumor Epidemiology, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|