1
|
Vašíček J, Shehata M, Schnabl S, Hilgarth M, Hubmann R, Jäger U, Bauer M, Chrenek P. Critical assessment of the efficiency of CD34 and CD133 antibodies for enrichment of rabbit hematopoietic stem cells. Biotechnol Prog 2018; 34:1278-1289. [PMID: 29882300 DOI: 10.1002/btpr.2659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 03/25/2018] [Indexed: 12/11/2022]
Abstract
Rabbits have many hereditary diseases common to humans and are therefore a valuable model for regenerative disease and hematopoietic stem cell (HSC) therapies. Currently, there is no substantial data on the isolation and/or enrichment of rabbit HSCs. This study was initiated to evaluate the efficiency of the commercially available anti-CD34 and anti-CD133 antibodies for the detection and potential enrichment of rabbit HSCs from peripheral blood. PBMCs from rabbit and human blood were labelled with different clones of anti-human CD34 monoclonal antibodies (AC136, 581, and 8G12) and rabbit polyclonal CD34 antibody (pCD34) and anti-human CD133 monoclonal antibodies (AC133 and 293C3). Flow cytometry showed a higher percentage of rabbit CD34+ cells labelled by AC136 in comparison to the clone 581 and pCD34 (P < 0.01). A higher percentage of rabbit CD133+ cells were also detected by 293C3 compared to the AC133 clone (P < 0.01). Therefore, AC136 clone was used for the indirect immunomagnetic enrichment of rabbit CD34+ cells using magnetic-activated cell sorting (MACS). The enrichment of the rabbit CD34+ cells after sorting was low in comparison to human samples (2.4% vs. 39.6%). PCR analyses confirmed the efficient enrichment of human CD34+ cells and the low expression of CD34 mRNA in rabbit positive fraction. In conclusion, the tested antibodies might be suitable for detection, but not for sorting the rabbit CD34+ HSCs and new specific anti-rabbit CD34 antibodies are needed for efficient enrichment of rabbit HSCs. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018 © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1278-1289, 2018.
Collapse
Affiliation(s)
- Jaromír Vašíček
- NAFC-Research Institute for Animal Production in Nitra, Institute of Farm Animal Genetics and Reproduction, Lužianky, Slovak Republic, Hlohovecká 2, 951 41.,Research Centre AgroBioTech, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.,Faculty of Biotechnology and Food Science, Department of Biochemistry and Biotechnology, Slovak University of Agriculture, Nitra, Tr A. Hlinku 2, 949 76, Slovak Republic
| | - Medhat Shehata
- Dept. of Internal Medicine I, Div. of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Susanne Schnabl
- Dept. of Internal Medicine I, Div. of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Martin Hilgarth
- Dept. of Internal Medicine I, Div. of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Rainer Hubmann
- Dept. of Internal Medicine I, Div. of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Ulrich Jäger
- Dept. of Internal Medicine I, Div. of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Miroslav Bauer
- NAFC-Research Institute for Animal Production in Nitra, Institute of Farm Animal Genetics and Reproduction, Lužianky, Slovak Republic, Hlohovecká 2, 951 41.,Faculty of Natural Sciences, Department of Botany and Genetics, Constantine the Philosopher University in Nitra, 949 74 Nitra, mládeže, Slovak Republic, Nábrežie 91
| | - Peter Chrenek
- NAFC-Research Institute for Animal Production in Nitra, Institute of Farm Animal Genetics and Reproduction, Lužianky, Slovak Republic, Hlohovecká 2, 951 41.,Faculty of Biotechnology and Food Science, Department of Biochemistry and Biotechnology, Slovak University of Agriculture, Nitra, Tr A. Hlinku 2, 949 76, Slovak Republic
| |
Collapse
|
2
|
Zhu LF, Xiao M, Chen YQ, Wang LY, Luo XF, Yuan XH, Ren JH, Chen ZZ, Hu JD, Yang T. In vitro effects of reprogramming factors on the expressions of pluripotent genes and CD 34 gene in human acute promyelocytic leukemia HL-60 cells. Genomics 2017; 109:331-335. [PMID: 28533192 DOI: 10.1016/j.ygeno.2017.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/28/2017] [Accepted: 05/18/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Our study aims to explore the in vitro effects of reprogramming factors on the expressions of pluripotent genes and CD34 gene in HL-60 cells. METHODS According to the construction of lentiviral vector LV-OSCK of reprogramming factors (Oct-4, Sox2, Klf4, c-Myc), 293T cells were transfected to detect virus titer. The endogenous pluripotent genes (Oct4, SOX2, c-Myc and Klf4) and CD34 mRNA and protein expressions were detected by AP staining, immunofluorescence staining, qRT-PCR and flow cytometry. RESULTS Expressions of Oct4, SOX2, c-Myc and Klf4 were 0.220±0.013, 0.186±0.009, 0.287±0.015 and 0.153±0.007. These levels were significantly higher in the experimental group than the control and blank groups. CD34 protein expression in the experimental group was also discovered to be significantly higher than the other two groups. CONCLUSION The reprogramming factors could increase the expressions of pluripotent genes and CD34 gene in HL-60 cells.
Collapse
Affiliation(s)
- Liang-Fang Zhu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, PR China
| | - Min Xiao
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, PR China
| | - Yong-Quan Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, PR China
| | - Ling-Yan Wang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, PR China
| | - Xiao-Feng Luo
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, PR China
| | - Xiao-Hong Yuan
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, PR China
| | - Jin-Hua Ren
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, PR China
| | - Zhi-Zhe Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, PR China
| | - Jian-Da Hu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, PR China
| | - Ting Yang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, PR China.
| |
Collapse
|
3
|
Duerrschmid C, Trial J, Wang Y, Entman ML, Haudek SB. Tumor necrosis factor: a mechanistic link between angiotensin-II-induced cardiac inflammation and fibrosis. Circ Heart Fail 2014; 8:352-61. [PMID: 25550440 DOI: 10.1161/circheartfailure.114.001893] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Continuous angiotensin-II infusion induced the uptake of monocytic fibroblast precursors that initiated the development of cardiac fibrosis; these cells and concurrent fibrosis were absent in mice lacking tumor necrosis factor receptor 1 (TNFR1). We now investigated their cellular origin and temporal uptake and the involvement of TNFR1 in monocyte-to-fibroblast differentiation. METHODS AND RESULTS Within a day, angiotensin-II induced a proinflammatory environment characterized by production of inflammatory chemokines, cytokines, and TH1-interleukins and uptake of bone marrow-derived M1 cells. After a week, the cardiac environment changed to profibrotic with growth factor and TH2-interleukin synthesis, uptake of bone marrow-derived M2 cells, and the presence of M2-related fibroblasts. TNFR1 signaling was not necessary for early M1 uptake, but its absence diminished the amount of M2 cells. TNFR1-knockout hearts also showed reduced levels of cytokine expression, but not of TH-related lymphokines. Reconstitution of wild-type bone marrow into TNFR1-knockout mice was sufficient to restore M2 uptake, upregulation of proinflammatory and profibrotic genes, and development of fibrosis in response to angiotensin-II. We also developed an in vitro mouse monocyte-to-fibroblast maturation assay that confirmed the essential role of TNFR1 in the sequential progression of monocyte activation and fibroblast formation. CONCLUSIONS Development of cardiac fibrosis in response to angiotensin-II was mediated by myeloid precursors and consisted of 2 stages. A primary M1 inflammatory response was followed by a subsequent M2 fibrotic response. Although the first phase seemed to be independent of TNFR1 signaling, the later phase (and development of fibrosis) was abrogated by deletion of TNFR1.
Collapse
Affiliation(s)
- Clemens Duerrschmid
- From the Division of Cardiovascular Sciences (C.D., J.T., M.L.E., S.B.H.) and Division of Nephrology (Y.W.), Department of Medicine, Baylor College of Medicine, Houston, TX
| | - JoAnn Trial
- From the Division of Cardiovascular Sciences (C.D., J.T., M.L.E., S.B.H.) and Division of Nephrology (Y.W.), Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Yanlin Wang
- From the Division of Cardiovascular Sciences (C.D., J.T., M.L.E., S.B.H.) and Division of Nephrology (Y.W.), Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Mark L Entman
- From the Division of Cardiovascular Sciences (C.D., J.T., M.L.E., S.B.H.) and Division of Nephrology (Y.W.), Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Sandra B Haudek
- From the Division of Cardiovascular Sciences (C.D., J.T., M.L.E., S.B.H.) and Division of Nephrology (Y.W.), Department of Medicine, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
4
|
Halliez S, Passet B, Martin-Lannerée S, Hernandez-Rapp J, Laude H, Mouillet-Richard S, Vilotte JL, Béringue V. To develop with or without the prion protein. Front Cell Dev Biol 2014; 2:58. [PMID: 25364763 PMCID: PMC4207017 DOI: 10.3389/fcell.2014.00058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/22/2014] [Indexed: 12/23/2022] Open
Abstract
The deletion of the cellular form of the prion protein (PrPC) in mouse, goat, and cattle has no drastic phenotypic consequence. This stands in apparent contradiction with PrPC quasi-ubiquitous expression and conserved primary and tertiary structures in mammals, and its pivotal role in neurodegenerative diseases such as prion and Alzheimer's diseases. In zebrafish embryos, depletion of PrP ortholog leads to a severe loss-of-function phenotype. This raises the question of a potential role of PrPC in the development of all vertebrates. This view is further supported by the early expression of the PrPC encoding gene (Prnp) in many tissues of the mouse embryo, the transient disruption of a broad number of cellular pathways in early Prnp−/− mouse embryos, and a growing body of evidence for PrPC involvement in the regulation of cell proliferation and differentiation in various types of mammalian stem cells and progenitors. Finally, several studies in both zebrafish embryos and in mammalian cells and tissues in formation support a role for PrPC in cell adhesion, extra-cellular matrix interactions and cytoskeleton. In this review, we summarize and compare the different models used to decipher PrPC functions at early developmental stages during embryo- and organo-genesis and discuss their relevance.
Collapse
Affiliation(s)
- Sophie Halliez
- Institut National de la Recherche Agronomique, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| | - Bruno Passet
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Séverine Martin-Lannerée
- Institut National de la Santé et de la Recherche Médicale, UMR-S1124 Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| | - Julia Hernandez-Rapp
- Institut National de la Santé et de la Recherche Médicale, UMR-S1124 Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| | - Hubert Laude
- Institut National de la Recherche Agronomique, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| | - Sophie Mouillet-Richard
- Institut National de la Santé et de la Recherche Médicale, UMR-S1124 Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| | - Jean-Luc Vilotte
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Vincent Béringue
- Institut National de la Recherche Agronomique, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| |
Collapse
|
5
|
Nteliopoulos G, Gordon MY. Protein segregation between dividing hematopoietic progenitor cells in the determination of the symmetry/asymmetry of cell division. Stem Cells Dev 2012; 21:2565-80. [PMID: 22455336 DOI: 10.1089/scd.2011.0467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In the present study, we investigated how the symmetry/asymmetry of cell division in mitotic CD34(+) cells can be evaluated by determining the plane of cell division and the potential distribution of proteins between daughter cells. The orientation of the mitotic spindle is dependent upon the positioning of the centrosomes, which determine the plane of cell division and the sharing of proteins. If the functions of unequally shared proteins are relevant to the kinetics of cell division, they could determine whether the daughter cells undergo self-renewal or differentiation. The kinetic function of the proteins of interest was investigated using a colony-replating assay and carboxyfluorescein succinimidyl ester (CFSE) staining. We used Notch/Numb as a model system, since they have a role in balancing symmetric/asymmetric divisions. Mitotic cells were examined microscopically and centrosomal markers γ-tubulin/pericentrin were used with activated Notch-1 and Numb. We monitored the first crucial divisions by CFSE staining and found an inverse relationship between activated Notch and Numb expression, suggesting a reciprocal regulation. We suggest that the subpopulations expressing activated Notch or Numb have different cell fates. To determine the influence of Notch signaling on progenitor cell self-renewal, we used the γ-secretase inhibitor N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-S-phenylglycine t-Butyl ester (DAPT). DAPT influences self-renewal/differentiation outcome by affecting the frequency of symmetric renewal divisions without affecting the rate of divisions. Overall, the purpose of this study was to establish a cellular system for predicting the symmetry/asymmetry of hematopoietic progenitor divisions at the level of centrosomes and protein distribution and to investigate the influence of these proteins on progenitor cell kinetics.
Collapse
Affiliation(s)
- Georgios Nteliopoulos
- Department of Haematology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom.
| | | |
Collapse
|
6
|
Vannini N, Roch A, Naveiras O, Griffa A, Kobel S, Lutolf MP. Identification of in vitro HSC fate regulators by differential lipid raft clustering. Cell Cycle 2012; 11:1535-43. [PMID: 22436489 DOI: 10.4161/cc.19900] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Most hematopoietic stem cells (HSC) in the bone marrow reside in a quiescent state and occasionally enter the cell cycle upon cytokine-induced activation. Although the mechanisms regulating HSC quiescence and activation remain poorly defined, recent studies have revealed a role of lipid raft clustering (LRC) in HSC activation. Here, we tested the hypothesis that changes in lipid raft distribution could serve as an indicator of the quiescent and activated state of HSCs in response to putative niche signals. A semi-automated image analysis tool was developed to map the presence or absence of lipid raft clusters in live HSCs cultured for just one hour in serum-free medium supplemented with stem cell factor (SCF). By screening the ability of 19 protein candidates to alter lipid raft dynamics, we identified six factors that induced either a marked decrease (Wnt5a, Wnt3a and Osteopontin) or increase (IL3, IL6 and VEGF) in LRC. Cell cycle kinetics of single HSCs exposed to these factors revealed a correlation of LRC dynamics and proliferation kinetics: factors that decreased LRC slowed down cell cycle kinetics, while factors that increased LRC led to faster and more synchronous cycling. The possibility of identifying, by LRC analysis at very early time points, whether a stem cell is activated and possibly committed upon exposure to a signaling cue of interest could open up new avenues for large-scale screening efforts.
Collapse
Affiliation(s)
- Nicola Vannini
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
7
|
Altrock E, Muth CA, Klein G, Spatz JP, Lee-Thedieck C. The significance of integrin ligand nanopatterning on lipid raft clustering in hematopoietic stem cells. Biomaterials 2012; 33:3107-18. [PMID: 22269650 DOI: 10.1016/j.biomaterials.2012.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/03/2012] [Indexed: 12/14/2022]
Abstract
Hematopoietic stem cells (HSCs) are the vital, life-long source of all blood cell types. They are found in stem cell niches, specific anatomic locations that offer all the factors and signals necessary for the maintenance of the stem cell potential of HSCs. Much attention has been paid to the biochemical composition of the niches, but only little is known about the influence of physical parameters, such as ligand nanopatterns, on HSCs. To investigate the impact of nanometer-scale spacing between cell ligands on HSC adhesion, integrin distribution and signal transduction, we employed geometrically defined, nanostructured, bio-functionalized surfaces. HSCs proved to be sensitive to the lateral distance between the presented ligands with regard to adhesion and lipid raft clustering, the latter being a prerequisite for the formation of signaling complexes. Furthermore, an extensive redistribution of stem cell markers, integrins and phosphorylated proteins in HSCs was observed. In conclusion, integrin-mediated adhesion and signaling of HSCs proved to depend on the nanostructured presentation of ligands in their environment. In this work, we show that the nanostructure of the matrix is an important parameter influencing HSC behavior that should be integrated into biomaterial-based approaches aiming at HSC multiplication or differentiation.
Collapse
Affiliation(s)
- Eva Altrock
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
8
|
Carlson S, Trial J, Soeller C, Entman ML. Cardiac mesenchymal stem cells contribute to scar formation after myocardial infarction. Cardiovasc Res 2011; 91:99-107. [PMID: 21357194 DOI: 10.1093/cvr/cvr061] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIMS Therapeutic advances in prevention and treatment of myocardial infarction (MI) have decreased patient mortality and increased concern about efficient repair and scar formation, processes that are necessary to attenuate complications such as adverse remodelling and heart failure. Since the rapid accumulation and activity of cardiac fibroblasts is critical for proper scar formation, we hypothesized that infarct fibroblasts are generated by a cardiac-resident progenitor cell population. METHODS AND RESULTS We found that infarct fibroblasts in C57BL/6 mice are generated by a mesenchymal stem cell (MSC) population that responds robustly to injury by proliferating and accumulating in the infarct. We report that stem cell-derived fibroblasts contribute to the formation of a scar after an infarction by differentiating into matrix-producing fibroblasts closely associated with fibrillar collagen in the infarct. Further characterization of these cells revealed a heterogenous population with expression of both stem cell and canonical cardiac fibroblast markers, suggesting that some have a commitment to the fibroblast phenotype. Our in vitro study of these cells shows that they have extended self-renewal capability and express the primitive marker Nanog. In keeping with these observations, we also report that these cells are multipotent and differentiate readily into fibroblasts as well as other mesenchymal lineages. CONCLUSION Cells with the properties of MSCs participate in wound healing after MI in the adult heart.
Collapse
Affiliation(s)
- Signe Carlson
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Mailstation BCM620, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
9
|
Sroka IC, Pond GD, Nagle RB, Porreca F, King T, Pestano G, Futscher BW, Gard JM, Riley J, Cress AE. Human Cell Surface Receptors as Molecular Imaging Candidates for Metastatic Prostate Cancer. ACTA ACUST UNITED AC 2009; 2:59-66. [PMID: 22081777 DOI: 10.2174/1876822900902010059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Existing clinical imaging procedures lack sensitivity and specificity in detecting early prostate cancer bone metastatic lesions. In this study, we developed a highly reproducible bone metastasis xenograft model and identified possible molecular imaging candidates for detecting early bone metastatic lesions. Bone trophic human prostate cells (PC-3B1) were isolated and characterized for their ability to reach bone after intracardiac injection into SCID mice. The appearances of skeletal metastases were evaluated using digital radiographic imaging and confirmed by necropsy and histology. The PC-3B1 cells retain a bone homing phenotype after long term propagation in tissue culture and exhibit progressive bone lesions within 3 weeks following intracardiac injection. Comparative transcription signatures of PC-3 and PC-3B1 cells were determined using a cancer specific microarray and confirmed by RT-PCR analysis. The analysis identified increased expression of four cell surface molecules in PC-3B1 cells that may be suitable as molecular imaging candidates to detect bone micro metastases.
Collapse
Affiliation(s)
- Isis C Sroka
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Abnormal numbers, structures and functions of centrosomes in chronic myeloid leukaemia (CML) may influence cell proliferation and genomic instability, which are features of the disease. Centrosomes are regulators of mitotic spindle orientation and can act as scaffolds for centrosome-associated regulators of the cell cycle. This study showed, for the first time, that p210(BCR-ABL1) and p145(ABL1) are both centrosome-associated proteins, as demonstrated by co-immunoprecipitation with the pericentriolar protein, pericentrin. Furthermore, when CML cells were treated with imatinib there was a 55% and 20% reduction of p210(BCR-ABL1) and p145(ABL1) binding to pericentrin, respectively. Cell lines expressing p210(BCR-ABL1) and primary CD34(+) cells from CML patients exhibited more numerical and structural centrosomal abnormalities than p210(BCR-ABL1) negative cells. Primary cells from CML blast crisis (BC) patients exhibited a distinctive amorphous staining pattern of pericentrin compared to normal and CML chronic phase (CP) patients, suggesting a possible defect in pericentrin localisation at the centrosomes. Proteins, such as aurora kinases, pericentrin, survivin and separase, regulate centrosome structure and function, cell cycle and mitotic spindle formation. Levels of the protease, separase are abnormally high in CML CP and BC cells in comparison to normal CD34(+) cells. The data imply that expression of p210(BCR-ABL1) is associated with abnormalities in the centrosome-centriole cycle and increased separase expression.
Collapse
Affiliation(s)
- Hetal Patel
- Faculty of Medicine, Department of Haematology, Imperial College, Hammersmith Campus, London, UK.
| | | |
Collapse
|
11
|
da Silva CL, Gonçalves R, Porada CD, Ascensão JL, Zanjani ED, Cabral JMS, Almeida-Porada G. Differences amid bone marrow and cord blood hematopoietic stem/progenitor cell division kinetics. J Cell Physiol 2009; 220:102-11. [PMID: 19277981 DOI: 10.1002/jcp.21736] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human hematopoietic stem/progenitor cells (HSC) isolated based upon specific patterns of CD34 and CD38 expression, despite phenotypically identical, were found to be functionally heterogeneous, raising the possibility that reversible expression of these antigens may occur during cellular activation and/or proliferation. In these studies, we combined PKH67 tracking with CD34/CD38 immunostaining to compare cell division kinetics between human bone marrow (BM) and cord blood (CB)-derived HSC expanded in a serum-free/stromal-based system for 14 days (d), and correlated CD34 and CD38 expression with the cell divisional history. CB cells began dividing 24 h earlier than BM cells, and significantly higher numbers underwent mitosis during the time in culture. By d10, over 55% of the CB-cells reached the ninth generation, whereas BM-cells were mostly distributed between the fifth and seventh generation. By d14, all CB cells had undergone multiple cell divisions, while 0.7-3.8% of BM CD34(+) cells remained quiescent. Furthermore, the percentage of BM cells expressing CD34 decreased from 60.8 +/- 6.3% to 30.6 +/- 6.7% prior to initiating division, suggesting that downmodulation of this antigen occurred before commencement of proliferation. Moreover, with BM, all primitive CD34(+)CD38(-) cells present at the end of culture arose from proliferating CD34(+)CD38(+) cells that downregulated CD38 expression, while in CB, a CD34(+)CD38(-) population was maintained throughout culture. These studies show that BM and CB cells differ significantly in cell division kinetics and expression of CD34 and CD38, and that the inherent modulation of these antigens during ex vivo expansion may lead to erroneous quantification of the stem cell content of the expanded graft.
Collapse
|
12
|
Gordon MY. Stem cells for regenerative medicine—Biological attributes and clinical application. Exp Hematol 2008; 36:726-32. [DOI: 10.1016/j.exphem.2008.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 10/31/2007] [Accepted: 01/22/2008] [Indexed: 02/08/2023]
|
13
|
Salati S, Zini R, Bianchi E, Testa A, Mavilio F, Manfredini R, Ferrari S. Role of CD34 antigen in myeloid differentiation of human hematopoietic progenitor cells. Stem Cells 2008; 26:950-9. [PMID: 18192237 DOI: 10.1634/stemcells.2007-0597] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CD34 is a transmembrane protein that is strongly expressed on hematopoietic stem/progenitor cells (HSCs); despite its importance as a marker of HSCs, its function is still poorly understood, although a role in cell adhesion has been demonstrated. To characterize the function of CD34 antigen on human HSCs, we examined, by both inhibition and overexpression, the role of CD34 in the regulation of HSC lineage differentiation. Our results demonstrate that CD34 silencing enhances HSC granulocyte and megakaryocyte differentiation and reduces erythroid maturation. In agreement with these results, the gene expression profile of these cells reveals the upregulation of genes involved in granulocyte and megakaryocyte differentiation and the downregulation of erythroid genes. Consistently, retroviral-mediated CD34 overexpression leads to a remarkable increase in erythroid progenitors and a dramatic decrease in granulocyte progenitors, as evaluated by clonogenic assay. Together, these data indicate that the CD34 molecule promotes the differentiation of CD34+ hematopoietic progenitors toward the erythroid lineage, which is achieved, at least in part, at the expense of granulocyte and megakaryocyte lineages.
Collapse
Affiliation(s)
- Simona Salati
- Department of Biomedical Sciences, Biological Chemistry Section, University of Modena and Reggio Emilia, Via Campi 287, 41100 Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Brown G, Hughes PJ, Michell RH, Rolink AG, Ceredig R. The sequential determination model of hematopoiesis. Trends Immunol 2007; 28:442-8. [PMID: 17825625 DOI: 10.1016/j.it.2007.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 07/25/2007] [Accepted: 07/25/2007] [Indexed: 10/22/2022]
Abstract
Analysis of hematopoietic development has for decades been central to understanding lineage diversification. Some models consider hematopoietic commitment to be random, and branching lineage maps often include an early myeloid or lymphoid bifurcation. However, the existence of joint lymphoid or myeloid intermediate progenitors argues against both. One of us earlier proposed the sequential determination (SD) model, which features a limited and stepwise set of binary choices across the full hematopoietic spectrum. This model arose from observations that hematopoietic progenitors show preferences for particular associations of lineage potentials--indicating that these linked fates are neighbours developmentally. An updated SD model complemented by several recently recognized processes--spatiotemporal fluctuations in transcription factor concentrations, asymmetric cell division, and Notch signalling--still offers a sound summary of hematopoiesis.
Collapse
Affiliation(s)
- Geoffrey Brown
- Division of Immunity and Infection, The Medical School, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | |
Collapse
|