1
|
Zabihi A. The role of biological macromolecules in the regulation of angiogenesis in glioblastoma: Focus on vascular growth factors, integrins, and extracellular matrix proteins. Int J Biol Macromol 2025; 311:143838. [PMID: 40319984 DOI: 10.1016/j.ijbiomac.2025.143838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Glioblastoma, classified as a grade 4 brain tumor, accounts for approximately half of all malignant central nervous system cancers. Despite extensive research and aggressive treatment modalities, much about this disease remains elusive. The proliferation of blood vessels within glioblastoma tumors significantly contributes to their invasive nature, primarily due to the influence of vascular endothelial growth factor-A (VEGF-A). As a result, the past decade has seen a concentrated effort to explore angiogenesis, especially the VEGF signaling pathway, as a therapeutic target for glioblastoma. This investigation led to the FDA approval of bevacizumab, a monoclonal antibody against VEGF-A, for the treatment of recurrent glioblastoma. However, despite promising clinical trials and theoretical research, bevacizumab has not significantly improved patient survival rates. Furthermore, other anti-angiogenic agents targeting the VEGF signaling pathway have shown limited efficacy. This suggests the existence of multiple alternative angiogenic pathways that facilitate vascularization, even when VEGF signaling is inhibited. In this study, we aim to assess the current landscape of anti-angiogenic agents, explore potential resistance mechanisms to such therapies, and suggest strategies to improve the effectiveness of these therapeutic interventions. Our goal is to provide a comprehensive understanding of the limitations of current treatments and to identify new avenues for enhancing therapeutic outcomes in glioblastoma patients.
Collapse
Affiliation(s)
- Abbas Zabihi
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University Rasht Branch, Rasht, Iran.
| |
Collapse
|
2
|
Bickerdike MJ, Nafia I, Bessede A, Chen CB, Wangpaichitr M. AT-0174, a novel dual IDO1/TDO2 enzyme inhibitor, synergises with temozolomide to improve survival in an orthotopic mouse model of glioblastoma. BMC Cancer 2024; 24:889. [PMID: 39048947 PMCID: PMC11267968 DOI: 10.1186/s12885-024-12631-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Glioblastoma is an aggressive brain cancer, usually of unknown etiology, and with a very poor prognosis. Survival from diagnosis averages only 3 months if left untreated and this only increases to 12-15 months upon treatment. Treatment options are currently limited and typically comprise radiotherapy plus a course of the DNA-alkylating chemotherapeutic temozolomide. Unfortunately, the disease invariably relapses after several months of treatment with temozolomide, due to the development of resistance to the drug. Increased local tryptophan metabolism is a feature of many solid malignant tumours through increased expression of tryptophan metabolising enzymes. Glioblastomas are notable for featuring increased expression of the tryptophan catabolizing enzymes indole-2,3-dioxygenase-1 (IDO1), and especially tryptophan-2,3-dioxygenase-2 (TDO2). Increased IDO1 and TDO2 activity is known to suppress the cytotoxic T cell response to tumour cells, and this has led to the proposal that the IDO1 and TDO2 enzymes represent promising immuno-oncology targets. In addition to immune modulation, however, recent studies have also identified the activity of these enzymes is important in the development of resistance to chemotherapeutic agents. METHODS In the current study, the efficacy of a novel dual inhibitor of IDO1 and TDO2, AT-0174, was assessed in an orthotopic mouse model of glioblastoma. C57BL/6J mice were stereotaxically implanted with GL261(luc2) cells into the striatum and then administered either vehicle control, temozolomide (8 mg/kg IP; five 8-day cycles of treatment every 2 days), AT-0174 (120 mg/kg/day PO) or both temozolomide + AT-0174, all given from day 7 after implantation. RESULTS Temozolomide decreased tumour growth and improved median survival but increased the infiltration of CD4+ Tregs. AT-0174 had no significant effect on tumour growth or survival when given alone, but provided clear synergy in combination with temozolomide, further decreasing tumour growth and significantly improving survival, as well as elevating CD8+ T cell expression and decreasing CD4+ Treg infiltration. CONCLUSION AT-0174 exhibited an ideal profile for adjunct treatment of glioblastomas with the first-line chemotherapeutic drug temozolomide to prevent development of CD4+ Treg-mediated chemoresistance.
Collapse
Affiliation(s)
- Michael J Bickerdike
- Antido Therapeutics (Australia) Pty Ltd, Level 7, 616 St Kilda Road, Melbourne, VIC, 3004, Australia.
- BioTarget Consulting Ltd, Auckland, New Zealand.
| | | | | | | | - Medhi Wangpaichitr
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Miami VA Healthcare System, Miami, FL, USA
| |
Collapse
|
3
|
Fattahi M, Alamdari-Palangi V, Rahimi Jaberi K, Ehtiati S, Ojaghi S, Rahimi-Jaberi A, Samavarchi Tehrani S, Dang P, Movahedpour A, Hossein Khatami S. Exosomal long non-coding RNAs in glioblastoma. Clin Chim Acta 2024; 553:117705. [PMID: 38086498 DOI: 10.1016/j.cca.2023.117705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent primary tumor found in the central nervous system, accounting for 70% of all adult brain tumors. The median overall survival rate is one year post-diagnosis with treatment, and only four months without treatment. Current GBM diagnostic methods, such as magnetic resonance imaging (MRI), surgery, and brain biopsies, have limitations. These include difficulty distinguishing between tumor recurrence and post-surgical necrotic regions, and operative risks associated with obtaining histological samples through direct surgery or biopsies. Consequently, there is a need for rapid, inexpensive, and minimally invasive techniques for early diagnosis and improved subsequent treatment. Research has shown that tumor-derived exosomes containing various long non-coding RNAs (lncRNAs) play critical regulatory roles in immunomodulation, cancer metastasis, cancer development, and drug resistance in GBM. They regulate genes that enhance cancer growth and progression and alter the expression of several key signaling pathways. Due to the specificity and sensitivity of exosomal lncRNAs, they have the potential to be used as biomarkers for early diagnosis and prognosis, as well as to monitor a patient's response to chemotherapy for GBM. In this review, we discuss the role of exosomal lncRNAs in the pathogenesis of GBM and their potential clinical applications for early diagnosis.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khojaste Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Ojaghi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimi-Jaberi
- Department of Neurology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadra Samavarchi Tehrani
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran
| | - Phuyen Dang
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | | | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Verma P, Joshi H, Singh T, Sharma B, Sharma U, Ramniwas S, Rana R, Gupta M, Kaur G, Tuli HS. Temozolomide and flavonoids against glioma: from absorption and metabolism to exosomal delivery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:41-57. [PMID: 37566307 DOI: 10.1007/s00210-023-02660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Patients with glioblastoma multiforme and anaplastic astrocytoma are treated with temozolomide. Although it has been demonstrated that temozolomide increases GBM patient survival, it has also been connected to negative immune-related adverse effects. Numerous research investigations have shown that flavonoids have strong antioxidant and chemo-preventive effects. Consequently, it might lessen chemotherapeutic medicines' side effects while also increasing therapeutic effectiveness. The need for creating innovative, secure, and efficient drug carriers for cancer therapy has increased over time. Recent research indicates that exosomes have enormous potential to serve as carriers and cutting-edge drug delivery systems to the target cell. In recent years, researchers have been paying considerable attention to exosomes because of their favorable biodistribution, biocompatibility, and low immunogenicity. In the present review, the mechanistic information of the anti-glioblastoma effects of temozolomide and flavonoids coupled with their exosomal delivery to the targeted cell has been discussed. In addition, we discuss the safety aspects of temozolomide and flavonoids against glioma. The in-depth information of temozolomide and flavonoids action via exosomal delivery can unravel novel strategies to target Glioma.
Collapse
Affiliation(s)
- Priyanka Verma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
| | - Bunty Sharma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 122016, India.
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 400056, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
5
|
Madhugiri VS, Venkatesan S, Dutt A, Moiyadi AV, Shetty P, Gupta T, Epari S, Jalali R, Sasidharan GM, Kumar VRR, Ganesh CVS, Ramesh AS, Prabhu AS, Dutt AK. An Analysis of Eosinophil- and Basophil-Based Indices in Patients with Glioblastoma and their Correlation with Survival. World Neurosurg 2023; 170:e292-e300. [PMID: 36368458 DOI: 10.1016/j.wneu.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most frequently diagnosed malignant brain tumor in adults. GBM is usually lethal within 24 months of diagnosis, despite aggressive multimodality treatment. Although it has been established that cancer-related inflammation is associated with worse outcomes, the role of eosinophils, basophils, atopy, and allergy in glioma biology is only gradually being delineated. In this study, we aimed to examine if eosinophil-based and basophil-based indices were altered in patients with GBM compared with healthy controls. We also aimed to study if there was any correlation between these indices and patient-related and tumor-related factors and survival. METHODS This study was a retrospective analysis of prospectively maintained databases. Data pertaining to patient-related and tumor-related factors, hemograms, and survival data were obtained from the electronic medical records of selected patients. Correlations between eosinophil-based and basophil-based indices and these factors were studied, as was the association with overall survival. RESULTS All the indices were altered in patients with GBM compared with normal healthy controls. The absolute eosinophil count was higher and the neutrophils/eosinophils ratio was lower in the better prognosis groups: those with better performance status; those without features of increased intracranial pressure or altered sensorium at presentation; those with ATRX-retained tumors that did not overexpress p53; and in the long-term survivors. The total lymphocyte count/basophils ratio and the absolute eosinophil count both independently predicted survival in a multivariate analysis. CONCLUSIONS The absolute eosinophil count was consistently higher in the better prognosis groups and is likely to be incorporated into prognostic models for GBM.
Collapse
Affiliation(s)
- Venkatesh S Madhugiri
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India.
| | - Subeikshanan Venkatesan
- Department of Neurosurgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Akshat Dutt
- Department of Neurosurgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Aliasgar V Moiyadi
- Division of Neurosurgery, Neuro-Oncology Disease Management Group, Tata Memorial Centre (TMH and ACTREC), Mumbai, India
| | - Prakash Shetty
- Division of Neurosurgery, Neuro-Oncology Disease Management Group, Tata Memorial Centre (TMH and ACTREC), Mumbai, India
| | - Tejpal Gupta
- Department of Radiation Oncology, Neuro-Oncology Disease Management Group, Tata Memorial Centre (TMH and ACTREC), Mumbai, India
| | - Sridhar Epari
- Department of Pathology, Neuro-Oncology Disease Management Group, Tata Memorial Centre (TMH and ACTREC), Mumbai, India
| | - Rakesh Jalali
- Department of Radiation Oncology, Apollo Proton Cancer Centre, Chennai, India
| | - Gopalakrishnan M Sasidharan
- Department of Neurosurgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - V R Roopesh Kumar
- Department of Surgical Oncology, Apollo Proton Cancer Centre, Chennai, India
| | | | - Andi Sadayandi Ramesh
- Department of Neurosurgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - A Sathia Prabhu
- Department of Neurosurgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | | |
Collapse
|
6
|
Muhsen BA, Hirbawi H, Shurbaji A, Aljariri A, Alomari SO, Al-Hussaini M. Primary intraventricular Glioblastoma GBM: Case report and review of literature. INTERNATIONAL JOURNAL OF SURGERY OPEN 2022. [DOI: 10.1016/j.ijso.2022.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Sun M, Huang N, Tao Y, Wen R, Zhao G, Zhang X, Xie Z, Cheng Y, Mao J, Liu G. The efficacy of temozolomide combined with levetiracetam for glioblastoma (GBM) after surgery: a study protocol for a double-blinded and randomized controlled trial. Trials 2022; 23:234. [PMID: 35346332 PMCID: PMC8962067 DOI: 10.1186/s13063-022-06168-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background Temozolomide is applied as the standard chemotherapy agent in patients with glioblastoma (GBM) after surgery. However, the benefit of this treatment for patients is limited by the invasive growth of gliomas and drug resistance. There are indications from fundamental experimental and retrospective studies that levetiracetam has the potential to improve the survival rate of patients with GBM. However, it has yet to be determined whether the combination of temozolomide and levetiracetam is more effective than standard temozolomide chemotherapy. Therefore, we designed a randomized clinical trial to investigate the therapeutic effect of the new combined regime for treating GBM. Methods/design This is a double-blind and randomized clinical trial conducted in a single center. One hundred forty-two patients will be recruited and screened for the inclusion and exclusion criteria. Then, eligible participants will be randomly assigned to an experimental group or a control group in a 1:1 ratio. Based on the administration of radiation therapy (RT), participants in the experimental group will be prescribed levetiracetam plus temozolomide chemotherapy for 34 weeks while participants in the control group will receive placebo tablets plus temozolomide for the same duration. A 3-year follow-up will be conducted on all patients after intervention. Accordingly, the primary outcome will be progression-free survival (PFS). The secondary endpoints include overall survival (OS), the Karnofsky Performance Status (KPS), the objective response rate (ORR), and adverse event incidence. Discussion It is expected that the results of this trial will provide high-level evidence regarding the clinical benefits of levetiracetam and temozolomide combined in the treatment of GBM. Trial registration Chinese Clinical Trial Registry, ChiCTR2100049941. Registered on 14 August 2021 Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06168-1.
Collapse
Affiliation(s)
- Maoyuan Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Ning Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Rong Wen
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Guanjian Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Xiang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Jinning Mao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China. .,Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA, 02114, USA. .,Neuroscience Program, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
8
|
Rahmanian-Devin P, Baradaran Rahimi V, Jaafari MR, Golmohammadzadeh S, Sanei-far Z, Askari VR. Noscapine, an Emerging Medication for Different Diseases: A Mechanistic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8402517. [PMID: 34880922 PMCID: PMC8648453 DOI: 10.1155/2021/8402517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
Noscapine is a benzylisoquinoline alkaloid isolated from poppy extract, used as an antitussive since the 1950s, and has no addictive or euphoric effects. Various studies have shown that noscapine has excellent anti-inflammatory effects and potentiates the antioxidant defences by inhibiting nitric oxide (NO) metabolites and reactive oxygen species (ROS) levels and increasing total glutathione (GSH). Furthermore, noscapine has indicated antiangiogenic and antimetastatic effects. Noscapine induces apoptosis in many cancerous cell types and provides favourable antitumour activities and inhibitory cell proliferation in solid tumours, even drug-resistant strains, via mitochondrial pathways. Moreover, this compound attenuates the dynamic properties of microtubules and arrests the cell cycle in the G2/M phase. Noscapine can reduce endothelial cell migration in the brain by inhibiting endothelial cell activator interleukin 8 (IL-8). In fact, this study aimed to elaborate on the possible mechanisms of noscapine against different disorders.
Collapse
Affiliation(s)
- Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Sanei-far
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Bae Y, Lee J, Kho C, Choi JS, Han J. Apoptin gene delivery by a PAMAM dendrimer modified with a nuclear localization signal peptide as a gene carrier for brain cancer therapy. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:467-478. [PMID: 34448464 PMCID: PMC8405440 DOI: 10.4196/kjpp.2021.25.5.467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022]
Abstract
In this study, we aimed to synthesize PAMAMG3 derivatives (PAMAMG3-KRRR and PAMAMG3-HKRRR), using KRRR peptides as a nuclear localization signal and introduced histidine residues into the KRRR-grafted PAMAMG3 for delivering a therapeutic, carcinoma cell-selective apoptosis gene, apoptin into human primary glioma (GBL-14) cells and human dermal fibroblasts. We examined their cytotoxicity and gene expression using luciferase activity and enhanced green fluorescent protein PAMAMG3 derivatives in both cell lines. We treated cells with PAMAMG3 derivative/apoptin complexes and investigated their intracellular distribution using confocal microscopy. The PAMAMG3-KRRR and PAMAMG3-HKRRR dendrimers were found to escape from endolysosomes into the cytosol. The JC-1 assay, glutathione levels, and Annexin V staining results showed that apoptin triggered cell death in GBL-14 cells. Overall, these findings indicated that the PAMAMG3-HKRRR/apoptin complex is a potential candidate for an effective nonviral gene delivery system for brain tumor therapy in vitro.
Collapse
Affiliation(s)
- Yoonhee Bae
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan 47392, Korea.,Division of Applied Medicine, Research Institute for Korea Medicine, School of Korean Medicine, Pusan National University, Busan 50612, Korea
| | - Jell Lee
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Changwon Kho
- Division of Applied Medicine, Research Institute for Korea Medicine, School of Korean Medicine, Pusan National University, Busan 50612, Korea
| | - Joon Sig Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Jin Han
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan 47392, Korea
| |
Collapse
|
10
|
Maggio I, Franceschi E, Gatto L, Tosoni A, Di Nunno V, Tonon C, Brandes AA. Radiomics, mirnomics, and radiomirRNomics in glioblastoma: defining tumor biology from shadow to light. Expert Rev Anticancer Ther 2021; 21:1265-1272. [PMID: 34433354 DOI: 10.1080/14737140.2021.1971518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Glioblastoma is a highly aggressive brain tumor with an extremely poor prognosis. Genetic characterization of this tumor has identified alterations with prognostic and therapeutic impact, and many efforts are being made to improve molecular knowledge on glioblastoma. Invasive procedures, such as tumor biopsy or radical resection, are needed to characterize the tumor. AREAS COVERED The role of microRNA in cancer is an expanding field of research as many microRNAs have been shown to correlate with patient prognosis and treatment response. Novel methodologies like radiomics, radiogenomics, and radiomiRNomics are under evaluation to improve the amount of prognostic and predictive biomarkers available. EXPERT OPINION The role of radiomics, radiogenomics, and radiomiRNomic for the characterization of glioblastoma will further improve in the coming years.
Collapse
Affiliation(s)
- Ilaria Maggio
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | | | - Lidia Gatto
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Alicia Tosoni
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | | | - Caterina Tonon
- Ircss Istituto di Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alba A Brandes
- Medical Oncology Department, Azienda USL, Bologna, Italy
| |
Collapse
|
11
|
Simionescu N, Zonda R, Petrovici AR, Georgescu A. The Multifaceted Role of Extracellular Vesicles in Glioblastoma: microRNA Nanocarriers for Disease Progression and Gene Therapy. Pharmaceutics 2021; 13:988. [PMID: 34210109 PMCID: PMC8309075 DOI: 10.3390/pharmaceutics13070988] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive form of brain cancer in adults, characterized by poor survival rates and lack of effective therapies. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression post-transcriptionally through specific pairing with target messenger RNAs (mRNAs). Extracellular vesicles (EVs), a heterogeneous group of cell-derived vesicles, transport miRNAs, mRNAs and intracellular proteins, and have been shown to promote horizontal malignancy into adjacent tissue, as well as resistance to conventional therapies. Furthermore, GB-derived EVs have distinct miRNA contents and are able to penetrate the blood-brain barrier. Numerous studies have attempted to identify EV-associated miRNA biomarkers in serum/plasma and cerebrospinal fluid, but their collective findings fail to identify reliable biomarkers that can be applied in clinical settings. However, EVs carrying specific miRNAs or miRNA inhibitors have great potential as therapeutic nanotools in GB, and several studies have investigated this possibility on in vitro and in vivo models. In this review, we discuss the role of EVs and their miRNA content in GB progression and resistance to therapy, with emphasis on their potential as diagnostic, prognostic and disease monitoring biomarkers and as nanocarriers for gene therapy.
Collapse
Affiliation(s)
- Natalia Simionescu
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.S.); (R.Z.); (A.R.P.)
- “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 2 Ateneului Street, 700309 Iasi, Romania
| | - Radu Zonda
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.S.); (R.Z.); (A.R.P.)
| | - Anca Roxana Petrovici
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.S.); (R.Z.); (A.R.P.)
| | - Adriana Georgescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8 B.P. Hasdeu Street, 050568 Bucharest, Romania
| |
Collapse
|
12
|
Huang H, Yang G, Zhang W, Xu X, Yang W, Jiang W, Lai X. A Deep Multi-Task Learning Framework for Brain Tumor Segmentation. Front Oncol 2021; 11:690244. [PMID: 34150660 PMCID: PMC8212784 DOI: 10.3389/fonc.2021.690244] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022] Open
Abstract
Glioma is the most common primary central nervous system tumor, accounting for about half of all intracranial primary tumors. As a non-invasive examination method, MRI has an extremely important guiding role in the clinical intervention of tumors. However, manually segmenting brain tumors from MRI requires a lot of time and energy for doctors, which affects the implementation of follow-up diagnosis and treatment plans. With the development of deep learning, medical image segmentation is gradually automated. However, brain tumors are easily confused with strokes and serious imbalances between classes make brain tumor segmentation one of the most difficult tasks in MRI segmentation. In order to solve these problems, we propose a deep multi-task learning framework and integrate a multi-depth fusion module in the framework to accurately segment brain tumors. In this framework, we have added a distance transform decoder based on the V-Net, which can make the segmentation contour generated by the mask decoder more accurate and reduce the generation of rough boundaries. In order to combine the different tasks of the two decoders, we weighted and added their corresponding loss functions, where the distance map prediction regularized the mask prediction. At the same time, the multi-depth fusion module in the encoder can enhance the ability of the network to extract features. The accuracy of the model will be evaluated online using the multispectral MRI records of the BraTS 2018, BraTS 2019, and BraTS 2020 datasets. This method obtains high-quality segmentation results, and the average Dice is as high as 78%. The experimental results show that this model has great potential in segmenting brain tumors automatically and accurately.
Collapse
Affiliation(s)
- He Huang
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guang Yang
- Cardiovascular Research Centre, Royal Brompton Hospital, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Wenbo Zhang
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaomei Xu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weiji Yang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weiwei Jiang
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaobo Lai
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
13
|
Small Molecules of Marine Origin as Potential Anti-Glioma Agents. Molecules 2021; 26:molecules26092707. [PMID: 34063013 PMCID: PMC8124757 DOI: 10.3390/molecules26092707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
Marine organisms are able to produce a plethora of small molecules with novel chemical structures and potent biological properties, being a fertile source for discovery of pharmacologically active compounds, already with several marine-derived agents approved as drugs. Glioma is classified by the WHO as the most common and aggressive form of tumor on CNS. Currently, Temozolomide is the only chemotherapeutic option approved by the FDA even though having some limitations. This review presents, for the first time, a comprehensive overview of marine compounds described as anti-glioma agents in the last decade. Nearly fifty compounds were compiled in this document and organized accordingly to their marine sources. Highlights on the mechanism of action and ADME properties were included. Some of these marine compounds could be promising leads for the discovery of new therapeutic alternatives for glioma treatment.
Collapse
|
14
|
Moreno E, Cavic M, Krivokuca A, Canela EI. The Interplay between Cancer Biology and the Endocannabinoid System-Significance for Cancer Risk, Prognosis and Response to Treatment. Cancers (Basel) 2020; 12:cancers12113275. [PMID: 33167409 PMCID: PMC7694406 DOI: 10.3390/cancers12113275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
The various components of the endocannabinoid system (ECS), such as the cannabinoid receptors (CBRs), cannabinoid ligands, and the signalling network behind it, are implicated in several tumour-related states, both as favourable and unfavourable factors. This review analyses the ECS's complex involvement in the susceptibility to cancer, prognosis, and response to treatment, focusing on its relationship with cancer biology in selected solid cancers (breast, gastrointestinal, gynaecological, prostate cancer, thoracic, thyroid, CNS tumours, and melanoma). Changes in the expression and activation of CBRs, as well as their ability to form distinct functional heteromers affect the cell's tumourigenic potential and their signalling properties, leading to pharmacologically different outcomes. Thus, the same ECS component can exert both protective and pathogenic effects in different tumour subtypes, which are often pathologically driven by different biological factors. The use of endogenous and exogenous cannabinoids as anti-cancer agents, and the range of effects they might induce (cell death, regulation of angiogenesis, and invasion or anticancer immunity), depend in great deal on the tumour type and the specific ECS component that they target. Although an attractive target, the use of ECS components in anti-cancer treatment is still interlinked with many legal and ethical issues that need to be considered.
Collapse
Affiliation(s)
- Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
- Correspondence: (E.M.); (E.I.C.)
| | - Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia; (M.C.); (A.K.)
| | - Ana Krivokuca
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia; (M.C.); (A.K.)
| | - Enric I. Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
- Correspondence: (E.M.); (E.I.C.)
| |
Collapse
|
15
|
Mudassar F, Shen H, O'Neill G, Hau E. Targeting tumor hypoxia and mitochondrial metabolism with anti-parasitic drugs to improve radiation response in high-grade gliomas. J Exp Clin Cancer Res 2020; 39:208. [PMID: 33028364 PMCID: PMC7542384 DOI: 10.1186/s13046-020-01724-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
High-grade gliomas (HGGs), including glioblastoma and diffuse intrinsic pontine glioma, are amongst the most fatal brain tumors. These tumors are associated with a dismal prognosis with a median survival of less than 15 months. Radiotherapy has been the mainstay of treatment of HGGs for decades; however, pronounced radioresistance is the major obstacle towards the successful radiotherapy treatment. Herein, tumor hypoxia is identified as a significant contributor to the radioresistance of HGGs as oxygenation is critical for the effectiveness of radiotherapy. Hypoxia plays a fundamental role in the aggressive and resistant phenotype of all solid tumors, including HGGs, by upregulating hypoxia-inducible factors (HIFs) which stimulate vital enzymes responsible for cancer survival under hypoxic stress. Since current attempts to target tumor hypoxia focus on reducing oxygen demand of tumor cells by decreasing oxygen consumption rate (OCR), an attractive strategy to achieve this is by inhibiting mitochondrial oxidative phosphorylation, as it could decrease OCR, and increase oxygenation, and could therefore improve the radiation response in HGGs. This approach would also help in eradicating the radioresistant glioma stem cells (GSCs) as these predominantly rely on mitochondrial metabolism for survival. Here, we highlight the potential for repurposing anti-parasitic drugs to abolish tumor hypoxia and induce apoptosis of GSCs. Current literature provides compelling evidence that these drugs (atovaquone, ivermectin, proguanil, mefloquine, and quinacrine) could be effective against cancers by mechanisms including inhibition of mitochondrial metabolism and tumor hypoxia and inducing DNA damage. Therefore, combining these drugs with radiotherapy could potentially enhance the radiosensitivity of HGGs. The reported efficacy of these agents against glioblastomas and their ability to penetrate the blood-brain barrier provides further support towards promising results and clinical translation of these agents for HGGs treatment.
Collapse
Affiliation(s)
- Faiqa Mudassar
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Westmead, Australia
| | - Han Shen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Westmead, Australia.
- Sydney Medical School, University of Sydney, NSW, Sydney, Australia.
| | - Geraldine O'Neill
- Children's Cancer Research Unit, The Children's Hospital at Westmead, NSW, Westmead, Australia
- Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, NSW, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Sydney, Australia
| | - Eric Hau
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Westmead, Australia
- Sydney Medical School, University of Sydney, NSW, Sydney, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, NSW, Westmead, Australia
- Blacktown Hematology and Cancer Centre, Blacktown Hospital, NSW, Blacktown, Australia
| |
Collapse
|
16
|
Functional variations of NFKB1 and NFKB1A in inflammatory disorders and their implication for therapeutic approaches. ASIAN BIOMED 2020. [DOI: 10.1515/abm-2020-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) is a sophisticated transcription factor that is particularly important in the inflammatory response, but it regulates more than 400 individual and dependent genes for parts of the apoptotic, angiogenic, and proliferative, differentiative, and cell adhesion pathways. NF-κB function is directly inhibited by the binding of inhibitor of κB (IκB), and the imbalance between NF-κB and IκB has been linked to the development and progression of cancer and a variety of inflammatory disorders. These observations might broaden the horizon of current knowledge, particularly on the pathogenesis of inflammatory diseases considering the roles of NF-κB and IκB. In this context, we focus this narrative review on a comparative discussion of our findings with other literature regarding variations of NFKB1 and NFKB1A and their association with susceptibility to widespread inflammatory disorders (such as atherosclerosis, morbid obesity, Behçet syndrome, Graves disease, Hashimoto disease) and common cancers (such as gliomas).
Collapse
|
17
|
Alamdari-Palangi V, Karami Z, Karami H, Baazm M. MiRNA-7 Replacement Effect on Proliferation and Tarceva-Sensitivity in U373-MG Cell Line. Asian Pac J Cancer Prev 2020; 21:1747-1753. [PMID: 32592373 PMCID: PMC7568905 DOI: 10.31557/apjcp.2020.21.6.1747] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Deregulation of the EGFR signaling pathway activity has been shown to can be effective in resistance to EGFR-TKIs, such as Tarceva (erlotinib), in glioblastoma cells. In addition, reports have shown that the reduction of miRNA-7 expression levels is associated with an increase in the expression of EGFR. Here, we evaluated the effect of miRNA-7 on EGFR expression and sensitivity of the U373-MG glioblastoma to erlotinib. METHODS The effect of miRNA-7 on EGFR expression was examined using RT-qPCR and western blotting. Trypan blue and MTT assays were performed to explore the effect of treatments on cell growth and survival, respectively. The combination index analysis was used to evaluate the interaction between drugs. Apoptosis was measured by ELISA cell death assay. RESULTS We showed that miRNA-7 markedly inhibited the expression of EGFR and decreased the growth of glioblastoma cells, relative to blank control and negative control miRNA (p < 0.05). Introduction of miRNA-7 synergistically increased the sensitivity of the U373-MG cells to erlotinib. Results of apoptosis assay demonstrated that miRNA-7 can trigger apoptosis and enhance the erlotinib-mediated apoptosis. CONCLUSIONS Our results show that miRNA-7 plays a critical role in the growth, survival and sensitivity of the U373-MG cells to erlotinib by targeting EGFR. Thus, miRNA-7 replacement therapy can become an effective therapeutic procedure in glioblastoma.
Collapse
Affiliation(s)
- Vahab Alamdari-Palangi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.,Department of Molecular Medicine and Biotechnology, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Karami
- Department of Oral Medicine, Dental Research Center, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hadi Karami
- Department of Molecular Medicine and Biotechnology, Arak University of Medical Sciences, Arak, Iran.,Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Baazm
- Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
18
|
Hu T, Wang F, Han G. LncRNA PSMB8-AS1 acts as ceRNA of miR-22-3p to regulate DDIT4 expression in glioblastoma. Neurosci Lett 2020; 728:134896. [PMID: 32151711 DOI: 10.1016/j.neulet.2020.134896] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/24/2019] [Accepted: 03/05/2020] [Indexed: 12/25/2022]
Abstract
Glioblastoma (GBM) is known to be one of the most fatal malignanies in central nerve system. Unfortunately, the therapies for glioblastoma still calls for further improvements. Increasing evidences have shown that the aberrant expression of long non-coding RNAs (lncRNAs) is highly relevant to glioma tumorigenesis and prognosis of GBM patients. High expression trends of lncRNA PSMB8-AS1 was observed in both glioblastoma tissues and cells. In return, GBM cell proliferation, apoptosis and radioresistance were regulated by PSMB8-AS1. In the meantime, PSMB8-AS1 mainly located in cytoplasm of glioblastoma cells, indicating post-transcriptional regulation. MiRNA-22-3p was found to contain potential binding site with PSMB8-AS1. On the other hand, low expression of miR-22-3p was exhibited in glioblastoma tissues and cells. Besides, PSMB8-AS1 and miR-22-3p had mutual suppression on the expression of each other in GBM cells. Furthermore, overexpression of PSMB8-AS1 promoted the level of DDIT4 through inhibiting miR-22-3p. Rescue assays demonstrated that overexpression of DDIT4 counteracted the impact of proliferation, apoptosis and radioresistance silencing PSMB8-AS1 lay on glioblastoma cell. Taken together, lncRNA PSMB8-AS1 acts as miR-22-3p sponge to mediate DDIT4 expression and regulate glioblastoma progression. PSMB8-AS1 might become a therapeutic target in the future.
Collapse
Affiliation(s)
- Tao Hu
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, China
| | - Fengmiao Wang
- Department of Neurosurgery, Heze Municipal Hospital, Heze, Shandong, 274033, China
| | - Guangkui Han
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China.
| |
Collapse
|
19
|
Lv X, Wang M, Qiang J, Guo S. Circular RNA circ-PITX1 promotes the progression of glioblastoma by acting as a competing endogenous RNA to regulate miR-379–5p/MAP3K2 axis. Eur J Pharmacol 2019; 863:172643. [DOI: 10.1016/j.ejphar.2019.172643] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/23/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022]
|
20
|
Bahadur S, Sahu AK, Baghel P, Saha S. Current promising treatment strategy for glioblastoma multiform: A review. Oncol Rev 2019; 13:417. [PMID: 31410248 PMCID: PMC6661528 DOI: 10.4081/oncol.2019.417] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/29/2019] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma multiform (GBM) is a heterogeneous group of primary neoplasm resistant to conventional therapies. Due to their infiltrative nature it not fully isolated by aggressive surgery, radiation and chemotherapy showing poor prognosis in glioma patients. Unfortunately, diagnosed patients die within 1.5-2 year treatment schedule. Currently temozolomide (TMZ) is the first choice for the prognosis of GBM patients. TMZ metabolites methyl triazen imidazol carboxamide form complex with alkyl guanine alkyl transferase (O6 MGMT- DNA repair protein) induced DNA damage following resistance properties of TMZ and inhibit the overall survival of the patients. Last few decades different TMZ conjugated strategy is developed to overcome the resistance and enhance the chemotherapy efficacy. The main aim of this review is to introduce the new promising pharmaceutical candidates that significantly influence the therapeutic response of the TMZ in context of targeted therapy of glioblastoma patients. It is hoped that this proposed strategy are highly effective to overcome the current resistance limitations of TMZ in GBM patients and enhance the survival rate of the patients.
Collapse
Affiliation(s)
| | - Arvind Kumar Sahu
- Department of Pharmaceutics, Columbia Institute of Pharmacy, Near Vidhan Sabha, Raipur, Chhattisgarh, India
| | | | | |
Collapse
|
21
|
Increased incidence of second primary malignancy in patients with malignant astrocytoma: a population-based study. Biosci Rep 2019; 39:BSR20181968. [PMID: 31138756 PMCID: PMC6566465 DOI: 10.1042/bsr20181968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 04/17/2019] [Accepted: 05/06/2019] [Indexed: 11/18/2022] Open
Abstract
We identified patients diagnosed with malignant astrocytoma (MA) as the first of two or more primary malignancies between 1973 and 2015 from Surveillance, Epidemiology and End Results (SEER) database. Multiple primaries-standardized incidence ratio (MP-SIR) was calculated to quantitate the risk of second primary malignancy (SPM). We further identified the risk factors of developing SPM and factors affecting overall survival (OS) in MA patients with SPM. Our results revealed that overall risk of SPM among MA patients was significantly higher than that in general population (SIR: 1.09, 95% confidence interval (CI): 1–1.18, P<0.05). Specific sites where the risk of SPM increased included salivary gland, bone and joints, soft tissue including heart, brain, cranial nerves other nervous system, thyroid, acute non-lymphocytic leukemia and acute myeloid leukemia. Overall risk of SPM in patients aged ≤29 and 30–59 years significantly increased (4.34- and 1.41-fold respectively). Whereas patients aged ≥60 years had a significantly decreased risk of SPM. Patients in the group of latency at 36–59, 60–119 and ≥120 months carried significantly increased overall risk of SPM. Multivariate analysis revealed that age, race, marital status, WHO grade, differentiated grade of cancer tissues, latency was independent predictor of OS in MA patients with SPM, which were all selected into the nomogram. The calibration curve for probability of survival showed good agreement between prediction by nomogram and actual observation. In conclusion, MA survivors should be advised of their increased risk for developing certain cancers in their lifetime. Our study had clinical implications for the surveillance of MA survivors at risk of developing SPM.
Collapse
|
22
|
Bae Y, Thuy LT, Lee YH, Ko KS, Han J, Choi JS. Polyplexes of Functional PAMAM Dendrimer/Apoptin Gene Induce Apoptosis of Human Primary Glioma Cells In Vitro. Polymers (Basel) 2019; 11:E296. [PMID: 30960280 PMCID: PMC6419211 DOI: 10.3390/polym11020296] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 01/21/2023] Open
Abstract
Highly efficient and safe gene delivery has become an important aspect of neuronal gene therapy. We evaluated the ability of polyamidoamine (PAMAM) dendrimer grafted with phenylalanine, histidine, and arginine (PAMAM-FHR), a nonviral gene delivery vector, to deliver a therapeutic, tumor cell-specific killer gene, apoptin, into the human primary glioma cell line GBL-14 and human dermal fibroblasts. We performed a transfection assay using plasmids of luciferase and enhanced green fluorescent protein (EGFP) and assessed cell viability. Both cell lines were treated with complexes of PAMAM-FHR and apoptin after which their intracellular uptake and localization were examined by fluorescence-activated cell sorting (FACS)analysis and confocal laser scanning microscopy. Confocal microscopy showed that the PAMAM-FHR escaped from the endo-lysosome into the cytosol. Cell cycle phase distribution analysis, annexin V staining, and a tetramethylrhodamine ethyl ester (TMRE) assay established that apoptin triggered apoptosis in the GBL-14 cell line but not in normal fibroblasts. These results indicated that the PAMAM-FHR/apoptin complex is an effective gene vehicle for cancer therapy in vitro.
Collapse
Affiliation(s)
- Yoonhee Bae
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea.
| | - Le Thi Thuy
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 305-764, Korea.
| | - Young Hwa Lee
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 305-764, Korea.
| | - Kyung Soo Ko
- Department of Internal Medicine, Sanggye Paik Hospital, Cardiovascular and Metabolic Disease Center, Inje University, Seoul 100-032, Korea.
| | - Jin Han
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea.
| | - Joon Sig Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 305-764, Korea.
| |
Collapse
|
23
|
Liao K, Ma X, Chen B, Lu X, Hu Y, Lin Y, Huang R, Qiu Y. Upregulated AHIF-mediated radioresistance in glioblastoma. Biochem Biophys Res Commun 2018; 509:617-623. [PMID: 30606477 DOI: 10.1016/j.bbrc.2018.12.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
Abstract
Long non-coding RNAs (lncRNAs) play vital roles in the pathobiology of glioblastoma multiforme (GBM). Though radiotherapy remains the most effective component of multiple therapies for patients with GBM, lncRNAs conferring GBM radioresistance are less unknown. Here, the present study identified that the antisense transcript of hypoxia-inducible factor-1α (AHIF) was upregulated in GBM cells after radiotherapy. The deregulation of AHIF affected GBM cell clonogenic formation, DNA repair and apoptosis. Notably, knockdown of AHIF inhibited tumorigenesis after radiotherapy in vivo. Further biochemical analysis identified that AHIF regulated proteins associated with apoptosis after radiotherapy. Thus, the present data illustrate that suppression of AHIF increases radiosensitivity in GBM cells, which may be a potential diagnostic and therapeutic target for GBM patients.
Collapse
Affiliation(s)
- Keman Liao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiumei Ma
- Department of Radiation, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Binghong Chen
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaojie Lu
- Department of Neurosurgery, Wuxi No.2 Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yaomin Hu
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yingying Lin
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Renhua Huang
- Department of Radiation, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Yongming Qiu
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
24
|
Kına I, Sultuybek GK, Soydas T, Yenmis G, Biceroglu H, Dirican A, Uzan M, Ulutin T. Variations in Toll-like receptor and nuclear factor-kappa B genes and the risk of glioma. Br J Neurosurg 2018; 33:165-170. [PMID: 30450997 DOI: 10.1080/02688697.2018.1540764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Glioblastoma (GBM) is the most aggressive primary brain tumour in the adult nervous system and is associated with a poor prognosis. NF-KB activation is an important driver of the malignant phenotype that confers a negative prognosis in patients with GBM. NF-KB plays a role in Toll-like Receptors (TLR)-induced tumourigenesis. The aim of the present study was to investigate the association of a promoter region polymorphism of NFKB1 gene encoding the p50 subunit of NF-KB, namely -94ins/del ATTG, the most widely discussed the TLR2 Arg753Gln, TLR4Asp299Gly and TLR4Thr399Ile polymorphisms, their combined effects, and the glioma risk. METHODS A group of 120 Glioma patients and 225 control subjects were screened for these four polymorphisms using the PCR-RFLP method. RESULTS Statistical analysis indicates that the ins/ins genotype of NFKB -94ins/delATTG (p=0.003), and the AA genotype of TLR4Asp299Gly (p < 0.001) are risk factors for glioma and people carrying the ins allele have an approximately 1.47 times susceptibility risk of glioma whereas GG genotype of TLR2Arg753Gln seems to be protective against glioma (p = 0.002). Combined genotype analysis showed that del/ins-GG genotype of TLR2Arg753Gln-NFKB1, del/ins + GG genotype of TLR4Asp299Gly-NFKB1, del/ins-CC genotype of TLR4Thr399Ile-NFKB1 were risk factors for glioma development. CONCLUSION NFKB1 -94ins/delATTG and TLR4Asp299Gly polymorphisms are associated with increased glioma cancer risk in a Turkish population.
Collapse
Affiliation(s)
- Idris Kına
- a Department of Medical Biology, Cerrahpasa Medical Faculty , Istanbul University , Istanbul , Turkey
| | - Gonul Kanigur Sultuybek
- b Department of Medical Biology and Genetics, Faculty of Medicine , Istanbul Aydın University , Istanbul , Turkey
| | - Tugba Soydas
- a Department of Medical Biology, Cerrahpasa Medical Faculty , Istanbul University , Istanbul , Turkey
| | - Guven Yenmis
- a Department of Medical Biology, Cerrahpasa Medical Faculty , Istanbul University , Istanbul , Turkey
| | - Huseyin Biceroglu
- c Neurosurgery Department , Ege University School of Medicine , Izmir , Turkey
| | - Ahmet Dirican
- d Department of Biostatistics and Medical Informatics, Istanbul Medical Faculty , Istanbul University , Istanbul Turkey
| | - Mustafa Uzan
- e Department of Neurosurgery. Cerrahpasa Faculty of Medicine . Istanbul University . Istanbul , Turkey
| | - Turgut Ulutin
- a Department of Medical Biology, Cerrahpasa Medical Faculty , Istanbul University , Istanbul , Turkey
| |
Collapse
|
25
|
Howell AE, Zheng J, Haycock PC, McAleenan A, Relton C, Martin RM, Kurian KM. Use of Mendelian Randomization for Identifying Risk Factors for Brain Tumors. Front Genet 2018; 9:525. [PMID: 30483309 PMCID: PMC6240585 DOI: 10.3389/fgene.2018.00525] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023] Open
Abstract
Gliomas are a group of primary brain tumors, the most common and aggressive subtype of which is glioblastoma. Glioblastoma has a median survival of just 15 months after diagnosis. Only previous exposure to ionizing radiation and particular inherited genetic syndromes are accepted risk factors for glioma; the vast majority of cases are thought to occur spontaneously. Previous observational studies have described associations between several risk factors and glioma, but studies are often conflicting and whether these associations reflect true casual relationships is unclear because observational studies may be susceptible to confounding, measurement error and reverse causation. Mendelian randomization (MR) is a form of instrumental variable analysis that can be used to provide supporting evidence for causal relationships between exposures (e.g., risk factors) and outcomes (e.g., disease onset). MR utilizes genetic variants, such as single nucleotide polymorphisms (SNPs), that are robustly associated with an exposure to determine whether there is a causal effect of the exposure on the outcome. MR is less susceptible to confounding, reverse causation and measurement errors as it is based on the random inheritance during conception of genetic variants that can be relatively accurately measured. In previous studies, MR has implicated a genetically predicted increase in telomere length with an increased risk of glioma, and found little evidence that obesity related factors, vitamin D or atopy are causal in glioma risk. In this review, we describe MR and its potential use to discover and validate novel risk factors, mechanistic factors, and therapeutic targets in glioma.
Collapse
Affiliation(s)
- Amy Elizabeth Howell
- Brain Tumour Research Centre, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Philip C. Haycock
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Alexandra McAleenan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Richard M. Martin
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kathreena M. Kurian
- Brain Tumour Research Centre, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
26
|
Zhang X, Ding K, Wang J, Li X, Zhao P. Chemoresistance caused by the microenvironment of glioblastoma and the corresponding solutions. Biomed Pharmacother 2018; 109:39-46. [PMID: 30391707 DOI: 10.1016/j.biopha.2018.10.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary human brain tumor. Although comprehensive therapies combining radiotherapy and chemotherapy after surgery can prolong survival, the prognosis is still poor with a median survival of only 14.6 months. Chemoresistance is one of the major causes of relapse as well as poor survival in glioma patients. Therefore, novel strategies to overcome chemoresistance are desperately needed for improved treatment of human GBM. Recent studies have demonstrated that the tumor microenvironment plays a critical role in the chemoresistance of various tumor types, which makes it a suitable target in anti-cancer therapies, as well as a valuable biomarker for prognostic purposes. This review focuses on chemoresistance in GBM induced by stromal cells, including the endothelium of blood vessels, astrocytes, and myeloid cells, as well as non-cellular factors in the tumor microenvironment. Corresponding therapies are discussed, including progressive strategies involving 3-dimensional models integrating engineering as well as biological advances.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Kaikai Ding
- Shandong Key Laboratory of Brain Function Remodeling, PR China; Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012, PR China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China; Department of Biomedicine, University of Bergen, 5009, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Peng Zhao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China.
| |
Collapse
|
27
|
Witthayanuwat S, Pesee M, Supaadirek C, Supakalin N, Thamronganantasakul K, Krusun S. Survival Analysis of Glioblastoma Multiforme. Asian Pac J Cancer Prev 2018; 19:2613-2617. [PMID: 30256068 PMCID: PMC6249474 DOI: 10.22034/apjcp.2018.19.9.2613] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Introduction: To evaluate the survival of Glioblastoma Multiforme (GBM). Material and Methods: Patients with a pathological diagnosis of Glioblastoma Multiforme (GBM) between 1 January 1994 and 30 November 2013, were retrospectively reviewed. Inclusion criteria: 1) GBM patients with confirmed pathology, 2) GBM patients were treated by multimodality therapy. Exclusion criteria: 1) GBM patients with unconfirmed pathology, 2) GBM patients with spinal involvement, 3) GBM patients with incomplete data records. Seventy-seven patients were treated by multimodality therapy such as surgery plus post-operative radiotherapy (PORT), post-operative Temozolomide (TMZ) concurrent with radiotherapy (CCRT), post-operative CCRT with adjuvant TMZ. The overall survival was calculated by the Kaplan-Meier method and the log-rank test was used to compare the survival curves. A p-value of ≤ 0.05 was considered to be statistically significant. Results: Seventy-seven patients with a median age of 53 years (range 4-76 years) showed a median survival time (MST) of 12 months. In subgroup analyses, the PORT patients revealed a MST of 11 months and 2 year overall survival (OS) rates were 17.2%, the patients with post-operative CCRT with or without adjuvant TMZ revealed a MST of 23 months and 2 year OS rates were 38.2%. The MST of patients by Recursive Partitioning Analysis (RPA), classifications III, IV, V, VI were 26.8 months, 14.2 months, 9.9 months, and 4.0 months, (p <0.001). Conclusions: The MST of the patients who had post-operative CCRT with or without adjuvant TMZ was better than the PORT group. The RPA classification can be used to predict survival. Multimodality therapy demonstrated the most effective treatment outcome. Temozolomide might be beneficial for GBM patients in order to increase survival time.
Collapse
Affiliation(s)
- Supapan Witthayanuwat
- Division of Radiotherapy, Department of Radiology, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Thailand.
| | | | | | | | | | | |
Collapse
|
28
|
Yu F, Asghar S, Zhang M, Zhang J, Ping Q, Xiao Y. Local strategies and delivery systems for the treatment of malignant gliomas. J Drug Target 2018; 27:367-378. [PMID: 30101621 DOI: 10.1080/1061186x.2018.1509982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Glioma is one of the most common type of malignant tumours with high morbidity and mortality rates. Due to the particular features of the brain, such as blood-brain barrier or blood-tumour barrier, therapeutic agents are ineffective by systemic administration. The tumour inevitably recurs and devitalises patients. Herein, an overview of the localised gliomas treatment strategies is provided, including direct intratumoural/intracerebral injection, convection-enhanced delivery, and the implant of biodegradable polymer systems. The advantages and disadvantages of each therapy are discussed. Subsequently, we have reviewed the recent developments of therapeutic delivery systems aimed at transporting sufficient amounts of antineoplastic drugs into the brain tumour sites while minimising the potential side effects. To treat gliomas, localised and controlled delivery of drugs at their desired site of action is preferred as it reduces toxicity and increases treatment efficiency. Simultaneously, various drug delivery systems (DDS) have been used to enhance drug delivery to the brain. Use of non-conventional DDS for localised therapy has greatly expanded the spectrum of drugs available for the treatment of malignant tumours. Use smart DDS via localised delivery strategies, in combination with radiotherapy and multiple drug loading would serve as a promising approach to treat gliomas.
Collapse
Affiliation(s)
- Feng Yu
- a Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Sajid Asghar
- b Faculty of Pharmaceutical Sciences , Government College University Faisalabad , Faisalabad , Pakistan
| | - Mei Zhang
- a Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Jingwei Zhang
- a Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Qineng Ping
- a Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Yanyu Xiao
- a Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , People's Republic of China
| |
Collapse
|
29
|
Rajendra J, Datta KK, Ud Din Farooqee SB, Thorat R, Kumar K, Gardi N, Kaur E, Nair J, Salunkhe S, Patkar K, Desai S, Goda JS, Moiyadi A, Dutt A, Venkatraman P, Gowda H, Dutt S. Enhanced proteasomal activity is essential for long term survival and recurrence of innately radiation resistant residual glioblastoma cells. Oncotarget 2018; 9:27667-27681. [PMID: 29963228 PMCID: PMC6021241 DOI: 10.18632/oncotarget.25351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/25/2018] [Indexed: 02/05/2023] Open
Abstract
Therapy resistance and recurrence in Glioblastoma is due to the presence of residual radiation resistant cells. However, because of their inaccessibility from patient biopsies, the molecular mechanisms driving their survival remain unexplored. Residual Radiation Resistant (RR) and Relapse (R) cells were captured using cellular radiation resistant model generated from patient derived primary cultures and cell lines. iTRAQ based quantitative proteomics was performed to identify pathways unique to RR cells followed by in vitro and in vivo experiments showing their role in radio-resistance. 2720 proteins were identified across Parent (P), RR and R population with 824 and 874 differential proteins in RR and R cells. Unsupervised clustering showed proteasome pathway as the most significantly deregulated pathway in RR cells. Concordantly, the RR cells displayed enhanced expression and activity of proteasome subunits, which triggered NFkB signalling. Pharmacological inhibition of proteasome activity led to impeded NFkB transcriptional activity, radio-sensitization of RR cells in vitro, and significantly reduced capacity to form orthotopic tumours in vivo. We demonstrate that combination of proteasome inhibitor with radio-therapy abolish the inaccessible residual resistant cells thereby preventing GBM recurrence. Furthermore, we identified first proteomic signature of RR cells that can be exploited for GBM therapeutics.
Collapse
Affiliation(s)
- Jacinth Rajendra
- Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Keshava K. Datta
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Sheikh Burhan Ud Din Farooqee
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Kiran Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Nilesh Gardi
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Ekjot Kaur
- Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Jyothi Nair
- Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Sameer Salunkhe
- Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Ketaki Patkar
- Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
| | - Sanket Desai
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Jayant Sastri Goda
- Department of Radiation Oncology, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Aliasgar Moiyadi
- Department of neurosurgery Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Amit Dutt
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Prasanna Venkatraman
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| |
Collapse
|
30
|
Meher RK, Naik MR, Bastia B, Naik PK. Comparative evaluation of anti-angiogenic effects of noscapine derivatives. Bioinformation 2018; 14:236-240. [PMID: 30108421 PMCID: PMC6077819 DOI: 10.6026/97320630014236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis, the formation of new capillaries from pre-existing vessels, is essential for tumor progression. Synthetic derivatives of anti-cancer compound, noscapine (an opium alkaloid) such as Cl-noscapine, Br-noscapine and Folate-noscapine along with two of the reference compounds, TNP-470 and paclitaxel were examined for anti-angiogenic activities by using human umbilical vein endothelial cells (HUVECs). The noscapine derivatives showed anti-angiogenic activity albeit at high concentration compared to the reference compounds. All the tested compounds inhibited angiogenesis in a dose-dependent manner; the drug concentration causing 50% inhibition of cell survival was 11.87 μM for Cl-noscapine, 6.9 μM for Br-noscapine and 6.79 μM for folate-noscapine. Besides, all the noscapine derivatives significantly inhibited cord formation (IC50 for Cl-noscapine is 50.76 μM, for Br-noscapine is 90.08 μM and for folate-noscapine is 18.44 μM) as well as migration and invasion (IC50 value of Cl-noscapine is 28.01 μM, for Br-noscapine is 19.78 μM and for folate-noscapine is 10.76 μM) of endothelial cells. Based on these results, we speculated that the inhibitory effects on human endothelial cell proliferation of noscapine derivatives might be important for anti-angiogenesis.
Collapse
Affiliation(s)
- Rajesh K. Meher
- Department of Biotechnology & Bioinformatics, Sambalpur University, Jyoti Vihar - 768 019, Sambalpur, Odisha
| | - Manas Ranjan Naik
- Department of Pharmacology, VSS Institute of Medical Science & Research, Burla, Sambalpur, Odisha
| | - Banajit Bastia
- Environmental Toxicology & Electron Microscope Lab, ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi-110029, India
| | - Pradeep K. Naik
- Department of Pharmacology, VSS Institute of Medical Science & Research, Burla, Sambalpur, Odisha
| |
Collapse
|
31
|
Sattiraju A, Solingapuram Sai KK, Xuan A, Pandya DN, Almaguel FG, Wadas TJ, Herpai DM, Debinski W, Mintz A. IL13RA2 targeted alpha particle therapy against glioblastomas. Oncotarget 2018; 8:42997-43007. [PMID: 28562337 PMCID: PMC5522122 DOI: 10.18632/oncotarget.17792] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/15/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary malignant brain cancer that invariably results in a dismal prognosis. Chemotherapy and radiotherapy have not been completely effective as standard treatment options for patients due to recurrent disease. We and others have therefore developed molecular strategies to specifically target interleukin 13 receptor alpha 2 (IL13RA2), a GBM restricted receptor expressed abundantly on over 75% of GBM patients. In this work, we evaluated the potential of Pep-1L, a novel IL13RA2 targeted peptide, as a platform to deliver targeted lethal therapies to GBM. To demonstrate GBM-specificity, we radiolabeled Pep-1L with Copper-64 and performed in vitro cell binding studies, which demonstrated specific binding that was blocked by unlabeled Pep-1L. Furthermore, we demonstrated real-time GBM localization of [64Cu]Pep-1L to orthotopic GBMs using small animal PET imaging. Based on these targeting data, we performed an initial in vivo safety and therapeutic study using Pep-1L conjugated to Actinium-225, an alpha particle emitter that has been shown to potently and irreversibly kill targeted cells. We infused [225Ac]Pep-1L into orthotopic GBMs using convection-enhanced delivery and found no significant adverse events at injected doses. Furthermore, our initial data also demonstrated significantly greater overall, median and mean survival in treated mice when compared to those in control groups (p < 0.05). GBM tissue extracted from mice treated with [225Ac]Pep-1L showed double stranded DNA breaks, lower Ki67 expression and greater propidium iodide internalization, indicating anti-GBM therapeutic effects of [225Ac]Pep-1L. Based on our results, Pep-1L warrants further investigation as a potential targeted platform to deliver anti-cancer agents.
Collapse
Affiliation(s)
- Anirudh Sattiraju
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.,Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Kiran Kumar Solingapuram Sai
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.,Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Ang Xuan
- Department of Nuclear Medicine and Radiology, The People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Darpan N Pandya
- Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Frankis G Almaguel
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Thaddeus J Wadas
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Denise M Herpai
- Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Waldemar Debinski
- Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.,Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| |
Collapse
|
32
|
Liu X, Li W, Chen T, Yang Q, Huang T, Fu Y, Gong T, Zhang Z. Hyaluronic Acid-Modified Micelles Encapsulating Gem-C 12 and HNK for Glioblastoma Multiforme Chemotherapy. Mol Pharm 2018; 15:1203-1214. [PMID: 29397747 DOI: 10.1021/acs.molpharmaceut.7b01035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM), a prevalent brain cancer with high mortality, is resistant to the conventional single-agent chemotherapy. In this study, we employed a combination chemotherapy strategy to inhibit GBM growth and addressed its possible beneficial effects. The synergistic effect of lauroyl-gemcitabine (Gem-C12) and honokiol (HNK) was first tested and optimized using U87 cells in vitro. Then, the hyaluronic acid-grafted micelles (HA-M), encapsulating the optimal mole ratio (1:1) of Gem-C12 and HNK, were prepared and characterized. Cell-based studies demonstrated that HA-M could be transported into cells by a CD44 receptor-mediated endocytosis, which could penetrate deeper into tumor spheroids and enhance the cytotoxicity of payloads to glioma cells. In vivo, drug-loaded HA-M significantly increased the survival rate of mice bearing orthotopic xenograft GBM compared with the negative control (1.85-fold). Immunohistochemical analysis indicated that the enhanced efficacy of HA-M was attributed to the stronger inhibition of glioma proliferation and induction of apoptosis. Altogether, our findings showed advantages of combination chemotherapy of GBM using HA-grafted micelles.
Collapse
Affiliation(s)
- Xing Liu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , PR China.,Sichuan Institute for Food and Drug Control , Western High-tech Zone, No. 8 Xinwen Road , Chengdu 610017 , PR China
| | - Wenhao Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , PR China
| | - Tijia Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , PR China
| | - Qin Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , PR China
| | - Ting Huang
- Sichuan Institute for Food and Drug Control , Western High-tech Zone, No. 8 Xinwen Road , Chengdu 610017 , PR China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , PR China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , PR China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , PR China
| |
Collapse
|
33
|
Abstract
Nanoparticles made of poly(butyl cyanoacrylate) (PBCA) or poly(lactic-co-glycolic acid) (PLGA) coated with polysorbate 80 or poloxamer 188 enable the transport of cytostatics such as doxorubicin across the blood-brain barrier (BBB). Following intravenous injection to rats bearing intracranially the very aggressive glioblastoma 101/8 these particles loaded with doxorubicin significantly increased the survival times and led to a complete tumor remission in 20–40% of the animals. Moreover, these particles considerably reduced the dose-limiting cardiotoxicity and also the testicular toxicity of this drug. The drug transport across the BBB by nanoparticles appears to be due to a receptor-mediated interaction with the brain capillary endothelial cells, which is facilitated by certain plasma apolipoproteins adsorbed by nanoparticles in the blood.
Collapse
Affiliation(s)
- Jörg Kreuter
- Institute for Pharmaceutical Technology, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany
| | | |
Collapse
|
34
|
Lee J, Shin YJ, Lee K, Cho HJ, Sa JK, Lee SY, Kim SH, Lee J, Yoon Y, Nam DH. Anti-SEMA3A Antibody: A Novel Therapeutic Agent to Suppress Glioblastoma Tumor Growth. Cancer Res Treat 2017; 50:1009-1022. [PMID: 29129044 PMCID: PMC6056981 DOI: 10.4143/crt.2017.315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/30/2017] [Indexed: 11/21/2022] Open
Abstract
Purpose Glioblastoma (GBM) is classified as one of the most aggressive and lethal brain tumor. Great strides have been made in understanding the genomic and molecular underpinnings of GBM, which translated into development of new therapeutic approaches to combat such deadly disease. However, there are only few therapeutic agents that can effectively inhibit GBM invasion in a clinical framework. In an effort to address such challenges, we have generated anti-SEMA3A monoclonal antibody as a potential therapeutic antibody against GBM progression. Materials and Methods We employed public glioma datasets, Repository of Molecular Brain Neoplasia Data and The Cancer Genome Atlas, to analyze SEMA3AmRNA expression in human GBM specimens. We also evaluated for protein expression level of SEMA3A via tissue microarray (TMA) analysis. Cell migration and proliferation kinetics were assessed in various GBM patient-derived cells (PDCs) and U87-MG cell-line for SEMA3A antibody efficacy. GBM patient-derived xenograft (PDX) models were generated to evaluate tumor inhibitory effect of anti-SEMA3A antibody in vivo. Results By combining bioinformatics and TMA analysis, we discovered that SEMA3A is highly expressed in human GBM specimens compared to non-neoplastic tissues. We developed three different anti-SEMA3A antibodies, in fully human IgG form, through screening phage-displayed synthetic antibody library using a classical panning method. Neutralization of SEMA3A significantly reduced migration and proliferation capabilities of PDCs and U87-MG cell line in vitro. In PDX models, treatment with anti-SEMA3A antibody exhibited notable tumor inhibitory effect through down-regulation of cellular proliferative kinetics and tumor-associated macrophages recruitment. Conclusion In present study, we demonstrated tumor inhibitory effect of SEMA3A antibody in GBM progression and present its potential relevance as a therapeutic agent in a clinical framework.
Collapse
Affiliation(s)
- Jaehyun Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Yong Jae Shin
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoungmin Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Hee Jin Cho
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jason K Sa
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang-Yun Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Seok-Hyung Kim
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.,Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yeup Yoon
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Waqas M, Iftikhar M, Siddiqui UT, Enam SA. Ependymal enhancement on magnetic resonance imaging for the identification of high-grade gliomas. Surg Neurol Int 2017; 8:227. [PMID: 29026663 PMCID: PMC5629847 DOI: 10.4103/sni.sni_77_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 08/16/2017] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND High-grade gliomas have high infiltrative potential and spread along white matter and blood vessels. Enhancement of ependymal lining on magnetic resonance imaging (MRI) is considered as a marker of parenchymal spread of disease. In this study, we aimed to assess the sensitivity, specificity, and positive and negative predictive values of ependymal enhancement (EE) for identification of high-grade glial tumors. METHODS We reviewed preoperative MRI scans of 94 consecutive patients surgically treated for space occupying lesions of the brain for EE. Assessment for EE was blind to the final histopathological diagnosis of the patient. An enhancement of more than 2 mm was considered positive. Pathologies of these patients were reviewed and matched to the radiological findings. Percentage and proportion of EE in glial and non-glial pathology groups was then calculated and a sensitivity and specificity analysis was performed. RESULTS The population included 94 cases (64 males and 30 females) with population mean age 45 ± 15.5 years. Sensitivity of EE in differentiating glioma from total number of cases was 82.61% specificity 35.42% (P value = 0.048). EE had a sensitivity of 67.39% and specificity of 64.58% (P value = 0.002) in identifying high-grade glioma within the glioma group with a positive predictive value of 64.58% (95% CI: 49.46% to 77.83%), negative predictive value of 67.39% (95% CI: 51.98% to 80.46%). CONCLUSION EE has moderate sensitivity and specificity for high-grade gliomas. However, larger sample studies are required for further validation of this observations.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Surgery, Section of Neurosurgery, The Aga Khan University Hospital, Karachi, Pakistan
| | - Muzna Iftikhar
- Department of Surgery, Section of Neurosurgery, The Aga Khan University Hospital, Karachi, Pakistan
| | - Usman T. Siddiqui
- Department of Surgery, Section of Neurosurgery, The Aga Khan University Hospital, Karachi, Pakistan
| | - Syed Ather Enam
- Department of Surgery, Section of Neurosurgery, The Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
36
|
High expression of PCBP2 is associated with progression and poor prognosis in patients with glioblastoma. Biomed Pharmacother 2017; 94:659-665. [PMID: 28787701 DOI: 10.1016/j.biopha.2017.07.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Poly(C)-binding protein 2 (PCBP2) has been found to have ambiguous functions in a variety of cancers. However, the specific biological function of PCBP2 and its mechanism in glioblastoma remain unclear. We investigated the expression of PCBP2 in 143 glioblastoma specimens to explore the linkage between PCBP2 expression and clinicopathological parameters as well as clinical significance. Furthermore, the underlying mechanisms of PCBP2 on glioblastoma progression were discussed in vitro. METHODS The transcriptional and translational levels of PCBP2 in 143 glioblastoma patients were detected by quantitative Real-time PCR (qRT-PCR) and western blot. The association of prognostic outcomes and PCBP2 expression was evaluated using Kaplan-Meier analysis. RESULTS PCBP2 expression was markedly increased in higher stages of glioblastoma compared with those in lower stages (P<0.001). High expression of PCBP2 was associated with higher clinical stage and histological grade (P<0.001). Further research suggested that PCBP2 upregulation was connected with poorer prognosis in patients with glioblastoma (P<0.001). Moreover, PCBP2 knockdown could significantly decreased the colony formation and invasion capability of glioblastoma cells (P<0.01). Conversely, PCBP2 overexpression could increase the colony formation and invasion capability (P<0.01). CONCLUSION These findings indicated that PCBP2 might be a novel prognostic biomarker and a potential therapeutic target of glioblastoma.
Collapse
|
37
|
PHLPPing through history: a decade in the life of PHLPP phosphatases. Biochem Soc Trans 2017; 44:1675-1682. [PMID: 27913677 DOI: 10.1042/bst20160170] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 01/30/2023]
Abstract
In the decade since their discovery, the PH domain leucine-rich repeat protein phosphatases (PHLPP) have emerged as critical regulators of cellular homeostasis, and their dysregulation is associated with various pathophysiologies, ranging from cancer to degenerative diseases, such as diabetes and heart disease. The two PHLPP isozymes, PHLPP1 and PHLPP2, were identified in a search for phosphatases that dephosphorylate Akt, and thus suppress growth factor signaling. However, given that there are over 200 000 phosphorylated residues in a single cell, and fewer than 50 Ser/Thr protein phosphatases, it is not surprising that PHLPP has many other cellular functions yet to be discovered, including a recently identified role in regulating the epigenome. Both PHLPP1 and PHLPP2 are commonly deleted in human cancers, supporting a tumor suppressive role. Conversely, the levels of one isozyme, PHLPP1, are elevated in diabetes. Thus, mechanisms to correctly control PHLPP activity in cells are critical for normal cellular homeostasis. This review summarizes the known functions of PHLPP and its role in disease.
Collapse
|
38
|
Kulhari H, Telukutla SR, Pooja D, Shukla R, Sistla R, Bansal V, Adams DJ. Peptide grafted and self-assembled poly(γ-glutamic acid)-phenylalanine nanoparticles targeting camptothecin to glioma. Nanomedicine (Lond) 2017. [DOI: 10.2217/nnm-2017-0067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To synthesize cRGDfK peptide conjugated poly(γ-glutamic acid)-phenylalanine nanoparticles to improve the therapeutic efficacy of camptothecin (CPT) against glioblastoma multiforme. Methods: Peptide-conjugated, drug-loaded nanoparticles (cRGDfK-conjugated camptothecin-loaded PGA–PA nanoparticles [RCPN]) were prepared and physico-chemically characterized using different techniques. Nanoparticles were evaluated for in vitro anticancer activity, cellular uptake, induction of apoptosis and wound healing cell migration against U87MG human glioblastoma cells. Results: RCPN, with a particle size of <100 nm and 65% CPT encapsulation efficiency, exhibited a dose- and time-dependent cytotoxicity to glioblastoma cells. Compared with native CPT or unconjugated nanoparticles, RCPN induced apoptosis, increased reactive oxygen species generation and inhibited U87MG cell migration. Conclusion: cRGDfK-mediated and amphiphilic copolymer-based nanomedicines represent a new approach for improved delivery of anticancer drugs to and treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Hitesh Kulhari
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Health Innovations Research Institute, RMIT University, Melbourne, VIC 3083, Australia
- IICT-RMIT Research Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500607, India
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500607, India
| | - Srinivasa R Telukutla
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3001, Australia
- IICT-RMIT Research Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500607, India
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500607, India
| | - Deep Pooja
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500607, India
| | - Ravi Shukla
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Health Innovations Research Institute, RMIT University, Melbourne, VIC 3083, Australia
| | - Ramakrishna Sistla
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500607, India
| | - Vipul Bansal
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Health Innovations Research Institute, RMIT University, Melbourne, VIC 3083, Australia
| | - David J Adams
- Health Innovations Research Institute, RMIT University, Melbourne, VIC 3083, Australia
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
39
|
Sattiraju A, Xiong X, Pandya DN, Wadas TJ, Xuan A, Sun Y, Jung Y, Sai KKS, Dorsey JF, Li KC, Mintz A. Alpha Particle Enhanced Blood Brain/Tumor Barrier Permeabilization in Glioblastomas Using Integrin Alpha-v Beta-3-Targeted Liposomes. Mol Cancer Ther 2017; 16:2191-2200. [PMID: 28619756 DOI: 10.1158/1535-7163.mct-16-0907] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/26/2017] [Accepted: 06/08/2017] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant astrocytoma characterized by extensive invasion, angiogenesis, hypoxia, and micrometastasis. Despite the relatively leaky nature of GBM blood vessels, effective delivery of antitumor therapeutics has been a major challenge due to the complications caused by the blood-brain barrier (BBB) and the highly torturous nature of newly formed tumor vasculature (blood tumor barrier-BTB). External beam radiotherapy was previously shown to be an effective means of permeabilizing central nervous system (CNS) barriers. By using targeted short-ranged radionuclides, we show for the first time that our targeted actinium-225-labeled αvβ3-specific liposomes (225Ac-IA-TLs) caused catastrophic double stranded DNA breaks and significantly enhanced the permeability of BBB and BTB in mice bearing orthotopic GBMs. Histologic studies revealed characteristic α-particle induced double strand breaks within tumors but was not significantly present in normal brain regions away from the tumor where BBB permeability was observed. These findings indicate that the enhanced vascular permeability in these distal regions did not result from direct α-particle-induced DNA damage. On the basis of these results, in addition to their direct antitumor effects, 225Ac-IA-TLs can potentially be used to enhance the permeability of BBB and BTB for effective delivery of systemically administered antitumor therapeutics. Mol Cancer Ther; 16(10); 2191-200. ©2017 AACR.
Collapse
Affiliation(s)
- Anirudh Sattiraju
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Xiaobing Xiong
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Darpan N Pandya
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thaddeus J Wadas
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ang Xuan
- Department of Nuclear Medicine and Radiology, the People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yao Sun
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Youngkyoo Jung
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - Jay F Dorsey
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - King C Li
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina. .,Columbia University, New York, New York
| |
Collapse
|
40
|
Notch3 signaling-mediated melanoma-endothelial crosstalk regulates melanoma stem-like cell homeostasis and niche morphogenesis. J Transl Med 2017; 97:725-736. [PMID: 28165469 PMCID: PMC5446297 DOI: 10.1038/labinvest.2017.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/25/2016] [Accepted: 12/22/2016] [Indexed: 12/27/2022] Open
Abstract
Melanoma is among the most virulent cancers, owing to its propensity to metastasize and its resistance to current therapies. The treatment failure is largely attributed to tumor heterogeneity, particularly subpopulations possessing stem cell-like properties, ie, melanoma stem-like cells (MSLCs). Evidence indicates that the MSLC phenotype is malleable and may be acquired by non-MSLCs through phenotypic switching upon appropriate stimuli, the so-called 'dynamic stemness'. Since the phenotypic characteristics and functional integrity of MSLCs depend on their vascular niche, using a two-dimensional (2D) melanoma-endothelium co-culture model, where the MSLC niche is recapitulated in vitro, we identified Notch3 signaling pathway as a micro-environmental cue governing MSLC phenotypic plasticity via pathway-specific gene expression arrays. Accordingly, lentiviral shRNA-mediated Notch3 knockdown (KD) in melanoma cell lines exhibiting high levels of endogenous Notch3 led to retarded/abolished tumorigenicity in vivo through both depleting MSLC fractions, evinced by MSLC marker downregulation (eg, CD133 and CD271); and impeding the MSLC niche, corroborated by the attenuated tumor angiogenesis as well as vasculogenic mimicry. In contrast, Notch3 KD affected neither tumor growth nor MSLC subsets in a melanoma cell line with relatively low endogenous Notch3 expression. Thus, Notch3 signaling may facilitate MSLC plasticity and niche morphogenesis in a cell context-dependent manner. Our findings illustrate Notch3 as a molecular switch driving melanoma heterogeneity, and provide the biological rationale for Notch inhibition as a promising therapeutic option.
Collapse
|
41
|
Quan J, Li Y, Jin M, Chen D, Yin X, Jin M. Suppression of p53-inducible gene 3 is significant for glioblastoma progression and predicts poor patient prognosis. Tumour Biol 2017; 39:1010428317694572. [PMID: 28351326 DOI: 10.1177/1010428317694572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma is the most malignant and invasive brain tumor with extremely poor prognosis. p53-inducible gene 3, a downstream molecule of the tumor suppressor p53, has been found involved in apoptosis and oxidative stress response. However, the functions of p53-inducible gene 3(PIG3) in cancer are far from clear including glioblastoma. In this study, we found that p53-inducible gene 3 expression was suppressed in glioblastoma tissues compared with normal tissues. And the expression of p53-inducible gene 3 was significantly associated with the World Health Organization grade. Patients with high p53-inducible gene 3 expression have a significantly longer median survival time (15 months) than those with low p53-inducible gene 3 expression (8 months). According to Cox regression analysis, p53-inducible gene 3 was an independent prognostic factor with multivariate hazard ratio of 0.578 (95% confidence interval, 0.352-0.947; p = 0.030) for overall survival. Additionally, gain and loss of function experiments showed that knockdown of p53-inducible gene 3 significantly increased the proliferation and invasion ability of glioblastoma cells while overexpression of p53-inducible gene 3 inhibited the proliferation and invasion ability. The results of in vivo glioblastoma models further confirmed that p53-inducible gene 3 suppression promoted glioblastoma progression. Altogether, our data suggest that high expression of p53-inducible gene 3 is significant for glioblastoma inhibition and p53-inducible gene 3 independently indicates good prognosis in patients, which might be a novel prognostic biomarker or potential therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Jishu Quan
- 1 Department of Biochemistry and Molecular Biology, Yanbian University Medical College, Yanji, China
| | - Yong Li
- 2 Department of Pediatrics, Yanbian Maternity and Child Care Center, Yanji, China
| | - Meihua Jin
- 1 Department of Biochemistry and Molecular Biology, Yanbian University Medical College, Yanji, China
| | - Dunfu Chen
- 1 Department of Biochemistry and Molecular Biology, Yanbian University Medical College, Yanji, China
| | - Xuezhe Yin
- 3 Yanbian University Hospital, Yanji, China
| | - Ming Jin
- 1 Department of Biochemistry and Molecular Biology, Yanbian University Medical College, Yanji, China
| |
Collapse
|
42
|
Qian Z, Ren L, Wu D, Yang X, Zhou Z, Nie Q, Jiang G, Xue S, Weng W, Qiu Y, Lin Y. Overexpression of FoxO3a is associated with glioblastoma progression and predicts poor patient prognosis. Int J Cancer 2017; 140:2792-2804. [PMID: 28295288 DOI: 10.1002/ijc.30690] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 12/28/2022]
Abstract
Forkhead transcription factor FoxO3a has been reported to have ambiguous functions and distinct mechanisms in various solid tumors, including glioblastoma (GBM). Although a preliminary analysis of a small sample of patients indicated that FoxO3a aberrations in glioma might be related to aggressive clinical behavior, the clinical significance of FoxO3a in glioblastoma remains unclear. We investigated the expression of FoxO3a in a cohort of 91 glioblastoma specimens and analyzed the correlations of protein expression with patient prognosis. Furthermore, the functional impact of FoxO3a on GBM progression and the underlying mechanisms of FoxO3a regulation were explored in a series of in vitro and in vivo assays. FoxO3a expression was elevated in glioblastoma tissues, and high nuclear FoxO3a expression in human GBM tissues was associated with poor prognosis. Moreover, knockdown of FoxO3a significantly reduced the colony formation and invasion ability of GBM cells, whereas overexpression of FoxO3a promoted the colony formation and invasion ability. The results of in vivo GBM models further confirmed that FoxO3a knockdown inhibited GBM progression. More, the pro-oncogenic effects of FoxO3a in GBM were mediated by the activation of c-Myc, microtubule-associated protein 1 light chain 3 beta (LC3B) and Beclin1 in a mixed-lineage leukemia 2 (MLL2)-dependent manner. These findings suggest that high FoxO3a expression is associated with glioblastoma progression and that FoxO3a independently indicates poor prognosis in patients. FoxO3a might be a novel prognostic biomarker or a potential therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Zhongrun Qian
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Ren
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Dingchang Wu
- Department of Clinical Laboratory, Longyan First Hospital, Fujian Medical University, Longyan, China
| | - Xi Yang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyi Zhou
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Quanmin Nie
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gan Jiang
- Department of Pharmacology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuanglin Xue
- Department of Neurosurgery, Longyan First Hospital, Fujian Medical University, Longyan, China
| | - Weiji Weng
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongming Qiu
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Lin
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
43
|
Tseng YY, Yang TC, Wang YC, Lee WH, Chang TM, Kau YC, Liu SJ. Targeted concurrent and sequential delivery of chemotherapeutic and antiangiogenic agents to the brain by using drug-loaded nanofibrous membranes. Int J Nanomedicine 2017; 12:1265-1276. [PMID: 28243088 PMCID: PMC5317248 DOI: 10.2147/ijn.s124593] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma is the most frequent and devastating primary brain tumor. Surgery followed by radiotherapy with concomitant and adjuvant chemotherapy is the standard of care for patients with glioblastoma. Chemotherapy is ineffective, because of the low therapeutic levels of pharmaceuticals in tumor tissues and the well-known tumor-cell resistance to chemotherapy. Therefore, we developed bilayered poly(d,l)-lactide-co-glycolide nanofibrous membranes that enabled the sequential and sustained release of chemotherapeutic and antiangiogenic agents by employing an electrospinning technique. The release characteristics of embedded drugs were determined by employing an in vitro elution technique and high-performance liquid chromatography. The experimental results showed that the fabricated nanofibers showed a sequential drug-eluting behavior, with the release of high drug levels of chemotherapeutic carmustine, irinotecan, and cisplatin from day 3, followed by the release of high concentrations of the antiangiogenic combretastatin from day 21. Biodegradable multidrug-eluting nanofibrous membranes were then dispersed into the cerebral cavity of rats by craniectomy, and the in vivo release characteristics of the pharmaceuticals from the membranes were investigated. The results suggested that the nanofibrous membranes released high concentrations of pharmaceuticals for more than 8 weeks in the cerebral parenchyma of rats. The result of histological analysis demonstrated developmental atrophy of brains with no inflammation. Biodegradable nanofibrous membranes can be manufactured for long-term sequential transport of different chemotherapeutic and anti-angiogenic agents in the brain, which can potentially improve the treatment of glioblastoma multiforme and prevent toxic effects due to systemic administration.
Collapse
Affiliation(s)
- Yuan-Yun Tseng
- Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei
| | - Tao-Chieh Yang
- Department of Neurosurgery, Asia University Hospital, Taichung
| | - Yi-Chuan Wang
- Department of Mechanical Engineering, Chang Gung University, Taoyuan
| | - Wei-Hwa Lee
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, Taipei
| | - Tzu-Min Chang
- Department of Mechanical Engineering, Chang Gung University, Taoyuan
| | | | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan; Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
44
|
William D, Mullins CS, Schneider B, Orthmann A, Lamp N, Krohn M, Hoffmann A, Classen CF, Linnebacher M. Optimized creation of glioblastoma patient derived xenografts for use in preclinical studies. J Transl Med 2017; 15:27. [PMID: 28183348 PMCID: PMC5301415 DOI: 10.1186/s12967-017-1128-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/25/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common and lethal brain tumor in adults, highlighting the need for novel treatment strategies. Patient derived xenografts (PDX) represent a valuable tool to accomplish this task. METHODS PDX were established by implanting GBM tissue subcutaneously. Engraftment success was compared between NMRI Foxn1nu and NOD/SCID as well as between fresh and cryopreserved tissue. Established PDX were analyzed histologically and molecularly. Five PDX were experimentally treated with different drugs to assess their potential for preclinical drug testing. RESULTS Establishment of PDX was attempted for 36 consecutive GBM cases with an overall success rate of 22.2% in NMRI Foxn1nu mice. No difference was observed between fresh or cryopreserved (20-1057 days) tissue in direct comparison (n = 10 cases). Additionally, engraftment was better in NOD/SCID mice (38.8%) directly compared to NMRI Foxn1nu mice (27.7%) (n = 18 cases). Molecular data and histology of the PDX compare well to the primary GBM. The experimental treatment revealed individual differences in the sensitivity towards several clinically relevant drugs. CONCLUSIONS The use of vitally frozen GBM tissue allows a more convenient workflow without efficiency loss. NOD/SCID mice appear to be better suited for initial engraftment of tumor tissue compared to NMRI Foxn1nu mice.
Collapse
Affiliation(s)
- Doreen William
- Children’s Hospital, University Medicine Rostock, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Christina Susanne Mullins
- Department of Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Björn Schneider
- Institute of Pathology, University Medicine Rostock, Strempelstr. 14, 18057 Rostock, Germany
| | - Andrea Orthmann
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Robert-Roessle-Str. 10, 13125 Berlin-Buch, Germany
| | - Nora Lamp
- Institute of Pathology, University Medicine Rostock, Strempelstr. 14, 18057 Rostock, Germany
| | - Mathias Krohn
- Department of Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Annika Hoffmann
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Robert-Roessle-Str. 10, 13125 Berlin-Buch, Germany
| | - Carl-Friedrich Classen
- Children’s Hospital, University Medicine Rostock, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Michael Linnebacher
- Department of Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| |
Collapse
|
45
|
Bae Y, Rhim HS, Lee S, Ko KS, Han J, Choi JS. Apoptin Gene Delivery by the Functionalized Polyamidoamine Dendrimer Derivatives Induces Cell Death of U87-MG Glioblastoma Cells. J Pharm Sci 2017; 106:1618-1633. [PMID: 28188727 DOI: 10.1016/j.xphs.2017.01.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/18/2017] [Accepted: 01/27/2017] [Indexed: 11/08/2022]
Abstract
Malignant glioma is the most common and aggressive form of primary brain tumor in adults. In this study, we describe the efficacy of nonviral gene delivery carriers, histidine- and arginine- or histidine- and lysine-grafted polyamidoamine (PAMAM) dendrimers (PAMAM-H-R and PAMAM-H-K), in delivering a therapeutic and a tumor-selective killer gene, apoptin, using human glioma cells (U87-MG) and newborn human dermal fibroblast cells. We analyzed transfection efficiency using luciferase and a plasmid DNA encoding for enhanced green fluorescent protein and assessed cell viability in both cells. The results show that transfection efficiency of PAMAM-H-R and PAMAM-H-K was greatly increased compared with that of native PAMAM. Moreover, among PAMAM derivatives, cytotoxicity of PAMAM-H-K was very low. We treated both cells with complexes of PAMAM-H-R or PAMAM-H-K and apoptin and analyzed their cellular uptake by flow cytometry and localization by confocal microscopy. Furthermore, cell cycle distribution, caspase 3 activity assay, and JC-1 analysis showed cell death induced by apoptin in U87-MG cells. The present study demonstrates that a PAMAM-H-R/apoptin complex is an effective gene carrier system in glioma cell culture.
Collapse
Affiliation(s)
- Yoonhee Bae
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Hyang-Shuk Rhim
- Department of Biomedical Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seulgi Lee
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea
| | - Kyung Soo Ko
- Department of Internal Medicine, Sanggye Paik Hospital, Cardiovascular and Metabolic Disease Center, Inje University, Seoul, Korea
| | - Jin Han
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea.
| | - Joon Sig Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea.
| |
Collapse
|
46
|
Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee SU. Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pac J Cancer Prev 2017; 18:3-9. [PMID: 28239999 PMCID: PMC5563115 DOI: 10.22034/apjcp.2017.18.1.3] [Citation(s) in RCA: 466] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most malignant types of central nervous system tumors. Despite advances in treatment modalities it remains largely incurable. The objective of our review is to provide a holistic picture of GBM epidemiology, etiology, pathogenesis, clinical findings and treatment. A literature search was conducted for GBM at PubMed and Google Scholar, with relevant key words like glioblastoma multiforme, pathogenesis, signs and symptoms, treatment etc., and papers published until 2015 were reviewed. It was found that radiation and certain genetic syndromes are the only risk factors identified to date for GBM. Depending on the tumor site patients may present to the clinic with varying symptoms. To confirm the presence and the extent of tumor, various invasive and non-invasive imaging techniques require employment. The literature survey revealed the pathogenesis to involve aberrations of multiple signaling pathways through multiple genetic mutations and altered gene expression. Although several treatment options are available, including surgery, along with adjuvant chemo- and radio-therapy, the disease has a poor prognosis and patients generally succumb within 14 months of diagnosis.
Collapse
Affiliation(s)
- Farina Hanif
- Department of Biomedical Sciences, Institute of Basic Medical Sciences, Dow University of Health Sciences, Karachi, Pakistan
- Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, University Road, Karachi 75270, Pakistan.
| | | | | | | | | |
Collapse
|
47
|
Artene SA, Turcu-Stiolica A, Hartley R, Ciurea ME, Daianu O, Brindusa C, Alexandru O, Tataranu LG, Purcaru SO, Dricu A. Dendritic cell immunotherapy versus bevacizumab plus irinotecan in recurrent malignant glioma patients: a survival gain analysis. Onco Targets Ther 2016; 9:6669-6677. [PMID: 27877052 PMCID: PMC5108618 DOI: 10.2147/ott.s112842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The bevacizumab and irinotecan protocol is considered a standard treatment regimen for recurrent malignant glioma. Recent advances in immunotherapy have hinted that vaccination with dendritic cells could become an alternative salvage therapy for the treatment of recurrent malignant glioma. METHODS A search was performed on PubMed, Cochrane Library, Web of Science, ScienceDirect, and Embase in order to identify studies with patients receiving bevacizumab plus irinotecan or dendritic cell therapy for recurrent malignant gliomas. The data obtained from these studies were used to perform a systematic review and survival gain analysis. RESULTS Fourteen clinical studies with patients receiving either bevacizumab plus irinotecan or dendritic cell vaccination were identified. Seven studies followed patients that received bevacizumab plus irinotecan (302 patients) and seven studies included patients that received dendritic cell immunotherapy (80 patients). For the patients who received bevacizumab plus irinotecan, the mean reported median overall survival was 7.5 (95% confidence interval [CI] 4.84-10.16) months. For the patients who received dendritic cell immunotherapy, the mean reported median overall survival was 17.9 (95% CI 11.34-24.46) months. For irinotecan + bevacizumab group, the mean survival gain was -0.02±2.00, while that for the dendritic cell immunotherapy group was -0.01±4.54. CONCLUSION For patients with recurrent malignant gliomas, dendritic cell immunotherapy treatment does not have a significantly different effect when compared with bevacizumab and irinotecan in terms of survival gain (P=0.535) and does not improve weighted survival gain (P=0.620).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Oana Alexandru
- Department of Neurology, University of Medicine and Pharmacy of Craiova, Craiova
| | | | | | | |
Collapse
|
48
|
Rahme RJ, Aoun RJN, Pines AR, Swanson KR, Bendok BR. Defining the Immune Phenotype for Glioblastoma Multiforme: One Step Closer to Understanding Our Enemy. World Neurosurg 2016; 95:576-577. [DOI: 10.1016/j.wneu.2016.08.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
49
|
Boujelben A, Watson M, McDougall S, Yen YF, Gerstner ER, Catana C, Deisboeck T, Batchelor TT, Boas D, Rosen B, Kalpathy-Cramer J, Chaplain MAJ. Multimodality imaging and mathematical modelling of drug delivery to glioblastomas. Interface Focus 2016; 6:20160039. [PMID: 27708763 DOI: 10.1098/rsfs.2016.0039] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Patients diagnosed with glioblastoma, an aggressive brain tumour, have a poor prognosis, with a median overall survival of less than 15 months. Vasculature within these tumours is typically abnormal, with increased tortuosity, dilation and disorganization, and they typically exhibit a disrupted blood-brain barrier (BBB). Although it has been hypothesized that the 'normalization' of the vasculature resulting from anti-angiogenic therapies could improve drug delivery through improved blood flow, there is also evidence that suggests that the restoration of BBB integrity might limit the delivery of therapeutic agents and hence their effectiveness. In this paper, we apply mathematical models of blood flow, vascular permeability and diffusion within the tumour microenvironment to investigate the effect of these competing factors on drug delivery. Preliminary results from the modelling indicate that all three physiological parameters investigated-flow rate, vessel permeability and tissue diffusion coefficient-interact nonlinearly to produce the observed average drug concentration in the microenvironment.
Collapse
Affiliation(s)
- Ahmed Boujelben
- School of Petroleum Engineering , Heriot-Watt University , Edinburgh EH14 4AS , UK
| | - Michael Watson
- School of Petroleum Engineering , Heriot-Watt University , Edinburgh EH14 4AS , UK
| | - Steven McDougall
- School of Petroleum Engineering , Heriot-Watt University , Edinburgh EH14 4AS , UK
| | - Yi-Fen Yen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital , Harvard Medical School , Charlestown, MA 02129 , USA
| | - Elizabeth R Gerstner
- Department of Neurology, Massachusetts General Hospital , Harvard Medical School , Boston, MA , USA
| | - Ciprian Catana
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital , Harvard Medical School , Charlestown, MA 02129 , USA
| | - Thomas Deisboeck
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital , Harvard Medical School , Charlestown, MA 02129 , USA
| | - Tracy T Batchelor
- Department of Neurology, Massachusetts General Hospital , Harvard Medical School , Boston, MA , USA
| | - David Boas
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital , Harvard Medical School , Charlestown, MA 02129 , USA
| | - Bruce Rosen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital , Harvard Medical School , Charlestown, MA 02129 , USA
| | - Jayashree Kalpathy-Cramer
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital , Harvard Medical School , Charlestown, MA 02129 , USA
| | - Mark A J Chaplain
- School of Mathematics and Statistics , University of St Andrews , St Andrews KY16 9SS , UK
| |
Collapse
|
50
|
Wu Y, Dong L, Bao S, Wang M, Yun Y, Zhu R. FK228 augmented temozolomide sensitivity in human glioma cells by blocking PI3K/AKT/mTOR signal pathways. Biomed Pharmacother 2016; 84:462-469. [PMID: 27685789 DOI: 10.1016/j.biopha.2016.09.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/11/2016] [Accepted: 09/14/2016] [Indexed: 11/29/2022] Open
Abstract
Temozolomide is a novel cytotoxic agent currently used as first-line chemotherapy for glioblastoma multiforme (GBM). Romidepsin (FK228), a histone deacetylase inhibitor, is a promising new class of antineoplastic agent with the capacity to induce growth arrest and/or apoptosis of cancer cells. However, combination of the two drugs in glioma remains largely unknown. In the present study, we evaluated the combinatory effects of FK228 with TMZ in glioma, and its molecular mechanisms responsible for these effects. Glioma cell lines were treated with TMZ, FK228 or the combination of drugs. The resistance effect including cytotoxicity and apoptosis was determined in glioma cells, respectively. We further evaluated the effects of FK228 in the PI3K/Akt-signaling pathway in vitro. Mice engrafted with 5×106 LN382 cells were treated with TMZ, FK228 or the combination of two drugs, and tumor weights and volumes were measured, respectively. FK228 enhanced the cytotoxic effects of TMZ in glioma cells compared to vehicle-treated controls or each drug alone. The combination of FK228 and TMZ-induced apoptosis was demonstrated by increased expression of cleaved-Caspase 3, Bax, cleaved-PARP, and decreased Bcl-2 expression. Furthermore, the expression of key components of the PI3K/Akt-signaling pathway showed that combination of FK228 and TMZ block PI3K/Akt pathways in vitro. This block effect was also confirmed in vivo in mice models. Mice treated with both FK228 and TMZ drugs showed significantly reduced tumor weights and volumes, compared to each drug alone. Our results suggested that FK228 augmented temozolomide sensitivity in human glioma cells partially by blocking PI3K/AKT/mTOR signal pathways. It thus may provide a promising target for improving the therapeutic outcome of TMZ-resistant gliomas, although further studies will be needed.
Collapse
Affiliation(s)
- YiHan Wu
- Departmant of Neurology, The Inner Mongolia People's Hospital, Huhhot, Inner Mongolia 010017, China.
| | - Li Dong
- Department of Oncology, The Inner Mongolia People's Hospital, Huhhot, Inner Mongolia 010017, China
| | - SaRuLa Bao
- Departmant of Neurology, The Inner Mongolia People's Hospital, Huhhot, Inner Mongolia 010017, China
| | - MeiLing Wang
- Departmant of Neurology, The Inner Mongolia People's Hospital, Huhhot, Inner Mongolia 010017, China
| | - YongLi Yun
- Departmant of Neurology, The Inner Mongolia People's Hospital, Huhhot, Inner Mongolia 010017, China
| | - RunXiu Zhu
- Departmant of Neurology, The Inner Mongolia People's Hospital, Huhhot, Inner Mongolia 010017, China
| |
Collapse
|