1
|
Liu Z, Lee K, Cohn D, Zhang M, Ai L, Li M, Zhang X, Jun T, Higashi MK, Pan Q, Oh W, Stolovitzky G, Schadt E, Wang X, Li SD. Analysis of real-world data to investigate evolving treatment sequencing patterns in advanced non-small cell lung cancers and their impact on survival. J Thorac Dis 2023; 15:2438-2449. [PMID: 37324065 PMCID: PMC10267939 DOI: 10.21037/jtd-22-1481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/10/2023] [Indexed: 08/11/2023]
Abstract
Background Although optimal sequencing of systemic therapy in cancer care is critical to achieving maximal clinical benefit, there is a lack of analysis of treatment sequencing in advanced non-small cell lung cancer (aNSCLC) in real-world settings. Methods A retrospective cohort study of 13,340 lung cancer patients within the Mount Sinai Health System (MSHS) was performed. Systemic therapy data of aNSCLC in 2,106 patients was the starting point in our analysis to investigate how treatment sequencing has evolved, the impact of sequencing patterns on clinical outcomes, and the effectiveness of 2nd line chemotherapy after patients progressed on immune checkpoint inhibitor (ICI)-based therapy as the 1st line of therapy (LOT). Results There is a significant shift to more ICI-based therapy and multiple lines of targeted therapy after 2015. We compared clinical outcomes of two patient populations with different treatment sequencing patterns, with the 1st group receiving chemotherapy as the 1st LOT followed by ICI-based treatment, and the 2nd group treated in the opposite order receiving a 1st line ICI-containing regimen followed by a 2nd line chemotherapy. No statistically significant difference in overall survival (OS) was observed between the two groups [group 2 vs. group 1, adjusted hazard ratio (aHR) =1.36, P=0.39]. We assessed the efficacy of the 2nd line chemotherapy in three patient populations given either 1st line ICI single agent, 1st line ICI-chemotherapy combination, or 1st line chemotherapy alone, there was no statistically significant difference in time-to-next treatment (TTNT) and in OS among the three patient groups. Conclusions Analysis of real-world data has shown two treatment sequencing patterns in aNSCLC, ICI followed by chemotherapy or chemotherapy followed by ICI, achieved similar clinical benefit. The chemotherapies routinely used following platinum doublet 1st LOT, is effective as the 2nd line option after ICI-chemotherapy combination in the 1st line setting.
Collapse
Affiliation(s)
- Zongzhi Liu
- Sema4 Mount Sinai Genomic Inc., Stamford, CT, USA
| | | | - David Cohn
- Sema4 Mount Sinai Genomic Inc., Stamford, CT, USA
| | | | - Lei Ai
- Sema4 Mount Sinai Genomic Inc., Stamford, CT, USA
| | - Minghao Li
- Sema4 Mount Sinai Genomic Inc., Stamford, CT, USA
| | | | - Tomi Jun
- Sema4 Mount Sinai Genomic Inc., Stamford, CT, USA
| | | | - Qi Pan
- Sema4 Mount Sinai Genomic Inc., Stamford, CT, USA
| | - William Oh
- Sema4 Mount Sinai Genomic Inc., Stamford, CT, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Eric Schadt
- Sema4 Mount Sinai Genomic Inc., Stamford, CT, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiaoyan Wang
- Sema4 Mount Sinai Genomic Inc., Stamford, CT, USA
| | - Shuyu D. Li
- Sema4 Mount Sinai Genomic Inc., Stamford, CT, USA
| |
Collapse
|
2
|
Itchins M, Pavlakis N. The quantum leap in therapeutics for advanced ALK+ non-small cell lung cancer and pursuit to cure with precision medicine. Front Oncol 2022; 12:959637. [PMID: 36003760 PMCID: PMC9393505 DOI: 10.3389/fonc.2022.959637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Since the discovery 15 years ago, we have seen a quantum leap in the treatment and survival for individuals diagnosed with ALK+ lung cancers. Unfortunately however, for most, the diagnosis is made in an incurable circumstance given the late presentation of symptoms. Through a revolutionary wave of therapeutics, individuals may remarkably live over a decade, however many fall short of this milestone, as the molecular profile of this disease is very heterogeneous, reflected in variable survival outcomes. Despite a significant improval in survival and quality of life with ALK-inhibitor monotherapies, now available across multiple-generations, drug resistance and disease relapse remains inevitable, and treatment is offered in an empiric, stepwise, non personalised biomarker informed fashion. A proposed future focus to treating ALK to improve the chronicity of this disease and even promote cure, is to deliver a personalised dynamic approach to care, with rational combinations of drugs in conjunction with local ablative therapies to prevent and constantly proactively alter clonal selection. Such an approach would be informed by precision imaging with MRI-brain and FDG-PETs sequentially, and by regular plasma sampling including for circulating tumour DNA sequencing with personalised therapeutic switches occurring prior to the emergence of radiological and clinical relapse. Such an approach to care will require a complete paradigm shift in the way we approach the treatment of advanced cancer, however evidence to date in ALK+ lung cancers, support this new frontier of investigation.
Collapse
Affiliation(s)
- Malinda Itchins
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Northern Clinical School, University of Sydney, Kolling Institute, St Leonards, NSW, Australia
- North Shore Health Hub, GenesisCare, St Leonards, NSW, Australia
- *Correspondence: Malinda Itchins,
| | - Nick Pavlakis
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Northern Clinical School, University of Sydney, Kolling Institute, St Leonards, NSW, Australia
- North Shore Health Hub, GenesisCare, St Leonards, NSW, Australia
| |
Collapse
|
3
|
Abstract
Lorlatinib, a third-generation ALK tyrosine kinase inhibitor, has been approved as a treatment for ALK-positive lung cancer. This review provides information regarding the pharmacology and clinical features of lorlatinib, including its efficacy and associated adverse events. Pivotal clinical trials are discussed along with the current status of lorlatinib as a treatment for ALK-positive lung cancer and future therapeutic challenges.
Collapse
Affiliation(s)
- Keisuke Baba
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Nikanjam M, Kato S, Adashek JJ, Kurzrock R. Cetuximab in Patients with Non-Small Cell Lung Cancer and EGFR Exon 20 Insertion Alterations. CLINICAL ONCOLOGY, CASE REPORTS 2022; 5:210. [PMID: 35403176 PMCID: PMC8994415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Epidermal Growth Factor Receptor (EGFR) exon 20 insertion alterations represent 4%-10% of all EGFR mutations in Non-Small Cell Lung Cancer (NSCLC) and result in resistance to standard EGFR-directed therapies. EGFR exon 20 insertions restrict the size of the kinase pocket, prohibiting the entry of approved EGFR kinase inhibitor drugs. Structural In Silico modeling also predicts that EGFR exon 20 insertion anomalies increase attractive electrostatic dimerization, hence stabilizing the activating dimer configuration. EGFR antibodies such as cetuximab that interfere with dimerization may lead to responses. We identified three non-smoking patients with NSCLC and EGFR exon 20 insertions treated with cetuximab-based therapy. All three patients demonstrated clinical benefit. A 58-year-old woman achieved prolonged stable disease lasting 9 months, while a 76-year-old woman and 38-year-old man maintained a partial response with progression-free survivals of 13 months and 32 months, respectively. In conclusion, cetuximab merits further investigation as it appears to be an additional promising therapy for overcoming EGFR exon 20 insertion-related resistance.
Collapse
Affiliation(s)
- Mina Nikanjam
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, San Diego, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, San Diego, USA
| | - Jacob J Adashek
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, San Diego, USA
| |
Collapse
|
5
|
Non-small cell lung cancer: Emerging molecular targeted and immunotherapeutic agents. Biochim Biophys Acta Rev Cancer 2021; 1876:188636. [PMID: 34655692 DOI: 10.1016/j.bbcan.2021.188636] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/09/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) represents the most common and fatal type of primary lung malignancies. NSCLC is often diagnosed at later stages and requires systemic therapies. Despite recent advances in surgery, chemotherapy, and targeted molecular therapies the outcomes of NSCLC remain disproportionately poor. Immunotherapy is a rapidly developing area in NSCLC management and presents opportunities for potential improvements in clinical outcomes. Indeed, different immunotherapeutics have been approved for clinical use in various settings for NSCLC. Their promise is especially poignant in light of improved survival and quality of life outcomes. Herein, we comprehensively review emerging NSCLC therapeutics. We discuss the limitations of such strategies and summarize the present status of various immunotherapeutic agents in key patient populations. We also examine the data from ongoing studies in immunotherapy and consider future areas of study, including novel inhibition targets, therapeutic vaccination, tumor genome modification, and improvements to drug delivery systems.
Collapse
|
6
|
Zhang C. Case Report: Treatment of Alectinib in NSCLC With Brain Metastasis Patient Refractory to Radiotherapy After Resistance to Crizotinib. Front Oncol 2021; 11:709188. [PMID: 34262876 PMCID: PMC8273575 DOI: 10.3389/fonc.2021.709188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/10/2021] [Indexed: 11/25/2022] Open
Abstract
Background Brain metastasis is the most common form of tumor recurrence after resistance to crizotinib in patients with anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer (NSCLC). The treatment of brain metastasis in patients with ALK-positive NSCLC requires a multidisciplinary approach, including targeted therapy, chemotherapy, and radiotherapy. At present, no optimal treatment for these patients has been identified, although radiotherapy has remained a vital treatment. Case Presentation We experienced a patient with ALK-positive NSCLC who developed brain metastasis after crizotinib therapy. ALK rearrangement was not detected in a blood sample using next-generation sequencing. In accordance with National Comprehensive Cancer Network guidance, the patient underwent whole-brain radiotherapy. However, the number of metastatic sites unexpectedly increased. In desperation, the patient was empirically given alectinib after radiotherapy failure, and unanticipated success was achieved. Conclusions This case revealed some new insights. First, liquid biopsy is complementary to tissue biopsy in patients with NSCLC, mainly in those with EGFR mutation. However, ALK rearrangement should be assessed using tissue biopsy as much as possible. Second, brain metastasis of NSCLC might respond to second-generation tyrosine kinase inhibitors (TKIs), such as alectinib and ceritinib, after resistance to crizotinib regardless of the presence or absence of ALK rearrangement in liquid biopsy. Finally, combined radiotherapy and TKI therapy appears optimal in patients with brain metastasis of NSCLC after resistance to crizotinib in the absence of a definitive driver gene.
Collapse
Affiliation(s)
- Chunzhi Zhang
- Department of Radiation Oncology, Tianjin Hospital, Tianjin, China
| |
Collapse
|
7
|
Liang X, Wu P, Yang Q, Xie Y, He C, Yin L, Yin Z, Yue G, Zou Y, Li L, Song X, Lv C, Zhang W, Jing B. An update of new small-molecule anticancer drugs approved from 2015 to 2020. Eur J Med Chem 2021; 220:113473. [PMID: 33906047 DOI: 10.1016/j.ejmech.2021.113473] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 01/09/2023]
Abstract
A high incidence of cancer has given rise to the development of more anti-tumor drugs. From 2015 to 2020, fifty-six new small-molecule anticancer drugs, divided into ten categories according to their anti-tumor target activities, have been approved. These include TKIs (30 drugs), MAPK inhibitors (3 drugs), CDK inhibitors (3 drugs), PARP inhibitors (3 drugs), PI3K inhibitors (3 drugs), SMO receptor antagonists (2 drugs), AR antagonists (2 drugs), SSTR inhibitors (2 drugs), IDH inhibitors (2 drugs) and others (6 drugs). Among them, PTK inhibitors (30/56) have led to a paradigm shift in cancer treatment with less toxicity and more potency. Each of their structures, approval statuses, applications, SAR analyses, and original research synthesis routes have been summarized, giving us a more comprehensive map for further efforts to design more specific targeted agents for reducing cancer in the future. We believe this review will help further research of potential antitumor agents in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Pan Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Qian Yang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yunyu Xie
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Guizhou Yue
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Bo Jing
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| |
Collapse
|