1
|
Rosen J, Cohen K, Donatelli CM, Summers A, Crofts S, Kolmann M. Something to sink your teeth into: the mechanics of tooth indentation in frugivorous fishes. J R Soc Interface 2025; 22:20240725. [PMID: 40235459 PMCID: PMC12001085 DOI: 10.1098/rsif.2024.0725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/30/2025] [Accepted: 02/26/2025] [Indexed: 04/17/2025] Open
Abstract
Frugivorous vertebrates engage in a mutualism with fruiting plants: the former receive a nutrient subsidy, and the latter benefit by having their seeds dispersed far from parent plants. Vertebrate frugivores like primates and bats have particular morphologies suited for gripping fruit and then pulverizing fruit soft tissues; however, variation among frugivores and fruits has made the identification of common frugivore phenotypes difficult. Here, we evaluated the performance of frugivorous fish (pacu and piranha; Serrasalmidae) dentitions when puncturing fruits and seeds and compared specialist frugivorous species to facultative frugivorous and non-herbivorous relatives. We also explored how fruit characteristics affect puncture performance and how the indentation of fruit differs mechanically from harder foods like nuts. Based on expectations from studies on frugivorous bats and primates, we expected that frugivore dentitions would exhibit low force and then high work when engaging fruit tissues. Aligning with our expectation, the specialized frugivorous pacu, Colossoma, had dental performance that matched this low force, high work prediction. We also document how frugivory in omnivorous piranhas may be driven more by seed predation than a focus on softer fruit tissues like pulp. Overall, this study demonstrates remarkable similarity in the form and function of frugivore dentitions across vertebrates.
Collapse
Affiliation(s)
- Jack Rosen
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Karly Cohen
- Friday Harbor Laboratories at University of Washington, Seattle, WA, USA
| | | | - Adam Summers
- Friday Harbor Laboratories at University of Washington, Seattle, WA, USA
| | | | - Matthew Kolmann
- Department of Biology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
2
|
Kolmann MA, Poulin E, Rosen J, Hemraj-Naraine D, Burns MD. Phenotypic Convergence Is Stronger and More Frequent in Herbivorous Fishes. Integr Comp Biol 2024; 64:1467-1483. [PMID: 38724441 DOI: 10.1093/icb/icae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 11/22/2024] Open
Abstract
Constraints on phenotypic evolution can lead to patterns of convergent evolution, by limiting the "pool" of potential phenotypes in the face of endogenous (functional, developmental) or exogenous (competition, predation) selective pressures. Evaluation of convergence depends on integrating ecological and morphological data within a robust, comparative phylogenetic context. The staggering diversity of teleost fishes offers a multitude of lineages adapted for similar ecological roles and, therefore, offers numerous replicated evolutionary experiments for exploring phenotypic convergence. However, our understanding of fish feeding systems has been primarily shaped by marine species, with the monolithic exception of freshwater cichlids. Here we use piranhas and pacus (Serrasalmidae) to explore the evolution of different feeding ecologies and their morphological proxies in Neotropical freshwater environments. Specifically, we explore whether convergence is more widespread among plant-eating fishes, arising from strong constraints on phenotypic evolution in herbivores. Using osteological micro-computed tomographic imaging (μCT), we describe the major axes of morphological variation in pacus and piranhas, regarding their diet and feeding behaviors. Next, we evaluated whether herbivorous niches are less labile than other dietary guilds and whether herbivorous species' phenotypes evolve at a slower evolutionary rate than other taxa. We then assess how convergent herbivorous taxa are, using three different suites of morphological characters (dental, jaw, and abdominal morphometrics). Ecologically, herbivory is not a dead end, exhibiting similar observed transition rates as those between carnivores and omnivores. However, we documented widespread convergence in herbivores and that herbivores have slower rates of phenotypic evolution than carnivores. Most instances of convergence are found in herbivorous taxa, specifically in frugivores and folivores. Moreover, instances of "complete" convergence, indicated by positive convergence metrics observed in more than one morphometric dataset, were only found in herbivores. Herbivores do appear to evolve under constrained circumstances, but this has not limited their ecological ability.
Collapse
Affiliation(s)
- M A Kolmann
- Department of Biology, University of Louisville, Louisville, KY 40208, USA
| | - E Poulin
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| | - J Rosen
- Department of Biology, University of Louisville, Louisville, KY 40208, USA
| | - D Hemraj-Naraine
- Department of Biology, University of Louisville, Louisville, KY 40208, USA
| | - M D Burns
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| |
Collapse
|
3
|
Cohen KE, Fitzpatrick AR, Huie JM. Dental Dynamics: A Fast New Tool for Quantifying Tooth and Jaw Biomechanics in 3D Slicer. Integr Org Biol 2024; 6:obae015. [PMID: 39045422 PMCID: PMC11263487 DOI: 10.1093/iob/obae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/07/2024] [Accepted: 05/08/2024] [Indexed: 07/25/2024] Open
Abstract
Teeth reveal how organisms interact with their environment. Biologists have long looked at the diverse form and function of teeth to study the evolution of feeding, fighting, and development. The exponential rise in the quantity and accessibility of computed tomography (CT) data has enabled morphologists to study teeth at finer resolutions and larger macroevolutionary scales. Measuring tooth function is no easy task, in fact, much of our mechanical understanding is derived from dental shape. Categorical descriptors of tooth shape such as morphological homodonty and heterodonty, overlook nuances in function by reducing tooth diversity for comparative analysis. The functional homodonty method quantitatively assesses the functional diversity of whole dentitions from tooth shape. This method uses tooth surface area and position to calculate the transmission of stress and estimates a threshold for functionally homodont teeth through bootstrapping and clustering techniques. However, some vertebrates have hundreds or thousands of teeth and measuring the shape and function of every individual tooth can be a painstaking task. Here, we present Dental Dynamics, a module for 3D Slicer that allows for the fast and precise quantification of dentitions and jaws. The tool automates the calculation of several tooth traits classically used to describe form and function (i.e., aspect ratio, mechanical advantage, force, etc.). To demonstrate the usefulness of our module we used Dental Dynamics to quantify 780 teeth across 20 salamanders that exhibit diverse ecologies. We coupled these data with the functional homodonty method to investigate the hypothesis that arboreal Aneides salamanders have novel tooth functions. Dental Dynamics provides a new and fast way to measure teeth and increases the accessibility of the functional homodonty method. We hope Dental Dynamics will encourage further theoretical and methodological development for quantifying and studying teeth.
Collapse
Affiliation(s)
- K E Cohen
- California State University Fullerton, Biological Science, Fullerton, CA 98231, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- University of Florida, Museum of Natural History, Gainesville, FL 32611, USA
| | - A R Fitzpatrick
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - J M Huie
- Department of Biology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
4
|
Torgersen KT, Bouton BJ, Hebert AR, Kleyla NJ, Plasencia X, Rolfe GL, Tagliacollo VA, Albert JS. Phylogenetic structure of body shape in a diverse inland ichthyofauna. Sci Rep 2023; 13:20758. [PMID: 38007528 PMCID: PMC10676429 DOI: 10.1038/s41598-023-48086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023] Open
Abstract
Body shape is a fundamental metric of animal diversity affecting critical behavioral and ecological dynamics and conservation status, yet previously available methods capture only a fraction of total body-shape variance. Here we use structure-from-motion (SFM) 3D photogrammetry to generate digital 3D models of adult fishes from the Lower Mississippi Basin, one of the most diverse temperate-zone freshwater faunas on Earth, and 3D geometric morphometrics to capture morphologically distinct shape variables, interpreting principal components as growth fields. The mean body shape in this fauna resembles plesiomorphic teleost fishes, and the major dimensions of body-shape disparity are similar to those of other fish faunas worldwide. Major patterns of body-shape disparity are structured by phylogeny, with nested clades occupying distinct portions of the morphospace, most of the morphospace occupied by multiple distinct clades, and one clade (Acanthomorpha) accounting for over half of the total body shape variance. In contrast to previous studies, variance in body depth (59.4%) structures overall body-shape disparity more than does length (31.1%), while width accounts for a non-trivial (9.5%) amount of the total body-shape disparity.
Collapse
Affiliation(s)
| | | | - Alyx R Hebert
- Department of Biology, University of Louisiana, Lafayette, USA
| | - Noah J Kleyla
- Department of Biology, University of Louisiana, Lafayette, USA
| | | | - Garrett L Rolfe
- Department of Biology, University of Louisiana, Lafayette, USA
| | | | - James S Albert
- Department of Biology, University of Louisiana, Lafayette, USA
| |
Collapse
|
5
|
Cohen KE, Lucanus O, Summers AP, Kolmann MA. Lip service: Histological phenotypes correlate with diet and feeding ecology in herbivorous pacus. Anat Rec (Hoboken) 2023; 306:326-342. [PMID: 36128598 DOI: 10.1002/ar.25075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 01/27/2023]
Abstract
Complex prey processing requires the repositioning of food between the teeth, as modulated by a soft tissue appendage like a tongue or lips. In this study, we trace the evolution of lips and ligaments, which are used during prey capture and prey processing in an herbivorous group of fishes. Pacus (Serrasalmidae) are Neotropical freshwater fishes that feed on leaves, fruits, and seeds. These prey are hard or tough, require high forces to fracture, contain abrasive or caustic elements, or deform considerably before failure. Pacus are gape-limited and do not have the pharyngeal jaws many bony fishes use to dismantle and/or transport prey. Despite their gape limitation, pacus feed on prey larger than their mouths, relying on robust teeth and a hypertrophied lower lip for manipulation and breakdown of food. We used histology to compare the lip morphology across 14 species of pacus and piranhas to better understand this soft tissue. We found that frugivorous pacus have larger, more complex lips which are innervated and folded at their surface, while grazing species have callused, mucus-covered lips. Unlike mammalian lips or tongues, pacu lips lack any intrinsic skeletal or smooth muscle. This implies that pacu lips lack dexterity; however, we found a novel connection to the primordial ligament which suggests that the lips are actuated by the jaw adductors. We propose that pacus combine hydraulic repositioning of prey inside the buccal cavity with direct oral manipulation, the latter using a combination of a morphologically heterodont dentition and compliant lips for reorienting food.
Collapse
Affiliation(s)
- Karly E Cohen
- Biology Department, University of Washington, Seattle, Washington, USA.,Friday Harbor Laboratories, University of Washington, Friday Harbor, USA
| | - Oliver Lucanus
- BelowWater, Inc., Montreal, Quebec, Canada.,Applied Remote Sensing Lab, Department of Geography, McGill University, Montreal, Quebec, Canada
| | - Adam P Summers
- Biology Department, University of Washington, Seattle, Washington, USA.,Friday Harbor Laboratories, University of Washington, Friday Harbor, USA
| | - Matthew A Kolmann
- Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA.,Dept. of Biology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
6
|
Easterling CM, Kolmann MA, O'Donnell MK. The Lesser-Known Transitions: Organismal Form and Function Across Abiotic Gradients. Integr Comp Biol 2022; 62:829-839. [PMID: 35927766 DOI: 10.1093/icb/icac133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
From minute-to-minute changes, or across daily, seasonal, or geological timescales, animals are forced to navigate dynamic surroundings. Their abiotic environment is continually changing. These changes could include alterations to the substrates animals locomote on, flow dynamics of the microhabitats they feed in, or even altitudinal shifts over migration routes. The only constancy in any organism's day-to-day existence is the heterogeneity of the habitats they move through and the gradients in the physical media (e.g., air, water) they live in. We explored a broad range of organismal transitions across abiotic gradients and investigated how these organisms modify their form, function, and behavior to accommodate their surrounding media. We asked the following questions: (1) What are some challenges common to animals in changing media or moving between media? (2) What are common solutions to these recurring problems? (3) How often are these common solutions instances of either convergence or parallelism? Our symposium speakers explored these questions through critical analysis of numerous datasets spanning multiple taxa, timescales, and levels of analysis. After discussions with our speakers, we suggest that the role of physical principles (e.g., drag, gravity, buoyancy, viscosity) in constraining morphology and shaping the realized niche has been underappreciated. We recommend that investigations of these transitions and corresponding adaptations should include comparisons at multiple levels of biological organization and timescale. Relatedly, studies of organisms that undergo habitat and substrate changes over ontogeny would be worthwhile to include in comparisons. Future researchers should ideally complement lab-based morphological and kinematic studies with observational and experimental approaches in the field. Synthesis of the findings of our speakers across multiple study systems, timescales, and transitional habitats suggests that behavioral modification and exaptation of morphology play key roles in modulating novel transitions between substrates.
Collapse
Affiliation(s)
- C M Easterling
- Northwest University, Science Department, Kirkland, WA 98033
| | - M A Kolmann
- University of Michigan, Museum of Paleontology, Ann Arbor, MI 48109
| | - M K O'Donnell
- Lycoming College, Biology Department, Williamsport, PA 17701
| |
Collapse
|
7
|
Hyperspectral data as a biodiversity screening tool can differentiate among diverse Neotropical fishes. Sci Rep 2021; 11:16157. [PMID: 34373560 PMCID: PMC8352966 DOI: 10.1038/s41598-021-95713-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/13/2021] [Indexed: 11/08/2022] Open
Abstract
Hyperspectral data encode information from electromagnetic radiation (i.e., color) of any object in the form of a spectral signature; these data can then be used to distinguish among materials or even map whole landscapes. Although hyperspectral data have been mostly used to study landscape ecology, floral diversity and many other applications in the natural sciences, we propose that spectral signatures can be used for rapid assessment of faunal biodiversity, akin to DNA barcoding and metabarcoding. We demonstrate that spectral signatures of individual, live fish specimens can accurately capture species and clade-level differences in fish coloration, specifically among piranhas and pacus (Family Serrasalmidae), fishes with a long history of taxonomic confusion. We analyzed 47 serrasalmid species and could distinguish spectra among different species and clades, with the method sensitive enough to document changes in fish coloration over ontogeny. Herbivorous pacu spectra were more like one another than they were to piranhas; however, our method also documented interspecific variation in pacus that corresponds to cryptic lineages. While spectra do not serve as an alternative to the collection of curated specimens, hyperspectral data of fishes in the field should help clarify which specimens might be unique or undescribed, complementing existing molecular and morphological techniques.
Collapse
|
8
|
Melo BF, Sidlauskas BL, Near TJ, Roxo FF, Ghezelayagh A, Ochoa LE, Stiassny MLJ, Arroyave J, Chang J, Faircloth BC, MacGuigan DJ, Harrington RC, Benine RC, Burns MD, Hoekzema K, Sanches NC, Maldonado-Ocampo JA, Castro RMC, Foresti F, Alfaro ME, Oliveira C. Accelerated Diversification Explains the Exceptional Species Richness of Tropical Characoid Fishes. Syst Biol 2021; 71:78-92. [PMID: 34097063 DOI: 10.1093/sysbio/syab040] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/12/2022] Open
Abstract
The Neotropics harbor the most species-rich freshwater fish fauna on the planet, but the timing of that exceptional diversification remains unclear. Did the Neotropics accumulate species steadily throughout their long history, or attain their remarkable diversity recently? Biologists have long debated the relative support for these museum and cradle hypotheses, but few phylogenies of megadiverse tropical clades have included sufficient taxa to distinguish between them. We used 1,288 ultraconserved element loci (UCE) spanning 293 species, 211 genera and 21 families of characoid fishes to reconstruct a new, fossil-calibrated phylogeny and infer the most likely diversification scenario for a clade that includes a third of Neotropical fish diversity. This phylogeny implies paraphyly of the traditional delimitation of Characiformes because it resolves the largely Neotropical Characoidei as the sister lineage of Siluriformes (catfishes), rather than the African Citharinodei. Time-calibrated phylogenies indicate an ancient origin of major characoid lineages and reveal a much more recent emergence of most characoid species. Diversification rate analyses infer increased speciation and decreased extinction rates during the Oligocene at around 30 million years ago (Ma) during a period of mega-wetland formation in the proto-Orinoco-Amazonas. Three species-rich and ecomorphologically diverse lineages (Anostomidae, Serrasalmidae, and Characidae) that originated more than 60 Ma in the Paleocene experienced particularly notable bursts of Oligocene diversification and now account collectively for 68% of the approximately 2,150 species of Characoidei. In addition to paleogeographic changes, we discuss potential accelerants of diversification in these three lineages. While the Neotropics accumulated a museum of ecomorphologically diverse characoid lineages long ago, this geologically dynamic region also cradled a much more recent birth of remarkable species-level diversity.
Collapse
Affiliation(s)
- Bruno F Melo
- Dept of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 16818-689, Brazil
| | - Brian L Sidlauskas
- Dept of Fisheries and Wildlife, Oregon State University, Corvallis, OR, 97331, USA
| | - Thomas J Near
- Dept of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Fabio F Roxo
- Sector of Zoology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-689, Brazil
| | - Ava Ghezelayagh
- Dept of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Luz E Ochoa
- Dept of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 16818-689, Brazil.,Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Palmira, Valle del Cauca, 763547, Colombia
| | - Melanie L J Stiassny
- Dept of Ichthyology, American Museum of Natural History, New York, NY, 10024, USA
| | - Jairo Arroyave
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Jonathan Chang
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Brant C Faircloth
- Dept of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Daniel J MacGuigan
- Dept of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Richard C Harrington
- Dept of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Ricardo C Benine
- Sector of Zoology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-689, Brazil
| | - Michael D Burns
- Cornell Lab of Ornithology, Cornell University Museum of Vertebrates, Ithaca, NY, 14850, USA
| | - Kendra Hoekzema
- Dept of Fisheries and Wildlife, Oregon State University, Corvallis, OR, 97331, USA
| | - Natalia C Sanches
- Dept of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 16818-689, Brazil
| | - Javier A Maldonado-Ocampo
- Dept de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia (in memoriam)
| | - Ricardo M C Castro
- Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Fausto Foresti
- Dept of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 16818-689, Brazil
| | - Michael E Alfaro
- Dept of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| | - Claudio Oliveira
- Dept of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 16818-689, Brazil
| |
Collapse
|
9
|
Egan JP, Buser TJ, Burns MD, Simons AM, Hundt PJ. Patterns of Body Shape Diversity and Evolution in Intertidal and Subtidal Lineages of Combtooth Blennies (Blenniidae). Integr Org Biol 2021; 3:obab004. [PMID: 33937629 PMCID: PMC8077888 DOI: 10.1093/iob/obab004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Marine intertidal zones can be harsher and more dynamic than bordering subtidal zones, with extreme and temporally variable turbulence, water velocity, salinity, temperature, and dissolved oxygen levels. Contrasting environmental conditions and ecological opportunities in subtidal versus intertidal habitats may generate differing patterns of morphological diversity. In this study we used phylogenetic comparative methods, measurements of body length, and two-dimensional landmarks to characterize body shape and size diversity in combtooth blennies (Ovalentaria: Blenniidae) and test for differences in morphological diversity between intertidal, subtidal, and supralittoral zones. We found that subtidal combtooth blennies have significantly higher body shape disparity and occupy a region of morphospace three times larger than intertidal lineages. The intertidal morphospace was almost entirely contained within the subtidal morphospace, showing that intertidal combtooth blennies did not evolve unique body shapes. We found no significant differences in body size disparity between tidal zones, no correlations between body shape and tidal zone or body size and tidal zone, and no body shape convergence associated with tidal zone. Our findings suggest that a subset of combtooth blenny body shapes are suitable for life in both subtidal and intertidal habitats. Many species in regions of morphospace unique to subtidal combtooth blennies exhibit distinct microhabitat use, which suggests subtidal environments promoted morphological diversification via evolutionary microhabitat transitions. In contrast, limited intertidal body shape diversity may be due to strong selective pressures that constrained body shape evolution and environmental filtering that prevented colonization of intertidal zones by certain subtidal body shapes.
Collapse
Affiliation(s)
- Joshua P Egan
- Department of Biological Sciences, Western Michigan University, 2375 West Michigan Ave, Kalamazoo, MI 49006, USA
| | - Thaddaeus J Buser
- Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, 2820 SW Campus Way, Corvallis, OR 97331, USA
| | - Michael D Burns
- Cornell Lab of Ornithology, Cornell University Museum of Vertebrates, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Andrew M Simons
- Bell Museum of Natural History, University of Minnesota, 100 Ecology, 1987 Upper Buford Saint Paul, MN 55108, USA.,Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, Saint Paul, Minnesota 55108, USA
| | - Peter J Hundt
- Bell Museum of Natural History, University of Minnesota, 100 Ecology, 1987 Upper Buford Saint Paul, MN 55108, USA.,Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, Saint Paul, Minnesota 55108, USA
| |
Collapse
|
10
|
Burns MD. Adaptation to herbivory and detritivory drives the convergent evolution of large abdominal cavities in a diverse freshwater fish radiation (Otophysi: Characiformes). Evolution 2021; 75:688-705. [PMID: 33491179 DOI: 10.1111/evo.14178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/29/2022]
Abstract
Convergent evolution is often interpreted as evidence of natural selection favoring an optimal phenotype during adaptation. Morphological convergence is frequently found among lineages that converge on diet, but most studies have focused on morphological traits that relate exclusively to food handling and processing. In vertebrates, there is a strong inverse relationship between intestine length and trophic level. However, little is known about whether adaptation to a low trophic level influences the evolution of abdominal cavities that can accommodate larger intestines. Here, I reconstruct the evolutionary history of trophic ecology and examine abdominal cavity shape across 157 species of the fish order Characiformes to determine whether adaptation to an herbivorous-detritivorous diet drives convergent evolution of large abdominal cavities. Herbivorous-detritivorous species evolved significantly larger abdominal cavities than other trophic groups and repeatedly converged on a similar abdominal cavity morphology. Other trophic groups evolved abdominal cavity morphologies either stochastically or by selective pressures from an untested ecological character. These findings demonstrate that the selective demands of a larger intestinal tract promote the repeated convergence of a large abdominal cavity within herbivorous-detritivorous characiform fishes, while allowing other lineages to evolve randomly or adapt in response to other selection pressures, contributing to the overall body shape diversity of the order.
Collapse
Affiliation(s)
- Michael D Burns
- Cornell Lab of Ornithology, Cornell Museum of Vertebrates, Cornell University, Ithaca, New York, USA
| |
Collapse
|
11
|
Cawley JJ, Marramà G, Carnevale G, Villafaña JA, López-Romero FA, Kriwet J. Rise and fall of †Pycnodontiformes: Diversity, competition and extinction of a successful fish clade. Ecol Evol 2021; 11:1769-1796. [PMID: 33614003 PMCID: PMC7882952 DOI: 10.1002/ece3.7168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/25/2022] Open
Abstract
†Pycnodontiformes was a successful lineage of primarily marine fishes that broadly diversified during the Mesozoic. They possessed a wide variety of body shapes and were adapted to a broad range of food sources. Two other neopterygian clades possessing similar ecological adaptations in both body morphology (†Dapediiformes) and dentition (Ginglymodi) also occurred in Mesozoic seas. Although these groups occupied the same marine ecosystems, the role that competitive exclusion and niche partitioning played in their ability to survive alongside each other remains unknown. Using geometric morphometrics on both the lower jaw (as constraint for feeding adaptation) and body shape (as constraint for habitat adaptation), we show that while dapediiforms and ginglymodians occupy similar lower jaw morphospace, pycnodontiforms are completely separate. Separation also occurs between the clades in body shape so that competition reduction between pycnodontiforms and the other two clades would have resulted in niche partitioning. Competition within pycnodontiforms seemingly was reduced further by evolving different feeding strategies as shown by disparate jaw shapes that also indicate high levels of plasticity. Acanthomorpha was a teleostean clade that evolved later in the Mesozoic and which has been regarded as implicated in driving the pycnodontiforms to extinction. Although they share similar body shapes, no coeval acanthomorphs had similar jaw shapes or dentitions for dealing with hard prey like pycnodontiforms do and so their success being a factor in pycnodontiform extinction is unlikely. Sea surface temperature and eustatic variations also had no impact on pycnodontiform diversity patterns according to our results. Conversely, the occurrence and number of available reefs and hardgrounds as habitats through time seems to be the main factor in pycnodontiform success. Decline in such habitats during the Late Cretaceous and Palaeogene might have had deleterious consequences for pycnodontiform diversity. Acanthomorphs occupied the niches of pycnodontiforms during the terminal phase of their existence.
Collapse
Affiliation(s)
- John J Cawley
- Faculty of Earth Science, Geography and Astronomy Department of Palaeontology University of Vienna Geozentrum Vienna Austria
| | - Giuseppe Marramà
- Dipartimento di Scienze della Terra Università degli Studi di Torino Torino Italy
| | - Giorgio Carnevale
- Dipartimento di Scienze della Terra Università degli Studi di Torino Torino Italy
| | - Jaime A Villafaña
- Faculty of Earth Science, Geography and Astronomy Department of Palaeontology University of Vienna Geozentrum Vienna Austria.,Centro de Investigación en Recursos Naturales y Sustentabilidad Universidad Bernardo O'Higgins Santiago Chile.,Paleontological Institute and Museum University of Zurich Zurich Switzerland
| | - Faviel A López-Romero
- Faculty of Earth Science, Geography and Astronomy Department of Palaeontology University of Vienna Geozentrum Vienna Austria
| | - Jürgen Kriwet
- Faculty of Earth Science, Geography and Astronomy Department of Palaeontology University of Vienna Geozentrum Vienna Austria
| |
Collapse
|
12
|
Phylogenomics of the Neotropical fish family Serrasalmidae with a novel intrafamilial classification (Teleostei: Characiformes). Mol Phylogenet Evol 2020; 153:106945. [DOI: 10.1016/j.ympev.2020.106945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 01/04/2023]
|
13
|
Kolmann MA, Hughes LC, Hernandez LP, Arcila D, Betancur-R R, Sabaj MH, López-Fernández H, Ortí G. Phylogenomics of Piranhas and Pacus (Serrasalmidae) Uncovers How Dietary Convergence and Parallelism Obfuscate Traditional Morphological Taxonomy. Syst Biol 2020; 70:576-592. [PMID: 32785670 DOI: 10.1093/sysbio/syaa065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
The Amazon and neighboring South American river basins harbor the world's most diverse assemblages of freshwater fishes. One of the most prominent South American fish families is the Serrasalmidae (pacus and piranhas), found in nearly every continental basin. Serrasalmids are keystone ecological taxa, being some of the top riverine predators as well as the primary seed dispersers in the flooded forest. Despite their widespread occurrence and notable ecologies, serrasalmid evolutionary history and systematics are controversial. For example, the sister taxon to serrasalmids is contentious, the relationships of major clades within the family are inconsistent across different methodologies, and half of the extant serrasalmid genera are suggested to be non-monophyletic. We analyzed exon capture to reexamine the evolutionary relationships among 63 (of 99) species across all 16 serrasalmid genera and their nearest outgroups, including multiple individuals per species to account for cryptic lineages. To reconstruct the timeline of serrasalmid diversification, we time-calibrated this phylogeny using two different fossil-calibration schemes to account for uncertainty in taxonomy with respect to fossil teeth. Finally, we analyzed diet evolution across the family and comment on associated changes in dentition, highlighting the ecomorphological diversity within serrasalmids. We document widespread non-monophyly of genera within Myleinae, as well as between Serrasalmus and Pristobrycon, and propose that reliance on traits like teeth to distinguish among genera is confounded by ecological homoplasy, especially among herbivorous and omnivorous taxa. We clarify the relationships among all serrasalmid genera, propose new subfamily affiliations, and support hemiodontids as the sister taxon to Serrasalmidae. [Characiformes; exon capture; ichthyochory; molecular time-calibration; piscivory.].
Collapse
Affiliation(s)
- M A Kolmann
- Dept of Biological Sciences, George Washington University, 2029 G St. NW, Washington, DC 20052, USA.,Dept of Natural History, Royal Ontario Museum, 100 Queens Park, Toronto, ON M5S 2C6, Canada
| | - L C Hughes
- Dept of Biological Sciences, George Washington University, 2029 G St. NW, Washington, DC 20052, USA.,Dept of Ichthyology, Smithsonian National Museum of Natural History, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA
| | - L P Hernandez
- Dept of Biological Sciences, George Washington University, 2029 G St. NW, Washington, DC 20052, USA
| | - D Arcila
- Dept of Ichthyology, Sam Noble Museum, 2401 Chautauqua Ave, Norman, OK 73072, USA.,Dept of Biology, University of Oklahoma, 660 Parrington Oval, Norman, OK 73019, USA
| | - R Betancur-R
- Dept of Ichthyology, Sam Noble Museum, 2401 Chautauqua Ave, Norman, OK 73072, USA.,Dept of Biology, University of Oklahoma, 660 Parrington Oval, Norman, OK 73019, USA
| | - M H Sabaj
- Dept of Ichthyology, The Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Pkwy, Philadelphia, PA 19103, USA
| | - H López-Fernández
- Museum of Zoology, University of Michigan, 1105 North University Dr., Ann Arbor, MI 48109, USA
| | - G Ortí
- Dept of Biological Sciences, George Washington University, 2029 G St. NW, Washington, DC 20052, USA.,Dept of Ichthyology, Smithsonian National Museum of Natural History, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA
| |
Collapse
|
14
|
Kolmann MA, Cohen KE, Bemis KE, Summers AP, Irish FJ, Hernandez LP. Tooth and consequences: Heterodonty and dental replacement in piranhas and pacus (Serrasalmidae). Evol Dev 2019; 21:278-293. [DOI: 10.1111/ede.12306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Matthew A. Kolmann
- Department of Biological Sciences George Washington University Washington District of Columbia
- Department of Biology, Friday Harbor Laboratories University of Washington Friday Harbor Washington
| | - Karly E. Cohen
- Department of Biological Sciences George Washington University Washington District of Columbia
- Department of Biology, Friday Harbor Laboratories University of Washington Friday Harbor Washington
| | - Katherine E. Bemis
- Fisheries Science, Virginia Institute of Marine Science Gloucester Point Virginia
| | - Adam P. Summers
- Department of Biology, Friday Harbor Laboratories University of Washington Friday Harbor Washington
| | - Frances J. Irish
- Department of Biological Sciences Moravian College Bethlehem Pennsylvania
| | - L. Patricia Hernandez
- Department of Biological Sciences George Washington University Washington District of Columbia
| |
Collapse
|