1
|
Zeinali S, Sutton K, Zefreh MG, Mabbott N, Vervelde L. Discrimination of distinct chicken M cell subsets based on CSF1R expression. Sci Rep 2024; 14:8795. [PMID: 38627516 PMCID: PMC11021470 DOI: 10.1038/s41598-024-59368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
In mammals, a subset of follicle-associated epithelial (FAE) cells, known as M cells, conduct the transcytosis of antigens across the epithelium into the underlying lymphoid tissues. We previously revealed that M cells in the FAE of the chicken lung, bursa of Fabricius (bursa), and caecum based on the expression of CSF1R. Here, we applied RNA-seq analysis on highly enriched CSF1R-expressing bursal M cells to investigate their transcriptome and identify novel chicken M cell-associated genes. Our data show that, like mammalian M cells, those in the FAE of the chicken bursa also express SOX8, MARCKSL1, TNFAIP2 and PRNP. Immunohistochemical analysis also confirmed the expression of SOX8 in CSF1R-expressing cells in the lung, bursa, and caecum. However, we found that many other mammalian M cell-associated genes such as SPIB and GP2 were not expressed by chicken M cells or represented in the chicken genome. Instead, we show bursal M cells express high levels of related genes such as SPI1. Whereas our data show that bursal M cells expressed CSF1R-highly, the M cells in the small intestine lacked CSF1R and both expressed SOX8. This study offers insights into the transcriptome of chicken M cells, revealing the expression of CSF1R in M cells is tissue-specific.
Collapse
Affiliation(s)
- Safieh Zeinali
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Kate Sutton
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| | - Masoud Ghaderi Zefreh
- Division of Genetics and Genomics, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Neil Mabbott
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
2
|
Zeinali S, Sutton K, Vervelde L. Distribution and spatiotemporal development of organised lymphoid tissues in the chicken intestinal tract. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105096. [PMID: 37952587 DOI: 10.1016/j.dci.2023.105096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Chickens exhibit a distinct immune architecture characterised by the absence of draining lymph nodes and the presence of a well-developed mucosa-associated lymphoid tissue. The structure and spatiotemporal development of chicken lymphoid tissues in the intestine are poorly documented. The macroscopically indistinct structure of chicken Peyer's patches has impeded studies into their development. The generation of CSF1R-eGFP reporter transgenic chickens enables visualisation of the development, organisation and extent of chicken lymphoid tissues by unique macroscopic views. CSF1R-eGFP reporter transgenic chickens were used to investigate the distribution and spatiotemporal development of PP and caecal tonsils in embryonic day 18 to 8-week-old chickens. Peyer's patch anlagen are present at ED18 with a similar frequency and distribution pattern observed in 2- and 8-week-old chickens. These findings can support in ovo and post-hatch mucosal vaccination strategies and the development of vaccine delivery systems targeted to the specialized epithelium overlying the Peyer's patches.
Collapse
Affiliation(s)
- Safieh Zeinali
- Division of Immunology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, United Kingdom.
| | - Kate Sutton
- Division of Immunology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, United Kingdom.
| | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, United Kingdom.
| |
Collapse
|
3
|
Sun L, Zhao N, Li H, Wang B, Li H, Zhang X, Zhao X. Construction of a Lactobacillus plantarum-based claudin-3 targeting delivery system for the development of vaccines against Eimeria tenella. Vaccine 2023; 41:756-765. [PMID: 36526500 DOI: 10.1016/j.vaccine.2022.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/06/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Avian coccidiosis causes huge economic losses to the poultry industry worldwide and currently lacks effective live vector vaccines. Achieving efficient antigen delivery to mucosa-associated lymphoid tissue (MALT) is critical for improving the effectiveness of vaccines. Here, chicken claudin-3 (CLDN3), a tight junction protein expressed in MALT, was identified as a target, and the C-terminal region of Clostridium perfringens enterotoxin (C-CPE) was proven to bind to chicken CLDN3. Then, a CLDN3-targeting Lactobacillus plantarum NC8-expressing C-CPE surface display system (NC8/GFP-C-CPE) was constructed to successfully express the heterologous protein on the surface of L. plantarum. The colonization level of NC8/GFP-C-CPE was significantly increased compared to the non-targeting strain and could persist in the intestine for at least 72 h. An oral vaccine strain expressing five EGF domains of Eimeria tenella microneme protein 8 (EtMIC8-EGF) (NC8/EtMIC8-EGF-C-CPE) was constructed to evaluate the protective efficacy against E. tenella infection. The results revealed that CLDN3-targeting L. plantarum induced stronger mucosal immunity in gut-associated lymphoid tissues (GALT) as well as humoral responses and conferred better protection in terms of parasite replication and pathology than the non-targeting strain. Overall, we successfully constructed a CLDN3-targeting L. plantarum NC8 surface display system characterized by MALT-targeting, which is an efficient antigen delivery system to confer enhanced protective efficacy in chickens against E. tenella infection.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Huihui Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Bingxiang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China.
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China.
| |
Collapse
|
4
|
Liu YX, Yang JP, Tang GP, Jiang DF. Effects of dietary conjugated linoleic acid on the intestinal mucosal immunity of broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1305874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yong Xiang Liu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Jian Ping Yang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Guo Pan Tang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Dong Feng Jiang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
5
|
Murai A, Kitahara K, Okumura S, Kobayashi M, Horio F. Oral antibiotics enhance antibody responses to keyhole limpet hemocyanin in orally but not muscularly immunized chickens. Anim Sci J 2015; 87:257-65. [DOI: 10.1111/asj.12424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 02/15/2015] [Accepted: 02/19/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Atsushi Murai
- Laboratory of Animal Nutrition, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural SciencesNagoya University Nagoya Japan
| | - Kazuki Kitahara
- Laboratory of Animal Nutrition, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural SciencesNagoya University Nagoya Japan
| | - Shouta Okumura
- Laboratory of Animal Nutrition, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural SciencesNagoya University Nagoya Japan
| | - Misato Kobayashi
- Laboratory of Animal Nutrition, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural SciencesNagoya University Nagoya Japan
| | - Fumihiko Horio
- Laboratory of Animal Nutrition, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural SciencesNagoya University Nagoya Japan
| |
Collapse
|
6
|
Balic A, Garcia-Morales C, Vervelde L, Gilhooley H, Sherman A, Garceau V, Gutowska MW, Burt DW, Kaiser P, Hume DA, Sang HM. Visualisation of chicken macrophages using transgenic reporter genes: insights into the development of the avian macrophage lineage. Development 2014; 141:3255-65. [PMID: 25063453 PMCID: PMC4197536 DOI: 10.1242/dev.105593] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have generated the first transgenic chickens in which reporter genes are expressed in a specific immune cell lineage, based upon control elements of the colony stimulating factor 1 receptor (CSF1R) locus. The Fms intronic regulatory element (FIRE) within CSF1R is shown to be highly conserved in amniotes and absolutely required for myeloid-restricted expression of fluorescent reporter genes. As in mammals, CSF1R-reporter genes were specifically expressed at high levels in cells of the macrophage lineage and at a much lower level in granulocytes. The cell lineage specificity of reporter gene expression was confirmed by demonstration of coincident expression with the endogenous CSF1R protein. In transgenic birds, expression of the reporter gene provided a defined marker for macrophage-lineage cells, identifying the earliest stages in the yolk sac, throughout embryonic development and in all adult tissues. The reporter genes permit detailed and dynamic visualisation of embryonic chicken macrophages. Chicken embryonic macrophages are not recruited to incisional wounds, but are able to recognise and phagocytose microbial antigens.
Collapse
Affiliation(s)
- Adam Balic
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Carla Garcia-Morales
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Hazel Gilhooley
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Adrian Sherman
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Valerie Garceau
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Maria W Gutowska
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Pete Kaiser
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Helen M Sang
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
7
|
Holt PS, Vaughn LE, Gast RK. Flow cytometric characterization of Peyer's patch and cecal tonsil T lymphocytes in laying hens following challenge with Salmonella enterica serovar Enteritidis. Vet Immunol Immunopathol 2010; 133:276-81. [DOI: 10.1016/j.vetimm.2009.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 07/29/2009] [Accepted: 08/03/2009] [Indexed: 11/27/2022]
|
8
|
Interactions between commensal bacteria and the gut-associated immune system of the chicken. Anim Health Res Rev 2008; 9:101-10. [PMID: 18541076 DOI: 10.1017/s146625230800145x] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The chicken gut-associated lymphoid tissue is made up of a number of tissues and cells that are responsible for generating mucosal immune responses and maintaining intestinal homeostasis. The normal chicken microbiota also contributes to this via the ability to activate both innate defense mechanisms and adaptive immune responses. If left uncontrolled, immune activation in response to the normal microbiota would pose a risk of excessive inflammation and intestinal damage. Therefore, it is important that immune responses to the normal microbiota be under strict regulatory control. Through studies of mammals, it has been established that the mucosal immune system has specialized regulatory and anti-inflammatory mechanisms for eliminating or tolerating the normal microbiota. The mechanisms that exist in the chicken to control host responses to the normal microbiota, although assumed to be similar to that of mammals, have not yet been fully described. This review summarizes what is currently known about the host response to the intestinal microbiota, particularly in the chicken.
Collapse
|