1
|
Development of a Rapid Fluorescent Diagnostic System for Early Detection of the Highly Pathogenic Avian Influenza H5 Clade 2.3.4.4 Viruses in Chicken Stool. Int J Mol Sci 2022; 23:ijms23116301. [PMID: 35682982 PMCID: PMC9181406 DOI: 10.3390/ijms23116301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023] Open
Abstract
Rapid diagnosis is essential for the control and prevention of H5 highly pathogenic avian influenza viruses (HPAIVs). However, highly sensitive and rapid diagnostic systems have shown limited performance due to specific antibody scarcity. In this study, two novel specific monoclonal antibodies (mAbs) for clade 2.3.4.4 H5Nx viruses were developed by using an immunogen from a reversed genetic influenza virus (RGV). These mAbs were combined with fluorescence europium nanoparticles and an optimized lysis buffer, which were further used for developing a fluorescent immunochromatographic rapid strip test (FICT) for early detection of H5Nx influenza viruses on chicken stool samples. The result indicates that the limit of detection (LoD) of the developed FICT was 40 HAU/mL for detection of HPAIV H5 clade 2.3.4.4b in spiked chicken stool samples, which corresponded to 4.78 × 104 RNA copies as obtained from real-time polymerase chain reaction (RT-PCR). An experimental challenge of chicken with H5N6 HPAIV is lethal for chicken three days post-infection (DPI). Interestingly, our FICT could detect H5N6 in stool samples at 2 DPI earlier, with 100% relative sensitivity in comparison with RT-PCR, and it showed 50% higher sensitivity than the traditional colloidal gold-based rapid diagnostic test using the same mAbs pair. In conclusion, our rapid diagnostic method can be utilized for the early detection of H5Nx 2.3.4.4 HPAIVs in avian fecal samples from poultry farms or for influenza surveillance in wild migratory birds.
Collapse
|
2
|
Chen L, Donis RO, Suarez DL, Wentworth DE, Webby R, Engelhardt OG, Swayne DE. Biosafety risk assessment for production of candidate vaccine viruses to protect humans from zoonotic highly pathogenic avian influenza viruses. Influenza Other Respir Viruses 2020; 14:215-225. [PMID: 31659871 PMCID: PMC7040978 DOI: 10.1111/irv.12698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 12/01/2022] Open
Abstract
A major lesson learned from the public health response to the 2009 H1N1 pandemic was the need to shorten the vaccine delivery timeline to achieve the best pandemic mitigation results. A gap analysis of previous pre-pandemic vaccine development activities identified possible changes in the Select Agent exclusion process that would maintain safety and shorten the timeline to develop candidate vaccine viruses (CVVs) for use in pandemic vaccine manufacture. Here, we review the biosafety characteristics of CVVs developed in the past 15 years to support a shortened preparedness timeline for A(H5) and A(H7) subtype highly pathogenic avian influenza (HPAI) CVVs. Extensive biosafety experimental evidence supported recent changes in the implementation of Select Agent regulations that eliminated the mandatory chicken pathotype testing requirements and expedited distribution of CVVs to shorten pre-pandemic and pandemic vaccine manufacturing by up to 3 weeks.
Collapse
Affiliation(s)
- Li‐Mei Chen
- Virology, Surveillance, and Diagnosis BranchInfluenza DivisionNational Center for Immunization and Respiratory DiseaseCenters for Disease Control and Prevention (CDC)AtlantaGAUSA
- Present address:
IDT‐BiologikaRockvilleMDUSA
| | - Ruben O. Donis
- Virology, Surveillance, and Diagnosis BranchInfluenza DivisionNational Center for Immunization and Respiratory DiseaseCenters for Disease Control and Prevention (CDC)AtlantaGAUSA
- Present address:
Biomedical Advanced Research and Development AuthorityDepartment of Health and Human ServicesWashingtonDCUSA
| | - David L. Suarez
- Exotic and Emerging Avian Viral Diseases Research UnitAgricultural Research ServiceU.S. National Poultry Research CenterU.S. Department of AgricultureAthensGAUSA
| | - David E. Wentworth
- Virology, Surveillance, and Diagnosis BranchInfluenza DivisionNational Center for Immunization and Respiratory DiseaseCenters for Disease Control and Prevention (CDC)AtlantaGAUSA
| | - Richard Webby
- Department of Infectious DiseasesSt Jude Children's Research HospitalMemphisTNUSA
| | - Othmar G. Engelhardt
- Division of VirologyNational Institute for Biological Standards and ControlPotters BarUK
| | - David E. Swayne
- Exotic and Emerging Avian Viral Diseases Research UnitAgricultural Research ServiceU.S. National Poultry Research CenterU.S. Department of AgricultureAthensGAUSA
| |
Collapse
|
3
|
Sisteré-Oró M, Martínez-Pulgarín S, Solanes D, Veljkovic V, López-Serrano S, Córdoba L, Cordón I, Escribano JM, Darji A. Conserved HA-peptides expressed along with flagellin in Trichoplusia ni larvae protects chicken against intranasal H7N1 HPAIV challenge. Vaccine 2019; 38:416-422. [PMID: 31735501 DOI: 10.1016/j.vaccine.2019.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022]
Abstract
The immunization of poultry where H5 and H7 influenza viruses (IVs) are endemic is one of the strategies to prevent unexpected zoonoses. Our group has been focused on conserved HA-epitopes as potential vaccine candidates to obtain multivalent immune responses against distinct IV subtypes. In this study, two conserved epitopes (NG-34 and CS-17) fused to flagellin were produced in a Baculovirus platform based on Trichoplusia ni larvae as living biofactories. Soluble extracts obtained from larvae expressing "flagellin-NG34/CS17 antigen" were used to immunize chickens and the efficacy of the vaccine was evaluated against a heterologous H7N1 HPAIV challenge in chickens. The flagellin-NG34/CS17 vaccine protected the vaccinated chickens and blocked viral shedding orally and cloacally. Furthermore, no apparent clinical signs were monitored in 10/12 vaccinated individuals. The mechanism of protection conferred is under investigation.
Collapse
Affiliation(s)
- Marta Sisteré-Oró
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Susana Martínez-Pulgarín
- Alternative Gene Expression S.L. ALGENEX, Centro empresarial - Parque Científico y Tecnológico Universidad Politécnica de Madrid Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain
| | - David Solanes
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | - Sergi López-Serrano
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Lorena Córdoba
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Ivan Cordón
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - José M Escribano
- Alternative Gene Expression S.L. ALGENEX, Centro empresarial - Parque Científico y Tecnológico Universidad Politécnica de Madrid Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain
| | - Ayub Darji
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
4
|
Santos JJS, Obadan AO, Garcia SC, Carnaccini S, Kapczynski DR, Pantin-Jackwood M, Suarez DL, Perez DR. Short- and long-term protective efficacy against clade 2.3.4.4 H5N2 highly pathogenic avian influenza virus following prime-boost vaccination in turkeys. Vaccine 2017; 35:5637-5643. [PMID: 28886943 PMCID: PMC5659307 DOI: 10.1016/j.vaccine.2017.08.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 01/26/2023]
Abstract
Highly pathogenic avian influenza virus (HPAIV) infections are frequently associated with systemic disease and high mortality in domestic poultry, particularly in chickens and turkeys. Clade 2.3.4.4 represents a genetic cluster within the Asian HPAIV H5 Goose/Guangdong lineage that has transmitted through migratory birds and spread throughout the world. In 2014, clade 2.3.4.4 strains entered the U.S. via the Pacific flyway, reassorted with local strains of the North American lineage, and produced novel HPAIV strains of the H5N1, H5N2, and H5N8 subtypes. By 2015, the H5N2 HPAIVs disseminated eastwards within the continental U.S. and Canada and infected commercial poultry, causing the largest animal health outbreak in recent history in the U.S. The outbreak was controlled by traditional mass depopulation methods, but the outbreak was of such magnitude that it led to the consideration of alternative control measures, including vaccination. In this regard, little information is available on the long-term protection of turkeys vaccinated against avian influenza. In this report, a vaccination study was carried out in turkeys using 3 prime-boost approaches with a combination of 2 different vaccines, an alphavirus-based replicon vaccine and an adjuvanted-inactivated reverse genetics vaccine. Vaccine efficacy was assessed at 6 and 16weeks of age following challenge with a prototypic novel clade 2.3.4.4 H5N2 HPAIV. All three vaccines protocols were protective with significantly reduced virus shedding and mortality after challenge at 6weeks of age. In contrast, significant variations were seen in 16-week old turkeys after challenge: priming with the alphavirus-based replicon followed by boost with the adjuvanted-inactivated vaccine conferred the best protection, whereas the alphavirus-based replicon vaccine given twice provided the least protection. Our study highlights the importance of studying not only different vaccine platforms but also vaccination strategies to maximize protection against HPAIV especially with regards to the longevity of vaccine-induced immune response.
Collapse
Affiliation(s)
- Jefferson J S Santos
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, USA
| | - Adebimpe O Obadan
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, USA
| | - Stivalis Cardenas Garcia
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, USA
| | - Silvia Carnaccini
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, USA
| | - Darrell R Kapczynski
- Southeast Poultry Research Laboratory, USDA-Agricultural Research Service, Athens, GA, USA
| | - Mary Pantin-Jackwood
- Southeast Poultry Research Laboratory, USDA-Agricultural Research Service, Athens, GA, USA
| | - David L Suarez
- Southeast Poultry Research Laboratory, USDA-Agricultural Research Service, Athens, GA, USA
| | - Daniel R Perez
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
5
|
Suarez DL, Pantin-Jackwood MJ. Recombinant viral-vectored vaccines for the control of avian influenza in poultry. Vet Microbiol 2016; 206:144-151. [PMID: 27916319 DOI: 10.1016/j.vetmic.2016.11.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 12/29/2022]
Abstract
Vaccination is a commonly used tool for the control of both low pathogenic and highly pathogenic avian influenza (AI) viruses. Traditionally, inactivated adjuvanted vaccines made from a low pathogenic field strain have been used for vaccination, but advances in molecular biology have allowed a number of different viral vectored vaccines, expressing the AI virus hemagglutinin (HA) gene, to be developed and licensed for use for control of AI. This review summarizes the licensed vector vaccines available for use in poultry. As a group, these vaccines can stimulate both a cellular and humoral immune response and, when antigenically well matched to the target AI strain, are effective at preventing clinical disease and reducing virus shedding if vaccinated birds do become infected. The vaccines can often be given to one-day old chicks in the hatchery, which can provide early protection and is a cost effective route of administration of the vaccine. All the licensed vectored vaccines, because they only express the HA gene, can potentially be used to differentiate vaccinated from vaccinated and infected birds, which is often referred to as a DIVA strategy. Although a potentially valuable tool for the surveillance of the virus in countries that vaccinate, the DIVA principle has currently not been applied. Concern remains that maternal antibody or pre-existing immunity to the vector or to the AI HA insert can suppress the immune response to the vaccine. The viral vectored vaccines appear to work well with a prime boost strategy where the vectored vaccine is given first and a different type of vaccine, often a killed adjuvanted vaccine is given two or three weeks later.
Collapse
Affiliation(s)
- David L Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA.
| | - Mary J Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
| |
Collapse
|
6
|
Antibody titer has positive predictive value for vaccine protection against challenge with natural antigenic-drift variants of H5N1 high-pathogenicity avian influenza viruses from Indonesia. J Virol 2015; 89:3746-62. [PMID: 25609805 DOI: 10.1128/jvi.00025-15] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Vaccines are used in integrated control strategies to protect poultry against H5N1 high-pathogenicity avian influenza (HPAI). H5N1 HPAI was first reported in Indonesia in 2003, and vaccination was initiated in 2004, but reports of vaccine failures began to emerge in mid-2005. This study investigated the role of Indonesian licensed vaccines, specific vaccine seed strains, and emerging variant field viruses as causes of vaccine failures. Eleven of 14 licensed vaccines contained the manufacturer's listed vaccine seed strains, but 3 vaccines contained a seed strain different from that listed on the label. Vaccines containing A/turkey/Wisconsin/1968 (WI/68), A/chicken/Mexico/28159-232/1994 (Mex/94), and A/turkey/England/N28/1973 seed strains had high serological potency in chickens (geometric mean hemagglutination inhibition [HI] titers, ≥ 1:169), but vaccines containing strain A/chicken/Guangdong/1/1996 generated by reverse genetics (rg; rgGD/96), A/chicken/Legok/2003 (Legok/03), A/chicken/Vietnam/C57/2004 generated by rg (rgVN/04), or A/chicken/Legok/2003 generated by rg (rgLegok/03) had lower serological potency (geometric mean HI titers, ≤ 1:95). In challenge studies, chickens immunized with any of the H5 avian influenza vaccines were protected against A/chicken/West Java/SMI-HAMD/2006 (SMI-HAMD/06) and were partially protected against A/chicken/Papua/TA5/2006 (Papua/06) but were not protected against A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Experimental inactivated vaccines made with PWT/06 HPAI virus or rg-generated PWT/06 low-pathogenicity avian influenza (LPAI) virus seed strains protected chickens from lethal challenge, as did a combination of a commercially available live fowl poxvirus vaccine expressing the H5 influenza virus gene and inactivated Legok/03 vaccine. These studies indicate that antigenic variants did emerge in Indonesia following widespread H5 avian influenza vaccine usage, and efficacious inactivated vaccines can be developed using antigenic variant wild-type viruses or rg-generated LPAI virus seed strains containing the hemagglutinin and neuraminidase genes of wild-type viruses. IMPORTANCE H5N1 high-pathogenicity avian influenza (HPAI) virus has become endemic in Indonesian poultry, and such poultry are the source of virus for birds and mammals, including humans. Vaccination has become a part of the poultry control strategy, but vaccine failures have occurred in the field. This study identified possible causes of vaccine failure, which included the use of an unlicensed virus seed strain and induction of low levels of protective antibody because of an insufficient quantity of vaccine antigen. However, the most important cause of vaccine failure was the appearance of drift variant field viruses that partially or completely overcame commercial vaccine-induced immunity. Furthermore, experimental vaccines using inactivated wild-type virus or reverse genetics-generated vaccines containing the hemagglutinin and neuraminidase genes of wild-type drift variant field viruses were protective. These studies indicate the need for surveillance to identify drift variant viruses in the field and update licensed vaccines when such variants appear.
Collapse
|
7
|
Pabbaraju K, Wong S, Drews SJ. Rethinking approaches to improve the utilization of nucleic acid amplification tests for detection and characterization of influenza A in diagnostic and reference laboratories. Future Microbiol 2011; 6:1443-60. [PMID: 22122441 DOI: 10.2217/fmb.11.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Influenza A virus (IFVA) is a significant cause of respiratory infections worldwide and was also responsible for a recent pandemic in 2009. Laboratory identification of IFVA can guide antiviral therapy, assist in cohorting of patients and prevent antibiotic use. Characterization of the virus can track the emergence of novel strains, identify resistance and determine how circulating strains match with vaccine components. The gold standard for detection and characterization of IFVA is nucleic acid amplification technology (e.g., reverse transcriptase PCR [RT-PCR]), which must contend with a constantly evolving viral genome. Although molecular technology has been available for over two decades, there is still an operational gap between assay design and utilization of these tests for the diagnosis and characterization of IFVA. This review will discuss issues surrounding the implementation and use of RT-PCR for the identification and characterization of IFVA, and speculate on why RT-PCR has not been used more widely in clinical laboratories or moved closer to the patient. Newer, less widely used technologies that may change our laboratory practices will be identified and the authors will close with an attempt to identify some future applications of RT-PCR-based technologies for the detection and characterization of IFVA.
Collapse
Affiliation(s)
- Kanti Pabbaraju
- Provincial Laboratory for Public Health, Microbiology, 3030 Hospital Drive NW, Calgary, Alberta T2N 4W4, Canada
| | | | | |
Collapse
|