1
|
Lee Y, Lillehoj HS. Development of a new immunodiagnostic tool for poultry coccidiosis using an antigen-capture sandwich assay based on monoclonal antibodies detecting an immunodominant antigen of Eimeria. Poult Sci 2023; 102:102790. [PMID: 37302331 PMCID: PMC10404777 DOI: 10.1016/j.psj.2023.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/01/2023] [Accepted: 05/13/2023] [Indexed: 06/13/2023] Open
Abstract
This study was conducted to develop an antigen-capture ELISA that detects an immunodominant antigen of Eimeria, 3-1E which is present in all Eimeria species, using a set of 3-1E-specific mouse monoclonal antibodies (mAbs). Highly sensitive 3-1E-specific antigen-capture ELISA was established using compatible mAb pairs (#318 and #320) selected from 6 mAbs (#312, #317, #318, #319, #320, and #323) with high binding activity against recombinant 3-1E protein. These anti-3-1E mAbs specifically recognized E. tenella sporozoites and a higher level of 3-1E was detected in the lysate of sporozoites than in sporocysts. Immunofluorescence assay (IFA) using 2 mAbs (#318 and #320) showed specific staining around the membrane of E. tenella sporozoites. In order to measure the changes in the 3-1E level during in coccidiosis, serum, feces, jejunal, and cecal contents were individually collected daily for 7-days postinfection (dpi) with E. maxima and E. tenella. The new ELISA was sensitive and specific for 3-1E detection in all samples collected daily from E. maxima- and E. tenella-infected chickens for a week, and the detection sensitivity ranges were 2 to 5 ng/mL and 1 to 5 ng/mL in serum, 4 to 25 ng/mL and 4 to 30 ng/mL in feces, 1 to 3 ng/mL and 1 to 10 ng/mL in cecal contents, and 3 to 65 ng/mL and 4 to 22 ng/mL in jejunal contents. Following coccidiosis, the overall 3-1E levels started to increase from 4 dpi, and the highest production was shown on 5 dpi. Among the samples collected from Eimeria-infected chickens, the highest detection level was found in the jejunal contents of E. maxima-infected chickens. Furthermore, the level of IFN-γ in serum was significantly (P < 0.05) increased from 3 dpi and peaked on 5 dpi post E. maxima infection. Post E. tenella infection, the level of IFN-γ in serum gradually (P < 0.05) increased from 2 to 5 dpi and plateaued at 7 dpi. The level of TNF-α in serum was rapidly (P < 0.05) increased from 4 dpi and those levels were kept until 7 dpi post both Eimeria infections (E. maxima and E. tenella). More importantly, the daily changes in the 3-1E levels in different samples from E. maxima- and E. tenella-infected chickens were effectively monitored with this new antigen-capture ELISA. Therefore, this new immunoassay is a sensitive diagnostic tool to monitor coccidiosis in a large field population in the commercial poultry farms before clinical symptoms develop using serum, feces, and gut samples during the entire period of infection cycle starting from 1 d after infection.
Collapse
Affiliation(s)
- Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| |
Collapse
|
2
|
Song X, Yang X, Zhang T, Liu J, Liu Q. Evaluation of 4 merozoite antigens as candidate vaccines against Eimeria tenella infection. Poult Sci 2020; 100:100888. [PMID: 33516468 PMCID: PMC7936139 DOI: 10.1016/j.psj.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 01/24/2023] Open
Abstract
Coccidiosis, caused by parasites of the genus Eimeria, is one of the most widespread and economically detrimental diseases in the global poultry industry. Because the merozoite stage of Eimeria tenella is immunologically vulnerable, motile, and functionally important for the parasites, the proteins expressed in these stages are considered to be potentially immunoprotective antigens, especially the secreted antigens and surface antigens. Here, we detected a previously unidentified MIC2-associated protein (Et-M2AP) from E. tenella and determined its localization. An immunofluorescence assay revealed that Et-M2AP was distributed in the apical part of second generation merozoites and sporozoites. In addition, an expression profile analysis revealed that the transcriptional level of Et-M2AP is significantly higher in the merozoite stage. To assess the potential of Et-M2AP protein as a coccidiosis vaccine, we expressed recombinant Et-M2AP (rEt-M2AP) and compared the immune protective efficacy of rEt-M2AP with 3 surface antigens that are highly expressed by merozoites (rEt-SAG23, rEt-SAG16, and rEt-SAG2 proteins). The immune protective efficacy of these vaccine candidates was assessed based on survival rate, lesion score, BW gain, relative BW gain, and oocyst output. The results show that the survival rate was 90%, which are significantly higher than those in the challenge control group. The BW gain rate was 42% (P < 0.001) in rEt-M2AP-immunized chickens, which are significantly higher than those in the challenge control group and rEt-SAG23, rEt-SAG16, and rEt-SAG2 proteins-immunized chickens. In addition, chickens immunized with rEt-M2AP (88% oocyst output decrease rate, P < 0.001) had the least oocyst output, compared with those immunized with rEt-SAG16 (59.2% oocyst output decrease rate, P < 0.001), rEt-SAG23 (22% oocyst output decrease rate), and rEt-SAG2 (1.36% oocyst output decrease rate). These results demonstrate that rEt-M2AP provided effective protection against challenge with E. tenella, suggesting that rEt-M2AP is a promising candidate antigen gene for development as a coccidiosis vaccine.
Collapse
Affiliation(s)
- Xingju Song
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xu Yang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Taotao Zhang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Sander VA, Corigliano MG, Clemente M. Promising Plant-Derived Adjuvants in the Development of Coccidial Vaccines. Front Vet Sci 2019; 6:20. [PMID: 30809529 PMCID: PMC6379251 DOI: 10.3389/fvets.2019.00020] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/18/2019] [Indexed: 01/15/2023] Open
Abstract
Coccidial parasites cause medical and veterinary diseases worldwide, frequently leading to severe illness and important economic losses. At present, drugs, chemotherapeutics and prophylactic vaccines are still missing for most of the coccidial infections. Moreover, the development and administration of drugs and chemotherapeutics against these diseases would not be adequate in livestock, since they may generate unacceptable residues in milk and meat that would avoid their commercialization. In this scenario, prophylactic vaccines emerge as the most suitable approach. Subunit vaccines have proven to be biologically safe and economically viable, allowing researchers to choose among the best antigens against each pathogen. However, they are generally poorly immunogenic and require the addition of adjuvant compounds to the vaccine formulation. During the last decades, research involving plant immunomodulatory compounds has become an important field of study based on their potential pharmaceutical applications. Some plant molecules such as saponins, polysaccharides, lectins and heat shock proteins are being explored as candidates for adjuvant/carriers formulations. Moreover, plant-derived immune stimulatory compounds open the possibility to attain the main goal in adjuvant research: a safe and non-toxic adjuvant capable of strongly boosting and directing immune responses that could be incorporated into different vaccine formulations, including mucosal vaccines. Here, we review the immunomodulatory properties of several plant molecules and discuss their application and future perspective as adjuvants in the development of vaccines against coccidial infections.
Collapse
Affiliation(s)
- Valeria A Sander
- Unidad de Biotecnología 6-UB6, Instituto Tecnológico Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de General San Martín (UNSAM), Chascomús, Argentina
| | - Mariana G Corigliano
- Unidad de Biotecnología 6-UB6, Instituto Tecnológico Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de General San Martín (UNSAM), Chascomús, Argentina
| | - Marina Clemente
- Unidad de Biotecnología 6-UB6, Instituto Tecnológico Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de General San Martín (UNSAM), Chascomús, Argentina
| |
Collapse
|
4
|
Mansilla FC, Capozzo AV. Apicomplexan profilins in vaccine development applied to bovine neosporosis. Exp Parasitol 2017; 183:64-68. [PMID: 29080789 DOI: 10.1016/j.exppara.2017.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 10/18/2017] [Accepted: 10/22/2017] [Indexed: 02/02/2023]
Abstract
Neospora caninum, an intracellular protozoan parasite from the phylum Apicomplexa, is the etiologic agent of neosporosis, a disease considered as a major cause of reproductive loss in cattle and neuromuscular disease in dogs. Bovine neosporosis has a great economic impact in both meat and dairy industries, related to abortion, premature culling and reduced milk yields. Although many efforts have been made to restrain bovine neosporosis, there are still no efficacious control methods. Many vaccine-development studies focused in the apicomplexan proteins involved in the adhesion and invasion of the host cell. Among these proteins, profilins have recently emerged as potential vaccine antigens or even adjuvant candidates for several diseases caused by apicomplexan parasites. Profilins bind Toll-like receptors 11 and 12 initiating MyD88 signaling, that triggers IL-12 and IFN-γ production, which may promote protection against infection. Here we summarized the state-of-the-art of novel vaccine development based on apicomplexan profilins applied as antigens or adjuvants, and delved into recent advances on N. caninum vaccines using profilin in the mouse model and in cattle.
Collapse
Affiliation(s)
- Florencia C Mansilla
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, INTA Buenos Aires, Argentina.
| | - Alejandra V Capozzo
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, INTA Buenos Aires, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
5
|
Lee SH, Dong X, Lillehoj HS, Lamont SJ, Suo X, Kim DK, Lee KW, Hong YH. Comparing the immune responses of two genetically B-complex disparate Fayoumi chicken lines to Eimeria tenella. Br Poult Sci 2017; 57:165-71. [PMID: 26942865 DOI: 10.1080/00071668.2016.1141172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The present study was conducted to compare the susceptibility of congenic Fayoumi lines to Eimeria tenella infection and to assess genetic differences in Eimeria egression. Chickens were orally inoculated with 5 × 10(4) sporulated E. tenella oocysts and challenged with 5 × 10(6) oocysts on the 10th day after the primary infection. The Fayoumi M5.1 line exhibited higher levels of body weight gain, less oocyst shedding and higher percentages of B and CD4(+)/CD8(+) T cells than the M15.2 chickens. These results demonstrate that M5.1 line is more resistant to E. tenella infection than M15.2 line. Furthermore, the percentage of sporozoite egress from peripheral blood mononuclear cells (PBMCs) was higher in the M5.1 line. The results of this study suggest that enhanced resistance of Fayoumi M5.1 to E. tenella infection may involve heightened cell-mediated and adaptive immunity, resulting in reduced intracellular development of Eimeria parasites.
Collapse
Affiliation(s)
- S-H Lee
- a United States Department of Agriculture , Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center , Beltsville , MD , USA.,b National Academy of Agricultural Science , Rural Development Administration , Jeollabuk-do , Republic of Korea
| | - X Dong
- a United States Department of Agriculture , Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center , Beltsville , MD , USA.,c National Animal Protozoa Laboratory & College of Veterinary Medicine , China Agricultural University , Beijing , China
| | - H S Lillehoj
- a United States Department of Agriculture , Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center , Beltsville , MD , USA
| | - S J Lamont
- d Department of Animal Science , Iowa State University , Ames , IA , USA
| | - X Suo
- d Department of Animal Science , Iowa State University , Ames , IA , USA
| | - D K Kim
- e C&K Genomics Inc ., Seoul , Republic of Korea
| | - K-W Lee
- f Department of Animal Science and Technology , Konkuk University , Seoul , Republic of Korea
| | - Y H Hong
- g Department of Animal Science and Technology , Chung-Ang University , Anseong , Republic of Korea
| |
Collapse
|
6
|
Mansilla FC, Quintana ME, Cardoso NP, Capozzo AV. Fusion of foreign T-cell epitopes and addition of TLR agonists enhance immunity againstNeospora caninumprofilin in cattle. Parasite Immunol 2016; 38:663-669. [DOI: 10.1111/pim.12354] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/04/2016] [Indexed: 12/24/2022]
Affiliation(s)
- F. C. Mansilla
- INTA-Instituto de Virología. Centro de Investigaciones en Ciencias Veterinarias y Agronómicas; Buenos Aires Argentina
| | - M. E. Quintana
- INTA-Instituto de Virología. Centro de Investigaciones en Ciencias Veterinarias y Agronómicas; Buenos Aires Argentina
- CONICET. Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires Argentina
| | - N. P. Cardoso
- INTA-Instituto de Virología. Centro de Investigaciones en Ciencias Veterinarias y Agronómicas; Buenos Aires Argentina
- CONICET. Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires Argentina
| | - A. V. Capozzo
- INTA-Instituto de Virología. Centro de Investigaciones en Ciencias Veterinarias y Agronómicas; Buenos Aires Argentina
- CONICET. Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires Argentina
| |
Collapse
|
7
|
Identification and characterization of profilin antigen among Babesia species as a common vaccine candidate against babesiosis. Exp Parasitol 2016; 166:29-36. [DOI: 10.1016/j.exppara.2016.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 11/23/2022]
|
8
|
Mansilla FC, Quintana ME, Langellotti C, Wilda M, Martinez A, Fonzo A, Moore DP, Cardoso N, Capozzo AV. Immunization with Neospora caninum profilin induces limited protection and a regulatory T-cell response in mice. Exp Parasitol 2015; 160:1-10. [PMID: 26551412 DOI: 10.1016/j.exppara.2015.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/23/2015] [Accepted: 10/29/2015] [Indexed: 10/22/2022]
Abstract
Profilins are actin-binding proteins that regulate the polymerization of actin filaments. In apicomplexan parasites, they are essential for invasion. Profilins also trigger the immune response of the host by activating TLRs on dendritic cells (DCs), inducing the production of pro-inflammatory cytokines. In this study we characterized for the first time the immune response and protection elicited by a vaccine based on Neospora caninum profilin in mice. Groups of eight BALB/c mice received either two doses of a recombinant N. caninum profilin expressed in Escherichia coli. (rNcPRO) or PBS, both formulated with an aqueous soy-based adjuvant enriched in TLR-agonists. Specific anti-profilin antibodies were detected in rNcPRO-vaccinated animals, mainly IgM and IgG3, which were consumed after infection. Splenocytes from rNcPRO-immunized animals proliferated after an in vitro stimulation with rNcPRO before and after challenge. An impairment of the cellular response was observed in NcPRO vaccinated and infected mice following an in vitro stimulation with native antigens of N. caninum, related to an increase in the percentage of CD4+CD25+FoxP3+. Two out of five rNcPRO-vaccinated challenged mice were protected; they were negative for parasite DNA in the brain and showed no histopathological lesions, which were found in all PBS-vaccinated animals. As a whole, our results provide evidence of a regulatory response elicited by immunization with rNcPRO, and suggest a role of profilin in the modulation and/or evasion of immune responses against N. caninum.
Collapse
Affiliation(s)
- Florencia Celeste Mansilla
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - María Eugenia Quintana
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Cecilia Langellotti
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Maximiliano Wilda
- Tecnovax S.A, Luis Viale 2835, 1416 Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrea Martinez
- Instituto de Ciencia y Tecnología Dr. César Milstein, Ciudad Autónoma de Buenos Aires, Argentina
| | - Adriana Fonzo
- Instituto de Ciencia y Tecnología Dr. César Milstein, Ciudad Autónoma de Buenos Aires, Argentina
| | - Dadín Prando Moore
- Estación Experimental Agropecuaria, INTA Balcarce, Buenos Aires, Argentina
| | - Nancy Cardoso
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Alejandra Victoria Capozzo
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.
| |
Collapse
|
9
|
Wu LL, Lin RQ, Sun MF, Liu LD, Duan WF, Zou SS, Yuan ZG, Weng YB. Biological characteristics of Chinese precocious strain of eimeria acervulina and its immune efficacy against different field strains. Avian Dis 2015; 58:367-72. [PMID: 25518429 DOI: 10.1637/10706-102413.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this study, the biologic characteristics of one experimental precocious strain of Eimeria acervulina and seven field isolates from different geographic locations in China were compared, and the immune efficacy of two precocious strains against coccidiosis in chickens was assessed to explore their potential use as coccidiosis vaccines. All the different strains were purified by single oocyst separation and their monospecificity was confirmed using E acervulina-specific PCR assays. The average sizes of E. acervulina oocysts were 18.28-20.19 X 14.09-14.79 microm and the shape indexes were from 1.28 to 1.40. The prepatent periods ranged from 93 to 115 hr, except for the Heyuan precocious strain (HYP; 75 hr). Chickens infected with Huadu field strain (GHD) produced the highest oocyst output whereas HYP induced the lowest level. When inoculated with 50,000 sporulated oocysts or more, the average weight gains of infected chickens were reduced, with apparent clinical symptoms. To assess the immunogenicity of precocious strains HYP and Baoding (BDP), birds were orally immunized and challenged with seven different field strains of E. acervulina. Body weight gain, fecal oocyst output, and gut lesion scores were compared to evaluate their vaccine potential. The results showed that the average body weight gains of chickens in all the vaccinated and challenged groups were higher than those of nonvaccinated and challenged groups. In general, oocyst shedding was reduced 34.39%-95.31% and gut lesion scores decreased 31.03%-86.21% compared with unvaccinated and challenged control chickens. In summary, this study indicated that the precocious strains of E. acervulina could induce a protective immune effect with various responses against coccidiosis caused by different field strains.
Collapse
|
10
|
Zhang Z, Huang J, Li M, Sui Y, Wang S, Liu L, Xu L, Yan R, Song X, Li X. Identification and molecular characterization of microneme 5 of Eimeria acervulina. PLoS One 2014; 9:e115411. [PMID: 25531898 PMCID: PMC4274027 DOI: 10.1371/journal.pone.0115411] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 11/23/2014] [Indexed: 11/18/2022] Open
Abstract
In the present study, the microneme 5 gene of Eimeria acervulina (E. acervulina) (EaMIC5) was cloned and characterized. Specific primers for the rapid amplification of cDNA ends (RACE) were designed based on the expressed sequence tag (EST, GenBank Accession No. EH386430.1) to amplify the 3'- and 5'-ends of EaMIC5. The full length cDNA of this gene was obtained by overlapping the sequences of 3'- and 5'-extremities and amplification by reverse transcription PCR. Sequence analysis revealed that the open reading frame (ORF) of EaMIC5 was 336 bp and encoded a protein of 111 amino acids with 12.18 kDa. The ORF was inserted into pET-32a (+) to produce recombinant EaMIC5. Using western blotting assay, the recombinant protein was successfully recognized by the sera of chicks experimentally infected with E. acervulina, while the native protein in the somatic extract of sporozoites was as well detected by sera from rats immunized with the recombinant protein of EaMIC5. Immunofluorescence analysis using antibody against recombinant protein EaMIC5 indicated that this protein was expressed in the sporozoites and merozoites stages of E. acervulina. Animal challenge experiments demonstrated that the recombinant protein of EaMIC5 could significantly increase the average body weight gains, decrease the mean lesion scores and the oocyst outputs of the immunized chickens, and presented anti-coccidial index (ACI) more than 160. All the above results suggested that the EaMIC5 was a novel E. acervulina antigen and could be an effective candidate for the development of a new vaccine against this parasite.
Collapse
Affiliation(s)
- ZhenChao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - JingWei Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - MengHui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - YuXia Sui
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Shuai Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - LianRui Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - LiXin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - RuoFeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - XiaoKai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| |
Collapse
|
11
|
Lee SH, Lillehoj HS, Tuo W, Murphy CA, Hong YH, Lillehoj EP. Parasiticidal activity of a novel synthetic peptide from the core α-helical region of NK-lysin. Vet Parasitol 2013; 197:113-21. [PMID: 23664157 DOI: 10.1016/j.vetpar.2013.04.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/10/2013] [Accepted: 04/13/2013] [Indexed: 11/26/2022]
Abstract
NK-lysin is an anti-microbial peptide that plays a critical role in innate immunity against infectious pathogens through its selective membrane disruptive property. We previously expressed and purified a full-length chicken NK-lysin (cNKL) recombinant protein, and demonstrated its in vitro anti-parasitic activity against the apicomplexan protozoan, Eimeria, the etiologic agent of avian coccidiosis. This study evaluated the in vitro and in vivo anti-parasitic properties of a synthetic peptide (cNK-2) incorporating a predicted membrane-permeating, amphipathic α-helix of the full-length cNKL protein. The cNK-2 peptide exhibited dose- and time-dependent in vitro cytotoxic activity against E. acervulina and E. tenella sporozoites. The cytotoxic activity of 1.5 μM of cNK-2 peptide against E. acervulina following 6h incubation was equal to that of 2.5 μM of melittin, the principal active component of apitoxin (bee venom) that also exhibits anti-microbial activity. Even greater activity was detected against E. tenella, where 0.3 μM of cNK-2 peptide was equivalent to 2.5 μM of melittin. Against Neospora caninum tacyzoites, however, the cytotoxic activity of cNK-2 peptide was inferior to that of melittin. Transmission electron microscopy of peptide-treated E. tenella sporozoites revealed disruption of the outer plasma membrane and loss of intracellular contents. In vivo administration of 1.5 μM of cNK-2 peptide increased protection against experimental E. acervulina infection, as measured by greater body weight gain and reduced fecal oocyst shedding, compared with saline controls. These results suggest that the cNK-2 synthetic peptide is a novel anti-infective peptide that can be used for protection against avian coccidiosis during commercial poultry production.
Collapse
Affiliation(s)
- Sung Hyen Lee
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | | | | | | | | | | |
Collapse
|