1
|
Anderson KL, Birkenheuer A, Moore GE, Kendall A. A retrospective study of vector borne disease prevalence among anemic dogs in North Carolina. PLoS One 2023; 18:e0293901. [PMID: 37939135 PMCID: PMC10631695 DOI: 10.1371/journal.pone.0293901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Anemia is an important cause of morbidity and mortality in dogs. Further understanding of the prevalence of vector borne diseases (VBD) in anemic dogs is needed. OBJECTIVES The objective of this retrospective study was to describe the rate of exposure to or infection with VBD among anemic dogs presented to a teaching hospital in North Carolina and to further characterize the anemia in dogs with VBD exposure. ANIMALS A total of 597 anemic dogs that were concurrently tested for VBD were examined at a referral veterinary hospital between January 2012 and December 2018. METHODS Retrospective descriptive study. Demographic, clinicopathologic, and VBD testing data were obtained from medical records. RESULTS Of the 597 anemic dogs examined, 180 (30.15%; 95% CI: 26.49-34.01%) tested positive for one or more VBD. There was no difference in the severity of anemia or the proportion of dogs displaying a regenerative anemia between dogs testing positive and negative for VBD. CONCLUSIONS A large proportion of anemic dogs from this region test positive for exposure to or infection with VBD. Our study supported the use of PCR and serology run in parallel to maximize the chance of detecting exposure to or infection with VBD compared to either serology or PCR alone. At this time, it is unknown whether infection with VBD contributed to the development of anemia in these patients. However, given the prevalence of VBD exposure in anemic dogs, testing for VBD in anemic patients from this region of the United States is warranted.
Collapse
Affiliation(s)
- Katie L. Anderson
- Department of Veterinary Clinical Sciences, NC State University College of Veterinary Medicine, Raleigh, NC, United States of America
| | - Adam Birkenheuer
- Department of Veterinary Clinical Sciences, NC State University College of Veterinary Medicine, Raleigh, NC, United States of America
| | - George E. Moore
- Department of Veterinary Administration, Purdue University College of Veterinary Medicine, West Lafayette, IN, United States of America
| | - Allison Kendall
- Department of Veterinary Clinical Sciences, NC State University College of Veterinary Medicine, Raleigh, NC, United States of America
| |
Collapse
|
2
|
Ebani VV, Nardoni S, Mancianti F. Arthropod-Borne Pathogens in Wild Canids. Vet Sci 2023; 10:vetsci10020165. [PMID: 36851469 PMCID: PMC9964035 DOI: 10.3390/vetsci10020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Wild canids, as well as other wild animal species, are largely exposed to bites by ticks and other hematophagous vectors where the features favoring their presence and spread are found in wooded and semi-wooded areas. Much of the information about arthropod-borne infections concerns domestic and companion animals, whereas data about these infections in wild canids are not exhaustive. The present study is a narrative review of the literature concerning vector-borne infections in wild canids, highlighting their role in the epidemiology of arthropod-borne bacteria and protozoa.
Collapse
Affiliation(s)
- Valentina Virginia Ebani
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
- Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-221-6968
| | - Simona Nardoni
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Francesca Mancianti
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
3
|
Moore C, Breitschwerdt EB, Kim L, Li Y, Ferris K, Maggi R, Lashnits E. The association of host and vector characteristics with Ctenocephalides felis pathogen and endosymbiont infection. Front Microbiol 2023; 14:1137059. [PMID: 36950155 PMCID: PMC10025546 DOI: 10.3389/fmicb.2023.1137059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Surveillance of the fleas and flea-borne pathogens infecting cats is important for both human and animal health. Multiple zoonotic Bartonella and Rickettsia species are known to infect the most common flea infesting cats and dogs worldwide: Ctenocephalides felis, the cat flea. The ability of other flea species to transmit pathogens is relatively unexplored. We aimed to determine cat host and flea factors independently associated with flea Bartonella and Rickettsia infection. We also assessed flea and cat infection by flea-host pair and location. To accomplish these aims, we performed qPCR for the detection of Bartonella, hemotropic Mycoplasma, Rickettsia, and Wolbachia DNA using paired cat and flea samples obtained from free-roaming cats presenting for spay or neuter across four locations in the United States. A logistic regression model was employed to identify the effect of cat (sex, body weight, geographic location, and Bartonella, hemotropic Mycoplasma, and Rickettsia spp., infection) and flea (clade and Rickettsia and Wolbachia infection) factors on C. felis Bartonella clarridgeiae infection. From 189 free roaming cats, we collected 84 fleas: Ctenocephalides felis (78/84), Cediopsylla simplex (4/84), Orchopeas howardi (1/84), and Nosopsyllus fasciatus (1/84). Ctenocephalides felis were phylogenetically assigned to Clades 1, 4, and 6 by cox1 gene amplification. Rickettsia asembonensis (52/84) and B. clarridgeiae (16/84) were the most common pathogenic bacteria detected in fleas. Our model identified host cat sex and weight as independently associated with B. clarridgeiae infection in fleas. Rickettsia asembonensis (52/84), Rickettsia felis (7/84) and Bartonella henselae (7/84) were detected in specific clades: R. felis was detected only in Clades 1 and 6 while B. henselae and R. asembonensis were detected only in Clade 4. Wolbachia spp., also displayed clade specificity with strains other than Wolbachia wCfeT only infecting fleas from Clade 6. There was poor flea and host agreement for Bartonella spp., infection; however, there was agreement in the Bartonella species detected in cats and fleas by geographic location. These findings reinforce the importance of considering reservoir host attributes and vector phylogenetic diversity in epidemiological studies of flea-borne pathogens. Widespread sampling is necessary to identify the factors driving flea-borne pathogen presence and transmission.
Collapse
Affiliation(s)
- Charlotte Moore
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Edward B. Breitschwerdt
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Lisa Kim
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | - Yiyao Li
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | - Kelli Ferris
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Ricardo Maggi
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Erin Lashnits
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
- *Correspondence: Erin Lashnits,
| |
Collapse
|
4
|
Manvell C, Ferris K, Maggi R, Breitschwerdt EB, Lashnits E. Prevalence of Vector-Borne Pathogens in Reproductive and Non-Reproductive Tissue Samples from Free-Roaming Domestic Cats in the South Atlantic USA. Pathogens 2021; 10:1221. [PMID: 34578253 PMCID: PMC8472639 DOI: 10.3390/pathogens10091221] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 01/17/2023] Open
Abstract
Reservoir to multiple species of zoonotic pathogens, free-roaming cats (FRCs) interact with domestic and wild animals, vectors, and humans. To assess the potential for feline vector-borne pathogens to be vertically transmitted, this study surveyed ear tip and reproductive tissues of FRCs from two locations in the South Atlantic United States for Anaplasma, Bartonella, Ehrlichia, hemotropic Mycoplasma, and Rickettsia species. We collected ovary (n = 72), uterus (n = 54), testicle (n = 74), and ear tip (n = 73) tissue from 73 cats, and fetal (n = 20) and placental (n = 19) tissue from 11 queens. Pathogen DNA was amplified utilizing qPCR, confirmed by sequencing. Cats were more frequently Bartonella henselae positive on reproductive tissues (19%, 14/73) than ear tip (5%, 4/73; p = 0.02). B. henselae was amplified from fetus (20%, 4/20) and placenta samples (11%, 2/19). Bartonella spp. infection was more common in cats from North Carolina (76%, 26/34) than Virginia (13%, 5/39; p < 0.0001). Fourteen percent (10/73) of both ear tip and reproductive tissues were positive for hemotropic Mycoplasma spp. Anaplasma, Ehrlichia, and Rickettsia spp. DNA was not amplified from any cat/tissue. These findings suggest that B. henselae preferentially infected cats' reproductive tissue and reinforces the importance of investigating the potential for B. henselae vertical transmission or induction of reproductive failure.
Collapse
Affiliation(s)
- Charlotte Manvell
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (C.M.); (R.M.); (E.B.B.)
| | - Kelli Ferris
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA;
| | - Ricardo Maggi
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (C.M.); (R.M.); (E.B.B.)
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA;
| | - Edward B. Breitschwerdt
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (C.M.); (R.M.); (E.B.B.)
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA;
| | - Erin Lashnits
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (C.M.); (R.M.); (E.B.B.)
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|