1
|
Lutermann H. Socializing in an Infectious World: The Role of Parasites in Social Evolution of a Unique Rodent Family. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.879031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transmission of parasites between hosts is facilitated by close contact of hosts. Consequently, parasites have been proposed as an important constraint to the evolution of sociality accounting for its rarity. Despite the presumed costs associated with parasitism, the majority of species of African mole-rats (Family: Bathyergidae) are social. In fact, only the extremes of sociality (i.e., solitary and singular breeding) are represented in this subterranean rodent family. But how did bathyergids overcome the costs of parasitism? Parasite burden is a function of the exposure and susceptibility of a host to parasites. In this review I explore how living in sealed burrow systems and the group defenses that can be employed by closely related group members can effectively reduce the exposure and susceptibility of social bathyergids to parasites. Evidence suggests that this can be achieved largely by investment in relatively cheap and flexible behavioral rather than physiological defense mechanisms. This also shifts the selection pressure for parasites on successful transmission between group members rather than transmission between groups. In turn, this constrains the evolution of virulence and favors socially transmitted parasites (e.g., mites and lice) further reducing the costs of parasitism for social Bathyergidae. I conclude by highlighting directions for future research to evaluate the mechanisms proposed and to consider parasites as facilitators of social evolution not only in this rodent family but also other singular breeders.
Collapse
|
2
|
Huang W, Dicks KL, Ballingall KT, Johnston SE, Sparks AM, Watt K, Pilkington JG, Pemberton JM. Associations between MHC class II variation and phenotypic traits in a free-living sheep population. Mol Ecol 2021; 31:902-915. [PMID: 34748666 DOI: 10.1111/mec.16265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
Pathogen-mediated selection (PMS) is thought to maintain the high level of allelic diversity observed in the major histocompatibility complex (MHC) class II genes. A comprehensive way to demonstrate contemporary selection is to examine associations between MHC variation and individual fitness. As individual fitness is hard to measure, many studies examine associations between MHC variation and phenotypic traits, including direct or indirect measures of adaptive immunity thought to contribute to fitness. Here, we tested associations between MHC class II variation and five phenotypic traits measured in free-living sheep captured in August: weight, strongyle faecal egg count, and plasma IgA, IgE and IgG immunoglobulin titres against the gastrointestinal nematode parasite Teladorsagia circumcincta. We found no association between MHC class II variation and weight or strongyle faecal egg count. We did, however, find associations between MHC class II variation and immunoglobulin levels which varied with isotype, age and sex. Our results suggest associations between MHC and phenotypic traits are more likely to be found for traits more closely associated with pathogen defence than integrative traits such as bodyweight and highlight the association between MHC variation and antibodies in wild populations.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Kara L Dicks
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Susan E Johnston
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Alexandra M Sparks
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,School of Biology, University of Leeds, Leeds, UK
| | - Kathryn Watt
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jill G Pilkington
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Gaigher A, Burri R, San-Jose LM, Roulin A, Fumagalli L. Lack of statistical power as a major limitation in understanding MHC-mediated immunocompetence in wild vertebrate populations. Mol Ecol 2019; 28:5115-5132. [PMID: 31614047 DOI: 10.1111/mec.15276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 01/09/2023]
Abstract
Disentangling the sources of variation in developing an effective immune response against pathogens is of major interest to immunoecology and evolutionary biology. To date, the link between immunocompetence and genetic variation at the major histocompatibility complex (MHC) has received little attention in wild animals, despite the key role of MHC genes in activating the adaptive immune system. Although several studies point to a link between MHC and immunocompetence, negative findings have also been reported. Such disparate findings suggest that limited statistical power might be affecting studies on this topic, owing to insufficient sample sizes and/or a generally small effect of MHC on the immunocompetence of wild vertebrates. To clarify this issue, we investigated the link between MHC variation and seven immunocompetence proxies in a large sample of barn owls and estimated the effect sizes and statistical power of this and published studies on this topic. We found that MHC poorly explained variation in immunocompetence of barn owls, with small-to-moderate associations between MHC and immunocompetence in owls (effect size: .1 ≥ r ≤ .3) similar to other vertebrates studied to date. Such small-to-moderate effects were largely associated with insufficient power, which was only sufficient (>0.8) to detect moderate-to-large effect sizes (r ≥ .3). Thus, studies linking MHC variation with immunocompetence in wild populations are underpowered to detect MHC effects, which are likely to be of generally small magnitude. Larger sample sizes (>200) will be required to achieve sufficient power in future studies aiming to robustly test for a link between MHC variation and immunocompetence.
Collapse
Affiliation(s)
- Arnaud Gaigher
- Department of Ecology and Evolution, Laboratory for Conservation Biology, Biophore, University of Lausanne, Lausanne, Switzerland.,Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland.,CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Reto Burri
- Department of Population Ecology, Institute of Ecology & Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Luis M San-Jose
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland.,Laboratoire Évolution & Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Alexandre Roulin
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Luca Fumagalli
- Department of Ecology and Evolution, Laboratory for Conservation Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Hacking JD, Stuart‐Fox D, Godfrey SS, Gardner MG. Specific MHC class I supertype associated with parasite infection and color morph in a wild lizard population. Ecol Evol 2018; 8:9920-9933. [PMID: 30386586 PMCID: PMC6202711 DOI: 10.1002/ece3.4479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/30/2022] Open
Abstract
The major histocompatibility complex (MHC) is a large gene family that plays a central role in the immune system of all jawed vertebrates. Nonavian reptiles are underrepresented within the MHC literature and little is understood regarding the mechanisms maintaining MHC diversity in this vertebrate group. Here, we examined the relative roles of parasite-mediated selection and sexual selection in maintaining MHC class I diversity of a color polymorphic lizard. We discovered evidence for parasite-mediated selection acting via rare-allele advantage or fluctuating selection as ectoparasite load was significantly lower in the presence of a specific MHC supertype (functional clustering of alleles): supertype four. Based on comparisons between ectoparasite prevalence and load, and assessment of the impact of ectoparasite load on host fitness, we suggest that supertype four confers quantitative resistance to ticks or an intracellular tickborne parasite. We found no evidence for MHC-associated mating in terms of pair genetic distance, number of alleles, or specific supertypes. An association was uncovered between supertype four and male throat color morph. However, it is unlikely that male throat coloration acts as a signal of MHC genotype to conspecifics because we found no evidence to suggest that male throat coloration predicts male mating status. Overall, our results suggest that parasite-mediated selection plays a role in maintaining MHC diversity in this population via rare-allele advantage and/or fluctuating selection. Further work is required to determine whether sexual selection also plays a role in maintaining MHC diversity in agamid lizards.
Collapse
Affiliation(s)
- Jessica D. Hacking
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Devi Stuart‐Fox
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | | | - Michael G. Gardner
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- Evolutionary Biology UnitSouth Australian MuseumAdelaideSouth AustraliaAustralia
| |
Collapse
|
5
|
Cutrera AP, Mora MS. Selection on MHC in a Context of Historical Demographic Change in 2 Closely Distributed Species of Tuco-tucos (Ctenomys australis and C. talarum). J Hered 2017; 108:628-639. [PMID: 28605534 DOI: 10.1093/jhered/esx054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 06/07/2017] [Indexed: 11/12/2022] Open
Abstract
Selection necessarily acts within the same current and historical demographic framework as neutral evolutionary processes, and the outcome of the interplay between these forces may vary according to their relative strength. In this study, we compare the variation at a major histocompatibility complex (MHC) locus (DRB exon 2), typically subject to strong diversifying selection, and mitochondrial diversity (D-loop) across populations encompassing the entire distribution of 2 species of South American subterranean rodents: Ctenomys australis and C. talarum (tuco-tucos). Although these species are parapatric along most of their distribution, historically they have followed distinct demographic trajectories associated with sea level changes during the Quaternary. We surveyed 8 populations of C. australis and 15 of C. talarum, from which we analyzed 70 and 212 D-loop haplotypes and 91 and 346 DRB genotypes, respectively. Both species have gone through a recent demographic expansion; however, the signal of this process only encompasses the entire distribution of one of the species: C. australis. While balancing selection on MHC in C. talarum-enhanced DRB diversity at the local level compared to D-loop, although not promoting divergence among populations, in C. australis local diversifying selection may have driven higher population differentiation at DRB than at D-loop. Our findings reinforce the idea that the relative strength of selection acting on MHC genes varies spatially and temporally within and among species, even between species using the same macrohabitat and exposed to similar immune challenges.
Collapse
Affiliation(s)
- Ana Paula Cutrera
- Instituto de Investigaciones Marinas y Costeras, CONICET - Universidad Nacional de Mar del Plata, Funes 3350, Mar del Plata (7600), Argentina
| | - Matías Sebastián Mora
- Instituto de Investigaciones Marinas y Costeras, CONICET - Universidad Nacional de Mar del Plata, Funes 3350, Mar del Plata (7600), Argentina
| |
Collapse
|
6
|
Merlo JL, Cutrera AP, Zenuto RR. Parasite infection negatively affects PHA-triggered inflammation in the subterranean rodent Ctenomys talarum. ACTA ACUST UNITED AC 2016; 325:132-41. [PMID: 26718121 DOI: 10.1002/jez.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/27/2015] [Accepted: 12/15/2015] [Indexed: 11/10/2022]
Abstract
Magnitude and effectiveness of immune responses vary greatly between and within species. Among factors reported to determine this variation, parasitism is a critical one, although controversial effects of parasites over immunological indices have been reported. Information regarding immune strategies in species with different life histories is crucial to better understand the role of immune defenses in an ecological and evolutionary context. Here, we examine the influence of the parasite community on immune responsiveness of a solitary subterranean rodent, Ctenomys talarum. To do this, we assessed the impact of the natural parasite community and the experimental infection with Eimeria sp. on the phytohemagglutinin (PHA)-response, as well as other immune, condition, nutrition, and stress parameters. PHA-triggered inflammation was similarly impaired by Eimeria sp. infection alone or co-occurring with a number of gastrointestinal nematodes. None of the other physiological parameters studied were affected by parasitism. This indicates that parasitism is a general key factor modulating immune responsiveness of the host, and in particular for C. talarum, it could explain the great inter-individual variation previously observed in the PHA-response. Thus, our results highlight the importance of taking the parasite community into account in ecoimmunological studies, particularly when using immunological indices.
Collapse
Affiliation(s)
- Julieta L Merlo
- Laboratorio de Ecofisiología, Instituto de Investigaciones Marinas y Costeras, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Ana P Cutrera
- Laboratorio de Ecofisiología, Instituto de Investigaciones Marinas y Costeras, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Roxana R Zenuto
- Laboratorio de Ecofisiología, Instituto de Investigaciones Marinas y Costeras, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|