1
|
Zhou X, Wang L, Wang Z, Zhu P, Chen Y, Yu C, Chen S, Xie Y. Impacts of Eimeria coinfection on growth performance, intestinal health and immune responses of broiler chickens. Vet Parasitol 2023; 322:110019. [PMID: 37666058 DOI: 10.1016/j.vetpar.2023.110019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Coccidiosis caused by Eimeria is one of the most severe chicken diseases and imposes huge economic losses to the poultry industry globally. Multi-Eimeria species coinfections are common with the most prevalent combination being mixtures of Eimeria acervulina and Eimeria tenella. Although detrimental impacts of either E. acervulina or E. tenella on chicken health are well recognized, no information is available regarding their coinfection effects so far. This study was designed to investigate the influence of coinfection with E. acervulina and E. tenella on broiler chickens. 144 one-day-old broiler chickens within each of trials (trial I or II) were divided into four groups, namely, control group (CG), E. acervulina infection group (EAIG), E. tenella infection group (ETIG) and dual (E. acervulina and E. tenella) infection group (DIG). Then, chickens were measured for weight loss, lesion scores, oocyst outputs, histological changes and expressions of pro-inflammatory (interleukin [IL]-6, IL-8 and IL-18), regulatory (IL-10 and IL-22) cytokines and Toll-like receptors (TLR; TLR2 and TLR4) as well as intestinal barrier (mucin 2 [MUC2] and fattey acid-bingding proteins 2 and 6 [FABP2 and FABP6])- and tight junction (TJ; zonula occluden-1 [ZO-1], occludin [OCLN], and claudins 1 and 5 [CLDN1 and CLDN5])-related proteins at 3, 5, 7, 10, 14 and 21 days post-infection, respectively. Our results consistently showed that although ETIG and DIG exhibited a higher level of weight loss and a more amount of oocyst excretion than EAIG, DIG had lighter lesions than EAIG in the early phase because of coinfection with E. tenella. A higher (P < 0.05) ratio of duodenal villous height to crypt depth was also observed in DIG than EAIG. Moreover, histological changes in the duodenum and cecum varied by single and dual Eimeria infections. Expressions of the intestinal barrier- and TJ-related genes of EAIG, ETIG and DIG were significantly (P < 0.05) upregulated but their levels exhibited differential changes among infected chickens. Similarly, the infected chickens showed significant (P < 0.05) inflammatory responses and higher (P < 0.05) expressions of TLRs in the intestines in comparison to CG. These results presented a comprehensive physiological, pathological and immunological characterization of E. acervulina and E. tenella coinfection in broiler chickens and also shed insights into pathogenesis of multi-coccidia coinfections.
Collapse
Affiliation(s)
- Xuan Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lidan Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhao Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Pengchen Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yijun Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunlin Yu
- Sichuan Animal Science Academy, Chengdu 610065, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Blake DP. Eimeria genomics: Where are we now and where are we going? Vet Parasitol 2015; 212:68-74. [DOI: 10.1016/j.vetpar.2015.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/01/2015] [Accepted: 05/09/2015] [Indexed: 11/25/2022]
|
3
|
Chapman HD, Barta JR, Blake D, Gruber A, Jenkins M, Smith NC, Suo X, Tomley FM. A selective review of advances in coccidiosis research. ADVANCES IN PARASITOLOGY 2014; 83:93-171. [PMID: 23876872 DOI: 10.1016/b978-0-12-407705-8.00002-1] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coccidiosis is a widespread and economically significant disease of livestock caused by protozoan parasites of the genus Eimeria. This disease is worldwide in occurrence and costs the animal agricultural industry many millions of dollars to control. In recent years, the modern tools of molecular biology, biochemistry, cell biology and immunology have been used to expand greatly our knowledge of these parasites and the disease they cause. Such studies are essential if we are to develop new means for the control of coccidiosis. In this chapter, selective aspects of the biology of these organisms, with emphasis on recent research in poultry, are reviewed. Topics considered include taxonomy, systematics, genetics, genomics, transcriptomics, proteomics, transfection, oocyst biogenesis, host cell invasion, immunobiology, diagnostics and control.
Collapse
Affiliation(s)
- H David Chapman
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Fetterer RH, Schwarz RS, Miska KB, Jenkins MC, Barfield RC, Murphy C. Characterization and localization of an Eimeria-specific protein in Eimeria maxima. Parasitol Res 2013; 112:3401-8. [PMID: 23820608 DOI: 10.1007/s00436-013-3518-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/21/2013] [Indexed: 12/23/2022]
Abstract
A recently completed analysis of Eimeria maxima transcriptome identified a gene with homology to sequences expressed by E. tenella and E. acervulina but lacking homology with other organisms including other apicomplexans. This gene, designated Eimeria-specific protein (ESP), codes for a protein with a predicted molecular weight of 19 kDa. The ESP gene was cloned and the recombinant protein expressed in bacteria and purified for preparation of specific antisera. Quantitative RT-PCR showed transcription of ESP was low in unsporulated oocysts and after 24 h of sporulation. However, transcription nearly doubled after 48 h of sporulation and reached its highest levels in sporozoites (SZ) and merozoites (MZ). The protein was detectable by Western blot in both sporulated oocysts and in SZ and MZ. Immuno-localization by light microscopy identified ESP in paired structures in the anterior of SZ and MZ. Immuno-localization by electron microscopy identified ESP in MZ rhoptries but no specific staining of any SZ structures was detected. In addition, localization studies on intestinal sections recovered from birds 120-h post-infection indicates that oocysts do not stain with anti-ESP but staining of microgametocytes and developing oocysts was observed. The results indicate that ESP is associated with the rhoptry of E. maxima and that the protein may have functions in other developmental stages.
Collapse
Affiliation(s)
- Raymond H Fetterer
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, USDA/ARS, Beltsville, MD, 20705, USA,
| | | | | | | | | | | |
Collapse
|
5
|
Rangel LT, Novaes J, Durham AM, Madeira AMBN, Gruber A. The Eimeria transcript DB: an integrated resource for annotated transcripts of protozoan parasites of the genus Eimeria. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat006. [PMID: 23411718 PMCID: PMC3572530 DOI: 10.1093/database/bat006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parasites of the genus Eimeria infect a wide range of vertebrate hosts, including chickens. We have recently reported a comparative analysis of the transcriptomes of Eimeria acervulina, Eimeria maxima and Eimeria tenella, integrating ORESTES data produced by our group and publicly available Expressed Sequence Tags (ESTs). All cDNA reads have been assembled, and the reconstructed transcripts have been submitted to a comprehensive functional annotation pipeline. Additional studies included orthology assignment across apicomplexan parasites and clustering analyses of gene expression profiles among different developmental stages of the parasites. To make all this body of information publicly available, we constructed the Eimeria Transcript Database (EimeriaTDB), a web repository that provides access to sequence data, annotation and comparative analyses. Here, we describe the web interface, available sequence data sets and query tools implemented on the site. The main goal of this work is to offer a public repository of sequence and functional annotation data of reconstructed transcripts of parasites of the genus Eimeria. We believe that EimeriaTDB will represent a valuable and complementary resource for the Eimeria scientific community and for those researchers interested in comparative genomics of apicomplexan parasites. Database URL:http://www.coccidia.icb.usp.br/eimeriatdb/
Collapse
Affiliation(s)
- Luiz Thibério Rangel
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo SP 05508-000, Brazil and Department of Computer Sciences, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão 1010, Bloco C, São Paulo SP 05508-000, Brazil
| | - Jeniffer Novaes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo SP 05508-000, Brazil and Department of Computer Sciences, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão 1010, Bloco C, São Paulo SP 05508-000, Brazil
| | - Alan M. Durham
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo SP 05508-000, Brazil and Department of Computer Sciences, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão 1010, Bloco C, São Paulo SP 05508-000, Brazil
| | - Alda Maria B. N. Madeira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo SP 05508-000, Brazil and Department of Computer Sciences, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão 1010, Bloco C, São Paulo SP 05508-000, Brazil
| | - Arthur Gruber
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo SP 05508-000, Brazil and Department of Computer Sciences, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão 1010, Bloco C, São Paulo SP 05508-000, Brazil
- *Corresponding author: Tel: +55 11 3091 7274; Fax: +55 11 3091 7417;
| |
Collapse
|
6
|
Synchronous development of Eimeria tenella in chicken caeca and utility of laser microdissection for purification of single stage schizont RNA. Parasitology 2012; 139:1553-61. [PMID: 22906745 DOI: 10.1017/s0031182012001072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Eimeria tenella is recognized worldwide as a significant pathogen in the poultry industry. However, a lack of methods for isolating developing schizonts has hindered the use of transcriptome analyses to discover novel and developmentally regulated genes. In the present study, we characterized the long-term successive development of E. tenella in infected chicken caeca and assessed the utility of laser microdissection (LMD) for the isolation of schizont RNA. Developmental stages, including those of the first, second, and third-generation schizonts and gametocytes, were synchronous. Using LMD, only the mature second-generation schizonts were successfully excised from the lamina propria, and non-degraded RNA was purified from the schizonts. E. tenella-specific genes were amplified by reverse transcription polymerase chain reaction (RT-PCR). These results augment our understanding of the E. tenella life cycle, and reveal LMD as a potentially useful tool for gene expression analyses of the intracellular stages of E. tenella.
Collapse
|
7
|
A comparative transcriptome analysis reveals expression profiles conserved across three Eimeria spp. of domestic fowl and associated with multiple developmental stages. Int J Parasitol 2012; 42:39-48. [DOI: 10.1016/j.ijpara.2011.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/15/2011] [Accepted: 10/19/2011] [Indexed: 11/22/2022]
|
8
|
Expressed sequence tags from Eimeria brunetti—preliminary analysis and functional annotation. Parasitol Res 2010; 108:1059-62. [DOI: 10.1007/s00436-010-2182-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
|
9
|
Belli SI, Ferguson DJ, Katrib M, Slapetova I, Mai K, Slapeta J, Flowers SA, Miska KB, Tomley FM, Shirley MW, Wallach MG, Smith NC. Conservation of proteins involved in oocyst wall formation in Eimeria maxima, Eimeria tenella and Eimeria acervulina. Int J Parasitol 2009; 39:1063-70. [PMID: 19477178 PMCID: PMC2726925 DOI: 10.1016/j.ijpara.2009.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/18/2009] [Accepted: 05/18/2009] [Indexed: 11/25/2022]
Abstract
Vaccination with proteins from gametocytes of Eimeria maxima protects chickens, via transfer of maternal antibodies, against infection with several species of Eimeria. Antibodies to E. maxima gametocyte proteins recognise proteins in the wall forming bodies of macrogametocytes and oocyst walls of E. maxima, Eimeria tenella and Eimeria acervulina. Homologous genes for two major gametocyte proteins - GAM56 and GAM82 - were found in E. maxima, E. tenella and E. acervulina. Alignment of the predicted protein sequences of these genes reveals that, as well as sharing regions of tyrosine richness, strong homology exists in their amino-terminal regions, where protective antibodies bind. This study confirms the conservation of the roles of GAM56 and GAM82 in oocyst wall formation and shows that antibodies to gametocyte antigens of E. maxima cross-react with homologous proteins in other species, helping to explain cross-species maternal immunity.
Collapse
Affiliation(s)
- Sabina I. Belli
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, NSW 2007, Australia
| | - David J.P. Ferguson
- Nuffield Department of Pathology, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Marilyn Katrib
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, NSW 2007, Australia
| | - Iveta Slapetova
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, NSW 2007, Australia
| | - Kelly Mai
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, NSW 2007, Australia
| | - Jan Slapeta
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, NSW 2007, Australia
| | - Sarah A. Flowers
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, NSW 2007, Australia
| | - Kate B. Miska
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | - Fiona M. Tomley
- Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, UK
| | - Martin W. Shirley
- Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, UK
| | - Michael G. Wallach
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, NSW 2007, Australia
| | - Nicholas C. Smith
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, NSW 2007, Australia
| |
Collapse
|
10
|
Sasai K, Fetterer RH, Lillehoj H, Matusra S, Constantinoiu CC, Matsubayashi M, Tani H, Baba E. Characterization of monoclonal antibodies that recognize the Eimeria tenella microneme protein MIC2. J Parasitol 2009; 94:1432-4. [PMID: 18576850 DOI: 10.1645/ge-1558.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 03/14/2008] [Indexed: 11/10/2022] Open
Abstract
The apicomplexan pathogens of Eimeria cause coccidiosis, an intestinal disease of chickens, which has a major economic impact on the poultry industry. Members of the Apicomplexa share an assortment of unique secretory organelles (rhoptries, micronemes and dense granules) that mediate invasion of host cells and formation and modification of the parasitophorous vacuole. Among these, microneme protein 2 from Eimeria tenella(EtMIC2) has a putative function in parasite adhesion to the host cell to initiate the invasion process. To investigate the role of EtMIC2 in host parasite interactions, the production and characterization of 12 monoclonal antibodies (mabs) produced against recombinant EtMIC2 proteins is described. All mabs reacted with molecules belonging to the apical complex of sporozoites and merozoites of E. tenella, E. acervulina and E. maxima in an immunofluorescence assay. By Western blot analysis, the mabs identified a developmentally regulated protein of 42 kDa corresponding to EtMIC 2 and cross-reacted with proteins in developmental stages of E. acervulina. Collectively, these mabs are useful tools for the detailed investigation of the characterization of EtMIC2 related proteins in Eimeria species.
Collapse
Affiliation(s)
- Kazumi Sasai
- Department of Beterinary Internal Medicine, Division of beterinary Science, Graduate School of life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Fetterer RH, Miska KB, Jenkins MC, Barfield RC, Lillehoj H. Identification and characterization of a serpin from Eimeria acervulina. J Parasitol 2009; 94:1269-74. [PMID: 18576851 DOI: 10.1645/ge-1559.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 04/08/2008] [Indexed: 11/10/2022] Open
Abstract
Serpins are serine protease inhibitors that are widely distributed in metazoans but have not been previously characterized in Eimeria spp. A serpin from Eimeria acervulina was cloned, expressed and characterized. Random screening of an E.acervulina sporozoite cDNA library identified a single clone (D14) whose coding region shared high similarity to consensus structure of serpins. Clone D14 contained an entire open reading frame (ORF) consisting of 1,245 nts that encode a peptide 413 amino acids in length with a predicted molecular weight of 45.5 kDa and containing a signal peptide 28 residues in length. By Western blot analysis, polyclonal antiserum to the recombinant serpin (rbSp) recognized a major 55 kDa protein band in unsporulated oocysts and in oocysts sporulated up to 24 hr (fully sporulated). The anti-rbSp detected bands of 55 kDa and 48 kDa in sporozoites (SZ) and merozoites (MZ) respectively. Analysis of MZ secretion products revealed a single protein of 48 kDa which may correspond to secreted serpin. By immuno-staining the serpin was located in granules distributed throughout both the SZ and MZ but granules appeared to be concentrated in the parasite's anterior. Analysis of the structure predicts that the E. acervulina serpin should be an active inhibitor. However, rbSp was without inhibitory activity against common serine proteases. By Western blot analysis the endogenous serpin in MZ extracts did not form the expected high molecular weight complex when coincubated with either trypsin or subtilisin. The results demonstrate that E. acervulina contains a serpin gene and expresses a protein with structural properties similar to an active serine protease inhibitor. Although the function of the E. acervulina serpin remains unknown the results further suggest that serpin is secreted by the parasite where it may be involved in cell invasion and other basic developmental processes.
Collapse
Affiliation(s)
- R H Fetterer
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, U.S. Department of Agriculture, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, Maryland, USA.
| | | | | | | | | |
Collapse
|