1
|
Bhatia T, Sharma S. Drug Repurposing: Insights into Current Advances and Future Applications. Curr Med Chem 2025; 32:468-510. [PMID: 37946344 DOI: 10.2174/0109298673266470231023110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 11/12/2023]
Abstract
Drug development is a complex and expensive process that involves extensive research and testing before a new drug can be approved for use. This has led to a limited availability of potential therapeutics for many diseases. Despite significant advances in biomedical science, the process of drug development remains a bottleneck, as all hypotheses must be tested through experiments and observations, which can be timeconsuming and costly. To address this challenge, drug repurposing has emerged as an innovative strategy for finding new uses for existing medications that go beyond their original intended use. This approach has the potential to speed up the drug development process and reduce costs, making it an attractive option for pharmaceutical companies and researchers alike. It involves the identification of existing drugs or compounds that have the potential to be used for the treatment of a different disease or condition. This can be done through a variety of approaches, including screening existing drugs against new disease targets, investigating the biological mechanisms of existing drugs, and analyzing data from clinical trials and electronic health records. Additionally, repurposing drugs can lead to the identification of new therapeutic targets and mechanisms of action, which can enhance our understanding of disease biology and lead to the development of more effective treatments. Overall, drug repurposing is an exciting and promising area of research that has the potential to revolutionize the drug development process and improve the lives of millions of people around the world. The present review provides insights on types of interaction, approaches, availability of databases, applications and limitations of drug repurposing.
Collapse
Affiliation(s)
- Trisha Bhatia
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, 382007, India
| | - Shweta Sharma
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, 382007, India
| |
Collapse
|
2
|
Gross J, Wegener AR, Kronschläger M, Schönfeld CL, Holz FG, Meyer LM. UVR-B-induced NKR-1 Expression in Ocular Tissues is blocked by Substance P Receptor Antagonist Fosaprepitant in the Exposed as well as Unexposed Partner Eye. Ocul Immunol Inflamm 2021; 29:963-975. [PMID: 32058829 DOI: 10.1080/09273948.2019.1708414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To investigate the effect of NKR-1 antagonists in an established UVR-B-induced cataract mouse model. Furthermore, to examine the expression of pro-inflammatory cytokines/chemokines in mouse eyes following unilateral UVR-B exposure.Methods: Mice received intraperitoneally injections of Fosaprepitant and Spantide I, before and after unilateral exposure to UVR-B. After day 3 and 7 post-exposure, ocular tissues were extracted for the detection of NKR-1 protein level by ELISA.Results: Pretreatment with Fosaprepitant decreases NKR-1 expression in exposed ocular tissues as well as in the unexposed lens epithelium compared to the saline group. Spantide I treatment showed a tendency of NKR-1 overexpression in ocular tissues.Conclusion: The clinically approved NKR-1 receptor antagonist Fosaprepitant decreases NKR-1 protein expression effectively not only in the exposed but also in the unexposed partner eye in a UVR-B irradiation mouse model. No effect was seen on the protein concentration of pro-inflammatory cytokines/chemokines in either eye.
Collapse
Affiliation(s)
- Janine Gross
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | | | | | - Carl-Ludwig Schönfeld
- Department of Ophthalmology, Herzog Carl Theodor Eye Clinic, Munich, Germany.,Department of Ophthalmology, Ludwig-Maximilians University, Munich, Germany
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Linda M Meyer
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Department of Ophthalmology, Herzog Carl Theodor Eye Clinic, Munich, Germany
| |
Collapse
|
3
|
Mucke HAM. Drug Repurposing Patent Applications October-December 2020. Assay Drug Dev Technol 2021; 19:209-214. [PMID: 33605782 DOI: 10.1089/adt.2021.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
4
|
Substance P receptor antagonism: a potential novel treatment option for viral-myocarditis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:645153. [PMID: 25821814 PMCID: PMC4363507 DOI: 10.1155/2015/645153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/14/2014] [Accepted: 12/30/2014] [Indexed: 01/16/2023]
Abstract
Viral-myocarditis is an important cause of heart failure for which no specific treatment is available. We previously showed the neuropeptide substance P (SP) is associated with the pathogenesis of murine myocarditis caused by encephalomyocarditis virus (EMCV). The current studies determined if pharmacological inhibition of SP-signaling via its high affinity receptor, NK1R and downstream G-protein, Ras homolog gene family, member-A (RhoA), will be beneficial in viral-myocarditis. Aprepitant (1.2 mg/kg), a SP-receptor antagonist, or fasudil (10 mg/kg), a RhoA inhibitor, or saline control was administered daily to mice orally for 3 days, prior to, or 5 days following, intraperitoneal infection with and without 50 PFU of EMCV, following which disease assessment studies, including echocardiogram and cardiac Doppler were performed in day 14 after infection. Pretreatment and posttreatment with aprepitant significantly reduced mortality, heart and cardiomyocyte size, and cardiac viral RNA levels (P < 0.05 all, ANOVA). Only aprepitant pretreatment improved heart functions; it significantly decreased end systolic diameter, improved fractional shortening, and increased peak aortic flow velocity (P < 0.05 all, ANOVA). Pre- or posttreatment with fasudil did not significantly impact disease manifestations. These findings indicate that SP contributes to cardiac-remodeling and dysfunction following ECMV infection via its high affinity receptor, but not through the Rho-A pathway. These studies suggest that SP-receptor antagonism may be a novel therapeutic-option for patients with viral-myocarditis.
Collapse
|
5
|
Weinstock JV. Substance P and the regulation of inflammation in infections and inflammatory bowel disease. Acta Physiol (Oxf) 2015; 213:453-61. [PMID: 25424746 DOI: 10.1111/apha.12428] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/07/2014] [Accepted: 11/17/2014] [Indexed: 12/16/2022]
Abstract
Substance P (SP) and its natural analogue hemokinin-1 (HK1) are produced by lymphocytes and macrophages, and at times B cells. These peptides are an important component of the immune response during several infections and in inflammatory bowel disease (IBD). The synthesis of SP and HK1 in leucocytes is subject to immune regulation. IL12 and IL23 stimulate T cells and macrophages to make SP respectively. The cytokines driving HK1 production are not presently defined. These peptides act through a shared receptor called neurokinin-1. T cells, macrophages and probably other immune cell types can express this receptor. Several cytokines IL12, IL18 and TNFα as well as T-cell antigen receptor activation induce neurokinin-1 receptor expression on T cells, while IL10 blocks receptor display. TGFβ delays internalization of the SP/neurokine-1R complex on T cells resulting in stronger receptor signalling. One of the functions of SP and neurokinin-1 receptor is to enhance T cell IFNγ and IL17 production, amplifying the proinflammatory response. Thus, SP and HK1 have overlapping functions and are part of a sophisticated immune regulatory circuit aimed at amplifying inflammation at mucosal surfaces and in other regions of the body as shown in animal models of infection and IBD.
Collapse
Affiliation(s)
- J. V. Weinstock
- Division of Gastroenterology; Tufts Medical Center; Boston MA USA
| |
Collapse
|
6
|
White AC. Cryptosporidiosis (Cryptosporidium Species). MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015:3173-3183.e6. [DOI: 10.1016/b978-1-4557-4801-3.00284-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Al-Mathal EM, Alsalem AM. Pomegranate (Punica granatum) peel is effective in a murine model of experimental Cryptosporidium parvum. Exp Parasitol 2012; 131:350-7. [PMID: 22580265 DOI: 10.1016/j.exppara.2012.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 04/12/2012] [Accepted: 04/30/2012] [Indexed: 11/30/2022]
Abstract
Cryptosporidiosis, a major health issue for neonatal calves, is caused by the parasite Cryptosporidium parvum, which is highly resistant to drug treatments. To date, many anti-parasitic drugs have been tested, but only a few have been shown to be partially effective in treating cryptosporidiosis. Previous studies have indicated that pomegranate (Punica granatum) possesses anti-plasmodium, anti-cestode, and anti-nematode activities. Therefore, the aim of this study was to evaluate the effect of P. granatum peel on suckling mice infected with experimental C. parvum. At 4days of age, 72 neonatal albino mice were randomly divided into five groups: G1: healthy controls, G2: infected/untreated controls, G3: uninfected/distilled water-treated, G4: uninfected/P. granatum peel-treated, and G5: infected/P. granatum peel-treated. Mice were experimentally-infected by oral administration of 1×10(3)C. parvum oocysts per animal. On day 7 post-inoculation (pi), treated mice received an aqueous suspension of P. granatum peel orally (3g/kg body weight). The presence of diarrhea, oocyst shedding, and weight gain/loss, and the histopathology of ileal sections were examined. Infected mice treated with the P. granatum peel suspension showed improvement in all parameters examined. Additionally, these mice did not exhibit any clinical symptoms and no deaths occurred. Oocyst shedding was very significantly reduced in the P. granatum-treated mice by day 14 pi (P<.05), and was completely eliminated by day 28 pi. The mean weight gain of the P. granatum-treated mice was significantly higher than that of the infected/untreated controls throughout the study (P<.01). Histopathological analysis of ileal sections further supported the clinical and parasitological findings. The histological architecture of villi from the P. granatum-treated mice on day 14 pi showed visible improvement in comparison with the infected/untreated controls, including renewed brush borders, reduced numbers of C. parvum trophozoites, and reduced lymphatic infiltration. On day 28 pi, tissues of the P. granatum-treated mice were very similar to those of healthy control mice. These results suggest that P. granatum peel is a promising anti-coccidial therapeutic treatment that lacks negative side effects.
Collapse
Affiliation(s)
- Ebtisam M Al-Mathal
- Department of Biology, College of Science, University of Dammam, Dammam, Saudi Arabia.
| | | |
Collapse
|
8
|
Abstract
Apicomplexan protozoan parasites of the genus Cryptosporidium infect the gastrointestinal tract and lungs of a wide variety of animals, including humans. The majority of human infections are due to either Cryptosporidium hominis (C. hominis) and/or Cryptosporidium parvum (C. parvum). The parasite has a complex life cycle that includes both asexual and sexual stages. While there are invasive free living stages, proliferation and differentiation take place within a unique parasitrophorous vacuole under the host cell brush border but outside the host cell cytoplasm. Infection is spread by environmentally resistant spores that primarily contaminate drinking water and occasionally food sources, which may cause significant outbreaks of diarrhea that generally lasts less than 2 w in immunocompetent individuals. In immunodeficient or immunosuppressed individuals, diarrhea may be copious and can result in significant morbidity and mortality, particularly in AIDS patients. Although diagnosis is relatively simple, effective drug treatment, particulary for infections in immunodeficient patients, has not been uniformly successful. This overview summarizes the species known to infect humans, aspects of the parasite life cycle, sources of infection, the pathophysiology of cryptosporidiosis, the immune response to infection, diagnosis, treatment and some aspects of cryptosporidiosis in China.
Collapse
Affiliation(s)
| | - Qing He
- Department Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310-1495, USA
| |
Collapse
|
9
|
Bai J, Khaldi S, Gargala G, Baishanbo A, François A, Ballet JJ, Ducrotté P, Fioramonti J, Favennec L, Le Goff L. Effects of octreotide on jejunal hypersensitivity triggered by Cryptosporidium parvum intestinal infection in an immunocompetent suckling rat model. Neurogastroenterol Motil 2011; 23:1043-50, e499. [PMID: 21320238 DOI: 10.1111/j.1365-2982.2011.01680.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Similar to other bacterial or protozoan infections, human cryptosporidiosis may trigger postinfectious irritable bowel syndrome (IBS)-like symptoms, a condition in which enhanced visceral perception of pain during intestinal distension plays a pivotal role. In an immunocompetent suckling rat model which mimicks features of postinfectious IBS, Cryptosporidium parvum infection induces long-lasting jejunal hypersensitivity to distension in association with intestinal activated mast cell accumulation. The aim of the present study was to explore in this model whether octreotide, a somatostatin agonist analog, could prevent the development of jejunal hypersensitivity and intestinal mast cell/nerve fiber accumulation. METHODS Five-day-old Sprague-Dawley rats were infected with C. parvum and treated 10 days later with octreotide (50 g kg(-1) day(-1), i.p.) for 7 days. KEY RESULTS Compared with untreated infected rats, octreotide treatment of infected rats resulted in increased weight gain [day 23 postinfection (PI)], decreased food intake (day 16 PI), and a reduction in jejunal villus alterations (day 14 PI), CD3(+) IEL (day 37 PI) and mast cell (days 37 and 50 PI) accumulations, nerve fiber densities (day 50 PI), and hypersensitivity to distension (day 120 PI). In uninfected rats, the effects of octreotide treatment were limited to higher weight gain (days 16 and 23 PI) and decreased food intake (day 23 PI) compared with uninfected-untreated rats. CONCLUSIONS & INFERENCES Data confirms the relevance of the present rat model to postinfectious IBS studies and prompt further investigation of somatostatin-dependent regulatory interactions in cryptosporidiosis.
Collapse
Affiliation(s)
- J Bai
- Parasitology Department, Rouen University Hospital and Institute for Biomedical Research, University of Rouen, Rouen, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ekins S, Williams AJ, Krasowski MD, Freundlich JS. In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov Today 2011; 16:298-310. [PMID: 21376136 DOI: 10.1016/j.drudis.2011.02.016] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/09/2011] [Accepted: 02/22/2011] [Indexed: 02/08/2023]
Abstract
One approach to speed up drug discovery is to examine new uses for existing approved drugs, so-called 'drug repositioning' or 'drug repurposing', which has become increasingly popular in recent years. Analysis of the literature reveals many examples of US Food and Drug Administration-approved drugs that are active against multiple targets (also termed promiscuity) that can also be used to therapeutic advantage for repositioning for other neglected and rare diseases. Using proof-of-principle examples, we suggest here that with current in silico technologies and databases of the structures and biological activities of chemical compounds (drugs) and related data, as well as close integration with in vitro screening data, improved opportunities for drug repurposing will emerge for neglected or rare/orphan diseases.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, 601 Runnymede Avenue, Jenkintown, PA 19046, USA.
| | | | | | | |
Collapse
|
11
|
Douglas SD, Leeman SE. Neurokinin-1 receptor: functional significance in the immune system in reference to selected infections and inflammation. Ann N Y Acad Sci 2011; 1217:83-95. [PMID: 21091716 PMCID: PMC3058850 DOI: 10.1111/j.1749-6632.2010.05826.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The G protein-coupled receptor (GPCR), neurokinin-1 receptor (NK1R), and its preferred ligand, substance P (SP), are reviewed in relationship to the immune system and selected infections. NK1R and SP are ubiquitous throughout the animal kingdom. This important pathway has unique functions in numerous cells and tissues. The interaction of SP with its preferred receptor, NK1R, leads to the activation of nuclear factor-kappa B (NF-κB) and proinflammatory cytokines. NK1R has two isoforms, both a full-length and a truncated form. These isoforms have different functional significances and differ in cell signaling capability. The proinflammatory signals modulated by SP are important in bacterial, viral, fungal, and parasitic diseases, as well as in immune system function. The SP-NK1R system is a major class 1, rhodopsin-like GPCR ligand-receptor interaction.
Collapse
Affiliation(s)
- Steven D Douglas
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
12
|
Rau SE, Barber LG, Burgess KE. Efficacy of maropitant in the prevention of delayed vomiting associated with administration of doxorubicin to dogs. J Vet Intern Med 2010; 24:1452-7. [PMID: 21039869 DOI: 10.1111/j.1939-1676.2010.0611.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Vomiting, nausea, inappetence, and diarrhea are common delayed adverse effects of doxorubicin. Maropitant, a neurokinin-1 receptor antagonist, is known to prevent acute vomiting in dogs receiving cisplatin. OBJECTIVE To evaluate the efficacy of maropitant in preventing delayed vomiting after administration of doxorubicin to dogs. ANIMALS Fifty-nine dogs with cancer. METHODS This randomized, double-blind, placebo-controlled study used a cross-over design. Dogs were randomized into 1 of 2 treatment groups. Group A received maropitant after the 1st doxorubicin, and placebo after the 2nd. Group B received placebo first, and maropitant second. Maropitant (2 mg/kg) or placebo tablets were administered PO for 5 days after doxorubicin treatment. Owners completed visual analog scales based on Veterinary Cooperative Oncology Group-Common Terminology Criteria for Adverse Events to grade their pet's clinical signs during the week after administration of doxorubicin. Statistical differences in gastrointestinal toxicosis and myelosuppression between maropitant and placebo treatments were evaluated. RESULTS Significantly fewer dogs had vomiting (P=.001) or diarrhea (P=.041), and the severity of vomiting (P<.001) and diarrhea (P=.024) was less the week after doxorubicin when receiving maropitant compared with placebo. No differences were found between maropitant and placebo for other gastrointestinal and bone marrow toxicoses. CONCLUSIONS AND CLINICAL IMPORTANCE Maropitant is effective in preventing delayed vomiting induced by doxorubicin. Its prophylactic use might improve quality of life and decrease the need for dose reductions in certain dogs.
Collapse
Affiliation(s)
- S E Rau
- Harrington Oncology Program, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA.
| | | | | |
Collapse
|
13
|
Wyatt CR, Riggs MW, Fayer R. Cryptosporidiosis in Neonatal Calves. Vet Clin North Am Food Anim Pract 2010; 26:89-103, table of contents. [DOI: 10.1016/j.cvfa.2009.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
14
|
Cryptosporidium parvum isolate-dependent postinfectious jejunal hypersensitivity and mast cell accumulation in an immunocompetent rat model. Infect Immun 2009; 77:5163-9. [PMID: 19687199 DOI: 10.1128/iai.00220-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cryptosporidium spp. are a cause of self-limited diarrhea in immunocompetent hosts. In immunocompetent rats, Cryptosporidium parvum infection induced digestive hypersensitivity, a key pathophysiological factor in functional digestive disorders such as irritable bowel syndrome (IBS). In such a rat model, we sought to document whether jejunal hypersensitivity depends on C. parvum isolate and is associated with a mast cell accumulation. Five-day-old rats were orally administered 10(5) oocysts of either Nouzilly (NoI) or Iowa (IoI) C. parvum isolate. NoI-infected rats exhibited the lowest food intake on days 7 and 14 postinfection (p.i.). On day 7 p.i., small intestine villus atrophy, crypt hyperplasia, and inflammatory cell infiltration were prominent in NoI-infected rats, with higher numbers of Cryptosporidium forms than in IoI-infected rats. Compared to uninfected control rats, jejunal intraepithelial lymphocytes (IELs) were increased only in NoI-infected rats on day 14 p.i. On day 50 p.i., jejunal hypersensitivity to distension was found only in NoI-infected rats; this hypersensitivity is associated with activated mast cell accumulation. The number of mast cells in the jejunal lamina propria was increased from day 36 p.i. in NoI-infected rats and only at day 120 p.i. in IoI-infected rats. Our data suggest that both the severity of infection (weight loss, reduced food intake, villus atrophy, and IEL accumulation) and the onset of a jejunal hypersensitivity after infection in association with an activated mast cell accumulation are isolate dependent and related to NoI infection. This cryptosporidiosis rat model is a relevant model for the study of underlying mechanisms of postinfectious IBS-like symptoms.
Collapse
|