1
|
Travers MA, Sow C, Zirah S, Deregnaucourt C, Chaouch S, Queiroz RML, Charneau S, Allain T, Florent I, Grellier P. Deconjugated Bile Salts Produced by Extracellular Bile-Salt Hydrolase-Like Activities from the Probiotic Lactobacillus johnsonii La1 Inhibit Giardia duodenalis In vitro Growth. Front Microbiol 2016; 7:1453. [PMID: 27729900 PMCID: PMC5037171 DOI: 10.3389/fmicb.2016.01453] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/31/2016] [Indexed: 12/15/2022] Open
Abstract
Giardiasis, currently considered a neglected disease, is caused by the intestinal protozoan parasite Giardia duodenalis and is widely spread in human as well as domestic and wild animals. The lack of appropriate medications and the spread of resistant parasite strains urgently call for the development of novel therapeutic strategies. Host microbiota or certain probiotic strains have the capacity to provide some protection against giardiasis. By combining biological and biochemical approaches, we have been able to decipher a molecular mechanism used by the probiotic strain Lactobacillus johnsonii La1 to prevent Giardia growth in vitro. We provide evidence that the supernatant of this strain contains active principle(s) not directly toxic to Giardia but able to convert non-toxic components of bile into components highly toxic to Giardia. By using bile acid profiling, these components were identified as deconjugated bile-salts. A bacterial bile-salt-hydrolase of commercial origin was able to mimic the properties of the supernatant. Mass spectrometric analysis of the bacterial supernatant identified two of the three bile-salt-hydrolases encoded in the genome of this probiotic strain. These observations document a possible mechanism by which L. johnsonii La1, by secreting, or releasing BSH-like activity(ies) in the vicinity of replicating Giardia in an environment where bile is present and abundant, can fight this parasite. This discovery has both fundamental and applied outcomes to fight giardiasis, based on local delivery of deconjugated bile salts, enzyme deconjugation of bile components, or natural or recombinant probiotic strains that secrete or release such deconjugating activities in a compartment where both bile salts and Giardia are present.
Collapse
Affiliation(s)
- Marie-Agnès Travers
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Unité SG2M, IFREMER La Tremblade, France
| | - Cissé Sow
- MCAM UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités Paris, France
| | - Séverine Zirah
- MCAM UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités Paris, France
| | - Christiane Deregnaucourt
- MCAM UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités Paris, France
| | - Soraya Chaouch
- MCAM UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités Paris, France
| | - Rayner M L Queiroz
- Department of Cell Biology, Institute of Biology, University of Brasilia Brasília, Brazil
| | - Sébastien Charneau
- Department of Cell Biology, Institute of Biology, University of Brasilia Brasília, Brazil
| | - Thibault Allain
- MCAM UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne UniversitésParis, France; UMR 1319, Commensal and Probiotics-Host Interactions Laboratory, INRA, AgroParisTechJouy en Josas, France
| | - Isabelle Florent
- MCAM UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités Paris, France
| | - Philippe Grellier
- MCAM UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités Paris, France
| |
Collapse
|
2
|
Bartelt LA, Sartor RB. Advances in understanding Giardia: determinants and mechanisms of chronic sequelae. F1000PRIME REPORTS 2015; 7:62. [PMID: 26097735 PMCID: PMC4447054 DOI: 10.12703/p7-62] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Giardia lamblia is a flagellated protozoan that is the most common cause of intestinal parasitic infection in children living in resource-limited settings. The pathogenicity of Giardia has been debated since the parasite was first identified, and clinical outcomes vary across studies. Among recent perplexing findings are diametrically opposed associations between Giardia and acute versus persistent diarrhea and a poorly understood potential for long-term sequelae, including impaired child growth and cognitive development. The mechanisms driving these protean clinical outcomes remain elusive, but recent advances suggest that variability in Giardia strains, host nutritional status, the composition of microbiota, co-infecting enteropathogens, host genetically determined mucosal immune responses, and immune modulation by Giardia are all relevant factors influencing disease manifestations after Giardia infection.
Collapse
Affiliation(s)
- Luther A. Bartelt
- Division of Infectious Diseases and International Health, University of VirginiaBox 801340, Charlottesville, VA 22908USA
| | - R. Balfour Sartor
- Division of Gastroenterology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel HillCampus Box 7032, Chapel Hill, NC 27599-7032USA
| |
Collapse
|