1
|
Thekkiniath J, Mootien S, Lawres L, Perrin BA, Gewirtz M, Krause PJ, Williams S, Doggett JS, Ledizet M, Ben Mamoun C. BmGPAC, an Antigen Capture Assay for Detection of Active Babesia microti Infection. J Clin Microbiol 2018; 56:e00067-18. [PMID: 30093394 PMCID: PMC6156295 DOI: 10.1128/jcm.00067-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/14/2018] [Indexed: 11/20/2022] Open
Abstract
Human babesiosis is an emerging zoonotic infectious disease caused by intraerythrocytic protozoan parasites of the genus Babesia Most cases of human babesiosis are caused by Babesia microti and often manifest in individuals over the age of 50 years or in patients with a compromised immune system. Patients who develop symptomatic B. microti infections usually experience months of asymptomatic infection after the acute infection has resolved. About one-fifth of B. microti-infected adults never develop symptoms. These asymptomatically infected individuals sometimes donate blood and thus can transmit B. microti through blood transfusion. Current assays for detection of active B. microti infections can be used to screen donor blood prior to transfusion, but they rely primarily on microscopy or PCR methods, which have sensitivity and technical limitations. Here we report the development of an antigen capture enzyme-linked immunosorbent assay (BmGPAC) based on a major secreted immunodominant antigen of B. microti (BmGPI12/BmSA1), and we provide evidence that this assay is superior for detection of active B. microti infections, compared to available microscopy methods and serological assays. The assay has been evaluated using supernatants of B. microti-infected erythrocytes cultured in vitro, sera from B. microti-infected laboratory mice, and sera from wild mice and human patients. Our data suggest that the BmGPAC assay is a reliable assay for detection of active B. microti infections and is superior to real-time PCR and antibody assays for diagnosis of acute B. microti infections, screening of the blood supply, and epidemiological surveys of humans and animal reservoir hosts.
Collapse
Affiliation(s)
- Jose Thekkiniath
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sara Mootien
- L2 Diagnostics, LLC, New Haven, Connecticut, USA
| | - Lauren Lawres
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Benjamin A Perrin
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Meital Gewirtz
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Peter J Krause
- Yale School of Public Health, New Haven, Connecticut, USA
| | - Scott Williams
- Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | | | | | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Cai YC, Wu F, Hu W, Chen J, Chen SH, Xu B, Lu Y, Ai L, Yang CL, Zhao S. Molecular characterization of Babesia microti seroreactive antigen 5-1-1 and development of rapid detection methods for anti-B. microti antibodies in serum. Acta Trop 2018; 185:371-379. [PMID: 29559329 DOI: 10.1016/j.actatropica.2018.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 01/17/2023]
Abstract
Babesiosis has become a new global threat impacting human health, and most human babesiosis cases are caused by Babesia microti. Until now few antigens of B. microti have been described which can be used for the diagnosis of human babesiosis. In the present study, we report on the bioinformatic analysis, cloning and expression of the sequence encoding the B. microti seroreactive antigen 5-1-1 to investigate its potential incorporation in serologic diagnostic tools for babesiosis. Bioinformatic analysis and recombinant gene expression were performed to molecularly characterize seroreactive antigen 5-1-1. Enhanced chemiluminescence (ECL)-Western blot methods were used to detect specific antibodies in infected mice. Immunofluorescence antibody assays (IFA) were performed to detect the localization of BmSA5-1-1 in B. microti parasites. ELISA and immunochromatographic (ICT) tests were developed using recombinant BmSA5-1-1 to evaluate its potential use in rapid detection methods for B. microti antibodies and for the diagnosis of babesiosis. A recombinant expression plasmid was constructed by inserting the target gene fragment in the pET28a vector after double digestion with BamHI and XhoI restriction enzymes. The recombinant BmSA5-1-1 protein was expressed in Escherichia coli (rBmSA5-1-1) and purified by means of Ni-nitrilotriacetic acid (NTA) agarose columns. Polyclonal antibodies were generated against rBmSA5-1-1. Based on indirect immunofluorescence assay results, BmSA5-1-1 appeared to localize on the surface of B. microti. ELISA tests using the rBmSA5-1-1 antigen detected specific antibodies from infected mice as early as 4 days post-infection. Our results indicate that the two methods we developed can detect specific antibodies in mice at different stages of infection with sensitivities of 100% (rBmSA5-1-1 ELISA) and 90% (ICT). The specificity of the two methods was 100%. Sera of patients suffering from other closely related parasitic diseases, such as malaria and toxoplasmosis, produced negative results. In conclusion, seroreactive antigen 5-1-1, a member of the BMN1 protein family, is expressed on the outer surface of B. microti and is a promising candidate antigen for the early diagnosis of babesiosis. rBmSA5-1-1 ELISA and ICT methods show good potential for detecting specific antibodies in mice at different stages of infection.
Collapse
|
3
|
Silva JC, Cornillot E, McCracken C, Usmani-Brown S, Dwivedi A, Ifeonu OO, Crabtree J, Gotia HT, Virji AZ, Reynes C, Colinge J, Kumar V, Lawres L, Pazzi JE, Pablo JV, Hung C, Brancato J, Kumari P, Orvis J, Tretina K, Chibucos M, Ott S, Sadzewicz L, Sengamalay N, Shetty AC, Su Q, Tallon L, Fraser CM, Frutos R, Molina DM, Krause PJ, Ben Mamoun C. Genome-wide diversity and gene expression profiling of Babesia microti isolates identify polymorphic genes that mediate host-pathogen interactions. Sci Rep 2016; 6:35284. [PMID: 27752055 PMCID: PMC5082761 DOI: 10.1038/srep35284] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/26/2016] [Indexed: 11/18/2022] Open
Abstract
Babesia microti, a tick-transmitted, intraerythrocytic protozoan parasite circulating mainly among small mammals, is the primary cause of human babesiosis. While most cases are transmitted by Ixodes ticks, the disease may also be transmitted through blood transfusion and perinatally. A comprehensive analysis of genome composition, genetic diversity, and gene expression profiling of seven B. microti isolates revealed that genetic variation in isolates from the Northeast United States is almost exclusively associated with genes encoding the surface proteome and secretome of the parasite. Furthermore, we found that polymorphism is restricted to a small number of genes, which are highly expressed during infection. In order to identify pathogen-encoded factors involved in host-parasite interactions, we screened a proteome array comprised of 174 B. microti proteins, including several predicted members of the parasite secretome. Using this immuno-proteomic approach we identified several novel antigens that trigger strong host immune responses during the onset of infection. The genomic and immunological data presented herein provide the first insights into the determinants of B. microti interaction with its mammalian hosts and their relevance for understanding the selective pressures acting on parasite evolution.
Collapse
Affiliation(s)
- Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Emmanuel Cornillot
- Institut de Biologie Computationnelle, IBC, Université de Montpellier, 860 rue St Priest, Bat 5 - CC05019, 34095 Montpellier, Cedex 5, France
- Institut de Recherche en Cancérologie de Montpellier, IRCM - INSERM U896 & Université de Montpellier & ICM, Institut régional du Cancer Montpellier, Campus Val d’Aurelle, 34298 Montpellier, Cedex 5 France
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Sahar Usmani-Brown
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 15 York St., New Haven, Connecticut, CT 06520 USA
- Yale School of Public Health and Yale School of Medicine, 60 College St., New Haven, Connecticut, CT 06520 USA
| | - Ankit Dwivedi
- Institut de Biologie Computationnelle, IBC, Université de Montpellier, 860 rue St Priest, Bat 5 - CC05019, 34095 Montpellier, Cedex 5, France
- Institut de Recherche en Cancérologie de Montpellier, IRCM - INSERM U896 & Université de Montpellier & ICM, Institut régional du Cancer Montpellier, Campus Val d’Aurelle, 34298 Montpellier, Cedex 5 France
| | - Olukemi O. Ifeonu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Jonathan Crabtree
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Hanzel T. Gotia
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Azan Z. Virji
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 15 York St., New Haven, Connecticut, CT 06520 USA
| | - Christelle Reynes
- Institut de Genomique Fonctionnelle, IGF - CNRS UMR 5203, 141 rue de la cardonille, 34094 Montpellier, Cedex 05, France
| | - Jacques Colinge
- Institut de Recherche en Cancérologie de Montpellier, IRCM - INSERM U896 & Université de Montpellier & ICM, Institut régional du Cancer Montpellier, Campus Val d’Aurelle, 34298 Montpellier, Cedex 5 France
| | - Vidya Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 15 York St., New Haven, Connecticut, CT 06520 USA
| | - Lauren Lawres
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 15 York St., New Haven, Connecticut, CT 06520 USA
| | | | | | - Chris Hung
- Antigen Discovery Inc., Irvine, CA, 92618 USA
| | - Jana Brancato
- Yale School of Public Health and Yale School of Medicine, 60 College St., New Haven, Connecticut, CT 06520 USA
| | - Priti Kumari
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Joshua Orvis
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Kyle Tretina
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Marcus Chibucos
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Sandy Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Naomi Sengamalay
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Amol C. Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Qi Su
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Luke Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Roger Frutos
- Université de Montpellier, IES, UMR 5214, 860 rue de St Priest, Bt5, 34095 Montpellier, France
- CIRAD, UMR 17, Cirad-Ird, TA-A17/G, Campus International de Baillarguet, 34398 Montpellier, France
| | | | - Peter J. Krause
- Yale School of Public Health and Yale School of Medicine, 60 College St., New Haven, Connecticut, CT 06520 USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 15 York St., New Haven, Connecticut, CT 06520 USA
| |
Collapse
|
5
|
Wang G, Efstratiou A, Adjou Moumouni PF, Liu M, Jirapattharasate C, Guo H, Gao Y, Cao S, Zhou M, Suzuki H, Igarashi I, Xuan X. Primary Babesia rodhaini infection followed by recovery confers protective immunity against B. rodhaini reinfection and Babesia microti challenge infection in mice. Exp Parasitol 2016; 169:6-12. [PMID: 27423972 DOI: 10.1016/j.exppara.2016.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 11/19/2022]
Abstract
In the present study, we investigated the protective immunity against challenge infections with Babesia rodhaini and Babesia microti in the mice recovered from B. rodhaini infection. Six groups with 5 test mice in each group were used in this study, and were intraperitoneally immunized with alive and dead B. rodhaini. The challenge infections with B. rodhaini or B. microti were performed using different time courses. Our results showed that the mice recovered from primary B. rodhaini infection exhibited low parasitemia and no mortalities after the challenge infections, whereas mock mice which had received no primary infection showed a rapid increase of parasitemia and died within 7 days after the challenge with B. rodhaini. Mice immunized with dead B. rodhaini were not protected against either B. rodhaini or B. microti challenge infections, although high titers of antibody response were induced. These results indicate that only mice immunized with alive B. rodhaini could acquire protective immunity against B. rodhaini or B. microti challenge infection. Moreover, the test mice produced high levels of antibody response and low levels of cytokines (INF-γ, IL-4, IL-12, IL-10) against B. rodhaini or B. microti after challenge infection. Mock mice, however, showed rapid increases of these cytokines, which means disordered cytokines secretion occurred during the acute stage of challenge infection. The above results proved that mice immunized with alive B. rodhaini could acquire protective immunity against B. rodhaini and B. microti infections.
Collapse
Affiliation(s)
- Guanbo Wang
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Artemis Efstratiou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Charoonluk Jirapattharasate
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Huanping Guo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Yang Gao
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Shinuo Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, China
| | - Mo Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, China
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|