1
|
Orkun Ö, Sarıkaya E, Yılmaz A, Yiğit M, Vatansever Z. Population genetic structure and demographic history of Dermacentor marginatus Sulzer, 1776 in Anatolia. Sci Rep 2025; 15:12570. [PMID: 40221486 PMCID: PMC11993584 DOI: 10.1038/s41598-025-97658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
Dermacentor marginatus is a medically important tick species due to its preference humans and domestic animals as hosts and its vectorial competence, yet it remains understudied in many regions. This study aimed to examine the population structure and demographic history of D. marginatus using the cox1 and ITS2 genes, focusing on populations from Central and Northeast Anatolia-two regions on either side of the Anatolian Diagonal, a natural biogeographical barrier. A total of 361 host-seeking adult D. marginatus ticks from 31 sampling sites were analyzed, revealing 131 haplotypes for cox1 and 104 genotypes for ITS2. Neutrality tests and mismatch distribution patterns rejected the null hypothesis of the neutral theory, indicating that the population of D. marginatus in Anatolia has undergone a recent demographic expansion. Significant genetic differentiation and population structuring were observed between the Central and Northeastern Anatolian populations of D. marginatus, correlating with geographic distance and suggesting that the Anatolian Diagonal acts as a potential barrier to gene flow. Intrapopulation gene flow was higher in Central Anatolian populations compared to Northeastern Anatolian populations. Bayesian phylogeny revealed a highly divergent D. marginatus haplotype within the Northeastern Anatolian population, clustering into a Central Asian clade. Additionally, phylogenetic trees of the subgenus Serdjukovia revealed taxonomic ambiguities, including the absence of a distinct clade for D. niveus and potential misidentifications of D. marginatus and D. raskemensis specimens. Furthermore, the monophyletic relationship between D. marginatus and D. raskemensis supports the likelihood of sympatric speciation. These findings enhance our understanding of the genetic structure, phylogeography, and evolutionary dynamics of D. marginatus while providing a framework for future research on tick populations.
Collapse
Affiliation(s)
- Ömer Orkun
- Ticks and Tick-Borne Diseases Research Laboratory, Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, 06070, Ankara, Turkey.
| | - Eneshan Sarıkaya
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Anıl Yılmaz
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Mesut Yiğit
- Department of Parasitology, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| | - Zati Vatansever
- Department of Parasitology, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
2
|
Bilbija B, Spitzweg C, Papoušek I, Fritz U, Földvári G, Mullett M, Ihlow F, Sprong H, Civáňová Křížová K, Anisimov N, Belova OA, Bonnet SI, Bychkova E, Czułowska A, Duscher GG, Fonville M, Kahl O, Karbowiak G, Kholodilov IS, Kiewra D, Krčmar S, Kumisbek G, Livanova N, Majláth I, Manfredi MT, Mihalca AD, Miró G, Moutailler S, Nebogatkin IV, Tomanović S, Vatansever Z, Yakovich M, Zanzani S, Široký P. Dermacentor reticulatus - a tick on its way from glacial refugia to a panmictic Eurasian population. Int J Parasitol 2023; 53:91-101. [PMID: 36549441 DOI: 10.1016/j.ijpara.2022.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022]
Abstract
The ornate dog tick (Dermacentor reticulatus) shows a recently expanding geographic distribution. Knowledge on its intraspecific variability, population structure, rate of genetic diversity and divergence, including its evolution and geographic distribution, is crucial to understand its dispersal capacity. All such information would help to evaluate the potential risk of future spread of associated pathogens of medical and veterinary concern. A set of 865 D. reticulatus ticks was collected from 65 localities across 21 countries, from Portugal in the west to Kazakhstan and southern Russia in the east. Cluster analyses of 16 microsatellite loci were combined with nuclear (ITS2, 18S) and mitochondrial (12S, 16S, COI) sequence data to uncover the ticks' population structures and geographical patterns. Approximate Bayesian computation was applied to model evolutionary relationships among the found clusters. Low variability and a weak phylogenetic signal showing an east-west cline were detected both for mitochondrial and nuclear sequence markers. Microsatellite analyses revealed three genetic clusters, where the eastern and western cluster gradient was supplemented by a third, northern cluster. Alternative scenarios could explain such a tripartite population structure by independent formation of clusters in separate refugia, limited gene flow connected with isolation by distance causing a "bipolar pattern", and the northern cluster deriving from admixture between the eastern and western populations. The best supported demographic scenario of this tick species indicates that the northern cluster derived from admixture between the eastern and western populations 441 (median) to 224 (mode) generations ago, suggesting a possible link with the end of the Little Ice Age in Europe.
Collapse
Affiliation(s)
- Branka Bilbija
- Department of Biology and Wildlife Diseases, FVHE, University of Veterinary Sciences Brno, Palackého 1946/1, 61242 Brno, Czech Republic
| | - Cäcilia Spitzweg
- Museum of Zoology, Senckenberg Dresden, A. B. Meyer Building, 01109 Dresden, Germany
| | - Ivo Papoušek
- Department of Biology and Wildlife Diseases, FVHE, University of Veterinary Sciences Brno, Palackého 1946/1, 61242 Brno, Czech Republic
| | - Uwe Fritz
- Museum of Zoology, Senckenberg Dresden, A. B. Meyer Building, 01109 Dresden, Germany
| | - Gábor Földvári
- Institute of Evolution, Centre for Ecological Research, 1121 Budapest, Konkoly-Thege Miklós út 29-33, Hungary; Centre for Eco-Epidemiology, National Laboratory for Health Security, 1121 Budapest, Konkoly-Thege Miklós út 29-33, Hungary
| | - Martin Mullett
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| | - Flora Ihlow
- Museum of Zoology, Senckenberg Dresden, A. B. Meyer Building, 01109 Dresden, Germany
| | - Hein Sprong
- National Institute of Public Health and Environment (RIVM), Centre for Infectious Disease Control (CIb), Laboratory for Zoonoses and Environmental Microbiology (Z&O), Mailbox 63, room V353, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Kristína Civáňová Křížová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Nikolay Anisimov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Volodarskogo 6, 625003 Tyumen, Russia
| | - Oxana A Belova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis) prem. 8, k.17, pos. Institut Poliomyelita, Poselenie Moskovskiy, 108819 Moscow, Russia
| | - Sarah I Bonnet
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, CNRS UMR 2000, Université de Paris, 75015 Paris, France; Animal Health Department, INRAE, 37380 Nouzilly, France
| | - Elizabeth Bychkova
- Laboratory of Parasitology, State Scientific and Production Association "Scientific and Practical Center of the National Academy of Sciences of Belarus on Bioresources", 27, Akademicheskaya Str, 220072 Minsk, Belarus
| | - Aleksandra Czułowska
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wroclaw, Przybyszewskiego str. 63, 51-148 Wroclaw, Poland
| | - Georg G Duscher
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Vienna, Austria; AGES-Austrian Agency for Health and Food Safety, Spargelfeldstrasse 191, Vienna, 1220, Austria
| | - Manoj Fonville
- National Institute of Public Health and Environment (RIVM), Centre for Infectious Disease Control (CIb), Laboratory for Zoonoses and Environmental Microbiology (Z&O), Mailbox 63, room V353, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Olaf Kahl
- Tick-radar GmbH, 10555 Berlin, Germany
| | - Grzegorz Karbowiak
- Witold Stefański Institute of Parasitology of Polish Academy of Sciences, Twarda street 51/55, 00-818 Warsaw, Poland
| | - Ivan S Kholodilov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis) prem. 8, k.17, pos. Institut Poliomyelita, Poselenie Moskovskiy, 108819 Moscow, Russia
| | - Dorota Kiewra
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wroclaw, Przybyszewskiego str. 63, 51-148 Wroclaw, Poland
| | - Stjepan Krčmar
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Gulzina Kumisbek
- Asfendiyarov Kazakh National Medical University, School of Pharmacy, Department of Engineering Disciplines, Tole Bi, 94, Almaty, Kazakhstan
| | - Natalya Livanova
- Institute of Systematics and Ecology of Animals, Frunze str. 11, Novosibirsk 630091, Russia
| | - Igor Majláth
- Pavol Jozef Safarik University in Kosice, Faculty of Science, Institute of Biology and Ecology, Department of Animal Physiology, Srobarova 2, 041 54 Kosice, Slovakia
| | - Maria Teresa Manfredi
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - Andrei D Mihalca
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, Cluj-Napoca 400372, Romania
| | - Guadalupe Miró
- Animal Health Dept. Veterinary School, Universidad Complutense de Madrid, Spain
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Igor V Nebogatkin
- I.I. Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, Bogdana Khmelnytskovo 15, 01030 Kyiv, Ukraine; Public Health Center of the Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Snežana Tomanović
- University of Belgrade, Institute for Medical Research, National Institute of Republic of Serbia, Dr. Subotića 4, Belgrade, Serbia
| | - Zati Vatansever
- Kafkas University, Faculty of Veterinary Medicine, Dept. of Parasitology, Kars, Turkey
| | - Marya Yakovich
- Laboratory of Parasitology, State Scientific and Production Association "Scientific and Practical Center of the National Academy of Sciences of Belarus on Bioresources", 27, Akademicheskaya Str, 220072 Minsk, Belarus
| | - Sergio Zanzani
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - Pavel Široký
- Department of Biology and Wildlife Diseases, FVHE, University of Veterinary Sciences Brno, Palackého 1946/1, 61242 Brno, Czech Republic; CEITEC-Central European Institute of Technology, University of Veterinary Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic.
| |
Collapse
|
3
|
Rogovskyy AS, Threadgill DW, Akimov IA, Nebogatkin IV, Rogovska YV, Melnyk MV, Rogovskyy SP. Borrelia and Other Zoonotic Pathogens in Ixodes ricinus and Dermacentor reticulatus Ticks Collected from the Chernobyl Exclusion Zone on the 30th Anniversary of the Nuclear Disaster. Vector Borne Zoonotic Dis 2019; 19:466-473. [PMID: 31112094 DOI: 10.1089/vbz.2018.2318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: The 26th of April 2016 marked 30 years since the Chernobyl accident has occurred in Ukraine. As a result, the uninhabited Chernobyl region has been directly exposed to ionizing radiation for >30 years. Most work has focused on identifying associations between levels of radiation and the abundance, distribution, and mutation rates of plants and animals. Much less, however, is known about microbial communities in this affected region. To date, there are no reports on the prevalence of any tick-borne pathogens in Ixodes ricinus ticks from the Chernobyl exclusion zone (CEZ). The objective of our study was to examine the abundance of I. ricinus and Dermacentor reticulatus ticks in the CEZ and to investigate the prevalence of Borrelia burgdorferi sensu lato (s.l.) and other zoonotic agents in these ixodid ticks. Methods: A total of 260 questing I. ricinus and 100 D. reticulatus adult ticks were individually polymerase chain reaction analyzed for the presence of Anaplasma phagocytophilum, Babesia spp., Bartonella spp., Borrelia burgdorferi s.l., Francisella tularensis, and/or Rickettsia spp. Results: The respective infections rates were identified and compared with those of ixodid ticks that were concurrently collected from Kyiv. The significant differences between the infection rates of the CEZ and Kyiv ticks were observed for Rickettsia raoultii in D. reticulatus ticks (53.0% vs. 35.7%, respectively; p < 0.05) and Bartonella spp. (8.1% vs. 2.7%; P < 0.05) in I. ricinus ticks. Conclusions: Although the current data clearly demonstrated that the prevalence of some zoonotic pathogens were significantly higher in the ixodid ticks from the CEZ, a more comprehensive systematic approach is required to examine the causal effect of long-term ionizing radiation on adaptive changes of tick-borne pathogens.
Collapse
Affiliation(s)
- Artem S Rogovskyy
- 1 Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - David W Threadgill
- 1 Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas.,2 Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Texas A&M University, College Station, Texas
| | - Igor A Akimov
- 3 I.I. Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Igor V Nebogatkin
- 3 I.I. Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliya V Rogovska
- 1 Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Maria V Melnyk
- 4 Department of Microbiology, Virology, and Biotechnology, Faculty of Veterinary Medicine, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Sergii P Rogovskyy
- 3 I.I. Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|