1
|
Esposito R, Portaccio M, Meschini R, Delfino I, Lepore M. Monitoring Biochemical Changes of Neuroblastoma Cells in Early Stages After X-Ray Exposure by Using Fourier-Transform Infrared Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:7459. [PMID: 39685995 DOI: 10.3390/s24237459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
X-ray radiation treatments are largely adopted in radiotherapy, and Fourier-transform infrared microspectroscopy (μ-FTIR) has already been demonstrated to be a useful instrument for monitoring radiotherapy effects. Previous works in this field have focused on studying the changes occurring in cells when they are fixed immediately after the irradiation or 24 and 48 h later. In the present paper, changes occurring in SH-SY5Y neuroblastoma cells in the first hours after the irradiation are examined to obtain information on the processes taking place in this not-yet-investigated time window by using μ-FTIR. For this purpose, cell samples were fixed immediately after X-ray exposure, and 2 and 4 h after irradiation and investigated along with unexposed cells. Different data analysis procedures were implemented to estimate the changes in lipid, protein, and DNA spectral contributions. The present investigation on the effects of X-ray in the first hours after the exposure is helpful for better describing the processes occurring in this time window that offer the possibility of a timely check on the efficacy of X-ray treatments and can potentially be applied for planning personalized treatment as required by the most advanced medical therapy.
Collapse
Affiliation(s)
- Rosario Esposito
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli "Federico II", 80125 Napoli, Italy
| | - Marianna Portaccio
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", 80138 Napoli, Italy
| | - Roberta Meschini
- Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia, 01100 Viterbo, Italy
| | - Ines Delfino
- Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia, 01100 Viterbo, Italy
- INAF-Osservatorio Astronomico di Capodimonte Napoli, Salita Moiariello 16, 80131 Napoli, Italy
| | - Maria Lepore
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", 80138 Napoli, Italy
| |
Collapse
|
2
|
Rajendraprasad G, Rodriguez-Calado S, Barisic M. SiR-DNA/SiR-Hoechst-induced chromosome entanglement generates severe anaphase bridges and DNA damage. Life Sci Alliance 2023; 6:e202302260. [PMID: 37726128 PMCID: PMC10509460 DOI: 10.26508/lsa.202302260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023] Open
Abstract
SiR-DNA/SiR-Hoechst is a far-red fluorescent DNA probe that is routinely used for live-cell imaging of cell nuclei in interphase and chromosomes during mitosis. Despite being reported to induce DNA damage, SiR-DNA has been used in more than 300 research articles, covering topics like mitosis, chromatin biology, cancer research, cytoskeletal research, and DNA damage response. Here, we used live-cell imaging to perform a comprehensive analysis of the effects of SiR-DNA on mitosis of four human cell lines (RPE-1, DLD-1, HeLa, and U2OS). We report a dose-, time-, and light-dependent effect of SiR-DNA on chromosome segregation. We found that, upon the exposure to light during imaging, nanomolar concentrations of SiR-DNA induce non-centromeric chromosome entanglement that severely impairs sister chromatid segregation and spindle elongation during anaphase. This causes DNA damage that is passed forward to the following cell cycle, thereby having a detrimental effect on genome integrity. Our findings highlight the drawbacks in using SiR-DNA for investigation of late mitotic events and DNA damage-related topics and urge the use of alternative labeling strategies to study these processes.
Collapse
Affiliation(s)
| | | | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Evaluation of Proton-Induced Biomolecular Changes in MCF-10A Breast Cells by Means of FT-IR Microspectroscopy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiotherapy (RT) with accelerated beams of charged particles (protons and carbon ions), also known as hadrontherapy, is a treatment modality that is increasingly being adopted thanks to the several benefits that it grants compared to conventional radiotherapy (CRT) treatments performed by means of high-energy photons/electrons. Hence, information about the biomolecular effects in exposed cells caused by such particles is needed to better realize the underlying radiobiological mechanisms and to improve this therapeutic strategy. To this end, Fourier transform infrared microspectroscopy (μ-FT-IR) can be usefully employed, in addition to long-established radiobiological techniques, since it is currently considered a helpful tool for examining radiation-induced cellular changes. In the present study, MCF-10A breast cells were chosen to evaluate the effects of proton exposure using μ-FT-IR. They were exposed to different proton doses and fixed at various times after exposure to evaluate direct effects due to proton exposure and the kinetics of DNA damage repair. Irradiated and control cells were examined in transflection mode using low-e substrates that have been recently demonstrated to offer a fast and direct way to examine proton-exposed cells. The acquired spectra were analyzed using a deconvolution procedure and a ratiometric approach, both of which showed the different contributions of DNA, protein, lipid, and carbohydrate cell components. These changes were particularly significant for cells fixed 48 and 72 h after exposure. Lipid changes were related to variations in membrane fluidity, and evidence of DNA damage was highlighted. The analysis of the Amide III band also indicated changes that could be related to different enzyme contributions in DNA repair.
Collapse
|
4
|
Karimi F, Shaabani E, Martínez-Rovira I, Yousef I, Ghahremani MH, Kharrazi S. Infrared microspectroscopy studies on the protective effect of curcumin coated gold nanoparticles against H 2O 2-induced oxidative stress in human neuroblastoma SK-N-SH cells. Analyst 2021; 146:6902-6916. [PMID: 34636832 DOI: 10.1039/d1an01379c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The contribution of oxidative stress in several chronic and degenerative diseases suggests that antioxidant therapy can be a promising therapeutic strategy. However, in the case of many antioxidants, their biodistribution and bioactivity are restricted due to low water solubility. Curcumin is a powerful free radical scavenger that upon conjugation to gold nanoparticles results in the formation of stable gold nanoparticles that act as highly water-soluble carriers for the curcumin molecules. In the present study, the effect of curcumin-coated gold nanoparticles (Cur-GNPs) on the H2O2-treated human neuroblastoma (SK-N-SH) cell line was evaluated by using Fourier transform infrared (FTIR) microspectroscopy. Biochemical changes in cells resulting from exposure to reactive oxygen species (ROS) and antioxidant treatment on cells were investigated. Analyzing changes in PO2- bands and amide bands in the fingerprint region and also changes in the ratio of CH2(asym) to CH3(asym) bands in the lipid region revealed that post-treatment with Cur-GNPs could effectively decrease the damage on DNA caused by H2O2 treatment, whereas pre-treatment of cells with Cur-GNPs was found to be more effective at preventing lipid peroxidation than post-treatment. Further analysis of the CH2(asym) to CH3(asym) ratio provided information on not only the lipid peroxidation level in cells, but also the interaction of nanoparticles with the plasma membrane, as confirmed by lactate dehydrogenase assay.
Collapse
Affiliation(s)
- Fateme Karimi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Elnaz Shaabani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Immaculada Martínez-Rovira
- ALBA-CELLS Synchrotron, MIRAS Beamline, Carrer de la Llum 2-26, 09290 Cerdanyola del Vallès, Spain. .,Ionizing Radiation Research Group (GRRI), Physics Department, Universitat Autònoma de Barcelona (UAB), Avinguda de l'Eix Central, Edifici C. Campus de la UAB, 08193 Cerdanyola del Vallès, Spain
| | - Ibraheem Yousef
- ALBA-CELLS Synchrotron, MIRAS Beamline, Carrer de la Llum 2-26, 09290 Cerdanyola del Vallès, Spain.
| | - Mohammad Hossein Ghahremani
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharmin Kharrazi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
5
|
FT-IR Transflection Micro-Spectroscopy Study on Normal Human Breast Cells after Exposure to a Proton Beam. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fourier transform infrared micro-spectroscopy (μ-FT-IR) is nowadays considered a valuable tool for investigating the changes occurring in human cells after exposure to ionizing radiation. Recently, considerable attention has been devoted to the use of this optical technique in the study of cells exposed to proton beams, that are being increasingly adopted in cancer therapy. Different experimental configurations are used for proton irradiation and subsequent spectra acquisition. To facilitate the use of μ-FT-IR, it may be useful to investigate new experimental approaches capable of speeding up and simplifying the irradiation and measurements phases. Here, we propose the use of low-e-substrates slides for cell culture, allowing the irradiation and spectra acquisition in transflection mode in a fast and direct way. In recent years, there has been a wide debate about the validity of these supports, but many researchers agree that the artifacts due to the presence of the electromagnetic standing wave effects are negligible in many practical cases. We investigated human normal breast cells (MCF-10 cell line) fixed immediately after the irradiation with graded proton radiation doses (0, 0.5, 2, and 4 Gy). The spectra obtained in transflection geometry showed characteristics very similar to those present in the spectra acquired in transmission geometry and confirm the validity of the chosen approach. The analysis of spectra indicates the occurrence of significant changes in DNA and lipids components of cells. Modifications in protein secondary structure are also evidenced.
Collapse
|
6
|
Martínez-Rovira I, Seksek O, Dokic I, Brons S, Abdollahi A, Yousef I. Study of the intracellular nanoparticle-based radiosensitization mechanisms in F98 glioma cells treated with charged particle therapy through synchrotron-based infrared microspectroscopy. Analyst 2020; 145:2345-2356. [PMID: 31993615 DOI: 10.1039/c9an02350j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The use of nanoparticles (NP) as dose enhancers in radiotherapy (RT) is a growing research field. Recently, the use of NP has been extended to charged particle therapy in order to improve the performance in radioresistant tumors. However, the biological mechanisms underlying the synergistic effects involved in NP-RT approaches are not clearly understood. Here, we used the capabilities of synchrotron-based Fourier Transform Infrared Microspectroscopy (SR-FTIRM) as a bio-analytical tool to elucidate the NP-induced cellular damage at the molecular level and at a single-cell scale. F98 glioma cells doped with AuNP and GdNP were irradiated using several types of medical ion beams (proton, helium, carbon and oxygen). Differences in cell composition were analyzed in the nucleic acids, protein and lipid spectral regions using multivariate methods (Principal Component Analysis, PCA). Several NP-induced cellular modifications were detected, such as conformational changes in secondary protein structures, intensity variations in the lipid CHx stretching bands, as well as complex DNA rearrangements following charged particle therapy irradiations. These spectral features seem to be correlated with the already shown enhancement both in the DNA damage response and in the reactive oxygen species (ROS) production by the NP, which causes cell damage in the form of protein, lipid, and/or DNA oxidations. Vibrational features were NP-dependent due to the NP heterogeneous radiosensitization capability. Our results provided new insights into the molecular changes in response to NP-based RT treatments using ion beams, and highlighted the relevance of SR-FTIRM as a useful and precise technique for assessing cell response to innovative radiotherapy approaches.
Collapse
Affiliation(s)
- I Martínez-Rovira
- MIRAS beamline BL01, ALBA-CELLS Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain.
| | - O Seksek
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France and Université de Paris, IJCLab, 91405 Orsay, France
| | - I Dokic
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany and Clinical Cooperation Unite Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - S Brons
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - A Abdollahi
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany and Clinical Cooperation Unite Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - I Yousef
- MIRAS beamline BL01, ALBA-CELLS Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain.
| |
Collapse
|
7
|
An FTIR Microspectroscopy Ratiometric Approach for Monitoring X-ray Irradiation Effects on SH-SY5Y Human Neuroblastoma Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082974] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability of Fourier transform infrared (FTIR) spectroscopy in analyzing cells at a molecular level was exploited for investigating the biochemical changes induced in protein, nucleic acid, lipid, and carbohydrate content of cells after irradiation by graded X-ray doses. Infrared spectra from in vitro SH-SY5Y neuroblastoma cells following exposure to X-rays (0, 2, 4, 6, 8, 10 Gy) were analyzed using a ratiometric approach by evaluating the ratios between the absorbance of significant peaks. The spectroscopic investigation was performed on cells fixed immediately (t0 cells) and 24 h (t24 cells) after irradiation to study both the initial radiation-induced damage and the effect of the ensuing cellular repair processes. The analysis of infrared spectra allowed us to detect changes in proteins, lipids, and nucleic acids attributable to X-ray exposure. The ratiometric analysis was able to quantify changes for the protein, lipid, and DNA components and to suggest the occurrence of apoptosis processes. The ratiometric study of Amide I band indicated also that the secondary structure of proteins was significantly modified. The comparison between the results from t0 and t24 cells indicated the occurrence of cellular recovery processes. The adopted approach can provide a very direct way to monitor changes for specific cellular components and can represent a valuable tool for developing innovative strategies to monitor cancer radiotherapy outcome.
Collapse
|
8
|
Martínez-Rovira I, Seksek O, Yousef I. A synchrotron-based infrared microspectroscopy study on the cellular response induced by gold nanoparticles combined with X-ray irradiations on F98 and U87-MG glioma cell lines. Analyst 2019; 144:6352-6364. [DOI: 10.1039/c9an01109a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Synchrotron-based infrared microspectroscopy is a powerful tool for nanoparticle-based treatment response at single cell-level.
Collapse
Affiliation(s)
- I. Martínez-Rovira
- MIRAS Beamline BL01
- ALBA-CELLS Synchrotron
- 08290 Cerdanyola del Vallès
- Spain
| | - O. Seksek
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC)
- Centre National de la Recherche Scientifique (CNRS); Université Paris Sud
- Université Paris-Saclay
- Campus Universitaire
- F-91400 Orsay
| | - I. Yousef
- MIRAS Beamline BL01
- ALBA-CELLS Synchrotron
- 08290 Cerdanyola del Vallès
- Spain
| |
Collapse
|
9
|
Martínez-Rovira I, Seksek O, Puxeu J, Gómez J, Kreuzer M, Dučić T, Ferreres MJ, Artigues M, Yousef I. Synchrotron-based infrared microspectroscopy study on the radiosensitization effects of Gd nanoparticles at megavoltage radiation energies. Analyst 2019; 144:5511-5520. [DOI: 10.1039/c9an00792j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Synchrotron-based infrared microspectroscopy is a powerful technique for disentangling biochemical effects in nanoparticle-based radiotherapy approaches.
Collapse
Affiliation(s)
- Immaculada Martínez-Rovira
- ALBA-CELLS Synchrotron
- MIRAS Beamline
- 09290 Cerdanyola del Vallès
- Spain
- Ionizing Radiation Research Group (GRRI)
| | - Olivier Seksek
- Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC)
- CNRS, Univ Paris Sud
- Université Paris-Saclay
- F-91400 Orsay
- France
| | - Josep Puxeu
- Hospital Universitari Sant Joan de Reus
- Institut d'Investigació Sanitària Pere Virgili
- 43204 Reus
- Spain
| | - Joan Gómez
- Ionizing Radiation Research Group (GRRI)
- Physics Department
- Universitat Autònoma de Barcelona (UAB)
- 08193 Cerdanyola del Vallès
- Spain
| | - Martin Kreuzer
- ALBA-CELLS Synchrotron
- MIRAS Beamline
- 09290 Cerdanyola del Vallès
- Spain
| | - Tanja Dučić
- ALBA-CELLS Synchrotron
- MIRAS Beamline
- 09290 Cerdanyola del Vallès
- Spain
| | | | - Manel Artigues
- Hospital Universitari Sant Joan de Reus
- Institut d'Investigació Sanitària Pere Virgili
- 43204 Reus
- Spain
| | - Ibraheem Yousef
- ALBA-CELLS Synchrotron
- MIRAS Beamline
- 09290 Cerdanyola del Vallès
- Spain
| |
Collapse
|
10
|
Wood BR. The importance of hydration and DNA conformation in interpreting infrared spectra of cells and tissues. Chem Soc Rev 2016; 45:1980-98. [PMID: 26403652 DOI: 10.1039/c5cs00511f] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Since Watson and Crick's historical papers on the structure and function of DNA based on Rosalind Franklin's and Maurice Wilkin's X-ray diffraction patterns tremendous scientific curiosity has been aroused by the unique and dynamic structure of the molecule of life. A-DNA and B-DNA represent different conformations of the DNA molecule, which is stabilised by hydrogen interactions between base pairs, stacking interactions between neighboring bases and long-range intra- and inter-backbone forces. This review highlights the contribution Fourier transform infrared (FTIR) spectroscopy has made to the understanding of DNA conformation in relation to hydration and its potential role in clinical diagnostics. The review will first begin by elucidating the main forms of DNA conformation found in nature and the general structures of the A, B and Z forms. This is followed by a detailed critique on infrared spectroscopy applied to DNA conformation highlighting pivotal studies on isolated DNA, polynucleotides, nucleoprotein and nucleohistone complexes. A discussion on the potential of diagnosing cancer using FTIR spectroscopy based on the detection of DNA bands in cells and tissues will ensue, highlighting the recent studies investigating the conformation of DNA in hydrated and dehydrated cells. The method of hydration as a way to facilitate DNA conformational band assignment will be discussed and the conformational change to the A-form upon dehydration will be used to explain the reason for the apparent lack of FTIR DNA signals observed in fixed or air-dried cells and tissues. The advantages of investigating B-DNA in the hydrated state, as opposed to A-DNA in the dehydrated state, are exemplified in a series of studies that show: (1) improved quantification of DNA in cells; (2) improved discrimination and reproducibility of FTIR spectra recorded of cells progressing through the cell cycle; (3) insights into the biological significance of A-DNA as evidenced by an interesting study on bacteria, which can survive desiccation and at the same time undergo the B-A-B transition. Finally, the importance of preserving the B-DNA conformation for the diagnosis of cancer is put forward as way to improve the sensitivity of this powerful technique.
Collapse
Affiliation(s)
- Bayden R Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, 3800, Victoria, Australia.
| |
Collapse
|
11
|
Georgantzoglou A, Merchant MJ, Jeynes JCG, Mayhead N, Punia N, Butler RE, Jena R. Applications of High-Throughput Clonogenic Survival Assays in High-LET Particle Microbeams. Front Oncol 2016; 5:305. [PMID: 26835414 PMCID: PMC4724960 DOI: 10.3389/fonc.2015.00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/18/2015] [Indexed: 11/13/2022] Open
Abstract
Charged particle therapy is increasingly becoming a valuable tool in cancer treatment, mainly due to the favorable interaction of particle radiation with matter. Its application is still limited due, in part, to lack of data regarding the radiosensitivity of certain cell lines to this radiation type, especially to high-linear energy transfer (LET) particles. From the earliest days of radiation biology, the clonogenic survival assay has been used to provide radiation response data. This method produces reliable data but it is not optimized for high-throughput microbeam studies with high-LET radiation where high levels of cell killing lead to a very low probability of maintaining cells' clonogenic potential. A new method, therefore, is proposed in this paper, which could potentially allow these experiments to be conducted in a high-throughput fashion. Cells are seeded in special polypropylene dishes and bright-field illumination provides cell visualization. Digital images are obtained and cell detection is applied based on corner detection, generating individual cell targets as x-y points. These points in the dish are then irradiated individually by a micron field size high-LET microbeam. Post-irradiation, time-lapse imaging follows cells' response. All irradiated cells are tracked by linking trajectories in all time-frames, based on finding their nearest position. Cell divisions are detected based on cell appearance and individual cell temporary corner density. The number of divisions anticipated is low due to the high probability of cell killing from high-LET irradiation. Survival curves are produced based on cell's capacity to divide at least four to five times. The process is repeated for a range of doses of radiation. Validation shows the efficiency of the proposed cell detection and tracking method in finding cell divisions.
Collapse
Affiliation(s)
| | - Michael J. Merchant
- Manchester Academic Health Science Centre, Institute of Cancer Sciences, University of Manchester, The Christie NHS Foundations Trust, Manchester, UK
| | | | | | - Natasha Punia
- Department of Microbial and Cellular Sciences, University of Surrey, Guildford, UK
| | - Rachel E. Butler
- Department of Microbial and Cellular Sciences, University of Surrey, Guildford, UK
| | - Rajesh Jena
- Department of Oncology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Yousef I, Seksek O, Gil S, Prezado Y, Sulé-Suso J, Martínez-Rovira I. Study of the biochemical effects induced by X-ray irradiations in combination with gadolinium nanoparticles in F98 glioma cells: first FTIR studies at the Emira laboratory of the SESAME synchrotron. Analyst 2016; 141:2238-49. [DOI: 10.1039/c5an02378e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
One strategy to improve the clinical outcome of radiotherapy is to use nanoparticles as radiosensitizers.
Collapse
Affiliation(s)
- Ibraheem Yousef
- SESAME Synchrotron
- 19252 Allan
- Jordan
- ALBA Synchrotron
- Carrer de la Llum 2-26
| | - Olivier Seksek
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC)
- Centre National de la Recherche Scientifique (CNRS)
- Université Paris 7 & 11
- 91406 Orsay Cedex
- France
| | - Sílvia Gil
- Department of Dermatology
- Hospital Parc Taulí
- Sabadell
- Spain
| | - Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC)
- Centre National de la Recherche Scientifique (CNRS)
- Université Paris 7 & 11
- 91406 Orsay Cedex
- France
| | - Josep Sulé-Suso
- Institute for Science and Technology in Medicine
- Keele University
- Thornburrow Drive
- Stoke on Trent
- UK
| | - Immaculada Martínez-Rovira
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC)
- Centre National de la Recherche Scientifique (CNRS)
- Université Paris 7 & 11
- 91406 Orsay Cedex
- France
| |
Collapse
|
13
|
Georgantzoglou A, Merchant MJ, Jeynes JCG, Wéra AC, Kirkby KJ, Kirkby NF, Jena R. Automatic cell detection in bright-field microscopy for microbeam irradiation studies. Phys Med Biol 2015; 60:6289-303. [PMID: 26236995 DOI: 10.1088/0031-9155/60/16/6289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Automatic cell detection in bright-field illumination microscopy is challenging due to cells' inherent optical properties. Applications including individual cell microbeam irradiation demand minimisation of additional cell stressing factors, so contrast-enhancing fluorescence microscopy should be avoided. Additionally, the use of optically non-homogeneous substrates amplifies the problem. This research focuses on the design of a method for automatic cell detection on polypropylene substrate, suitable for microbeam irradiation. In order to fulfil the relative requirements, the Harris corner detector was employed to detect apparent cellular features. These features-corners were clustered based on a dual-clustering technique according to the density of their distribution across the image. Weighted centroids were extracted from the clusters of corners and constituted the targets for irradiation. The proposed method identified more than 88% of the 1,738 V79 Chinese hamster cells examined. Moreover, a processing time of 2.6 s per image fulfilled the requirements for a near real-time cell detection-irradiation system.
Collapse
Affiliation(s)
- A Georgantzoglou
- Department of Oncology, Addenbrooke's Hospital, Hills Road, University of Cambridge, Cambridgeshire, CB2 0QQ, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Lipiec E, Bambery KR, Lekki J, Tobin MJ, Vogel C, Whelan DR, Wood BR, Kwiatek WM. SR-FTIR Coupled with Principal Component Analysis Shows Evidence for the Cellular Bystander Effect. Radiat Res 2015; 184:73-82. [DOI: 10.1667/rr13798.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Synchrotron FTIR shows evidence of DNA damage and lipid accumulation in prostate adenocarcinoma PC-3 cells following proton irradiation. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.04.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Mothersill C, Seymour C. Implications for human and environmental health of low doses of ionising radiation. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2014; 133:5-9. [PMID: 23664231 DOI: 10.1016/j.jenvrad.2013.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/01/2013] [Accepted: 04/03/2013] [Indexed: 05/20/2023]
Abstract
The last 20 years have seen a major paradigm shift in radiation biology. Several discoveries challenge the DNA centric view which holds that DNA damage is the critical effect of radiation irrespective of dose. This theory leads to the assumption that dose and effect are simply linked - the more energy deposition, the more DNA damage and the greater the biological effect. This is embodied in radiation protection (RP) regulations as the linear-non-threshold (LNT) model. However the science underlying the LNT model is being challenged particularly in relation to the environment because it is now clear that at low doses of concern in RP, cells, tissues and organisms respond to radiation by inducing responses which are not readily predictable by dose. These include adaptive responses, bystander effects, genomic instability and low dose hypersensitivity, and are commonly described as stress responses, while recognizing that "stress" can be good as well as bad. The phenomena contribute to observed radiation responses and appear to be influenced by genetic, epigenetic and environmental factors, meaning that dose and response are not simply related. The question is whether our discovery of these phenomena means that we need to re-evaluate RP approaches. The so-called "non-targeted" mechanisms mean that low dose radiobiology is very complex and supra linear or sub-linear (even hormetic) responses are possible but their occurrence is unpredictable for any given system level. Issues which may need consideration are synergistic or antagonistic effects of other pollutants. RP, at present, only looks at radiation dose but the new (NTE) radiobiology means that chemical or physical agents, which interfere with tissue responses to low doses of radiation, could critically modulate the predicted risk. Similarly, the "health" of the organism could determine the effect of a given low dose by enabling or disabling a critical response. These issues will be discussed.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1.
| | - Colin Seymour
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
17
|
Sharma M, Crosbie JC, Puskar L, Rogers PAW. Microbeam-irradiated tumour tissue possesses a different infrared absorbance profile compared to broad beam and sham-irradiated tissue. Int J Radiat Biol 2012; 89:79-87. [PMID: 22892032 DOI: 10.3109/09553002.2012.721052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate biochemical changes in mouse tumour tissue following Microbeam Radiation Therapy (MRT) and Broad Beam (BB) irradiation using synchrotron Fourier-Transform Infrared (FTIR) microspectroscopy. MATERIALS AND METHODS Synchrotron FTIR microspectroscopy was carried out on mouse tumour sections previously irradiated with BB (11, 22 or 44 Gy), MRT (560 Gy in-beam, 25 μm wide, 200 μm peak separation) or sham-irradiation (0 Gy) from mice culled 4 hours post-irradiation. RESULTS MRT and BB-irradiated tumour sections showed clear chemical shifts in spectral bands corresponding to functional group vibrations in protein (1654-1630 cm(-1)), lipid (~1470, 1463 cm(-1)) and nucleic acid (1130-1050 cm(-1)). MRT peak and valley regions showed virtually identical absorbance patterns in protein and lipid regions. However, we observed chemical shifts corresponding to the nucleic acid region (1120-1050 cm(-1)) between the peak and valley dose regions. Chemical maps produced from integrating absorbance bands of interest over the scanned tumour area did not reveal any microbeam paths. CONCLUSIONS The lack of difference between MRT peak and valley irradiated areas suggests a holistic tissue response to MRT that occurs within 4 h, and might be the first evidence for a mechanism by which MRT kills the whole tumour despite only a small percentage receiving peak irradiation.
Collapse
Affiliation(s)
- Monica Sharma
- University of Melbourne, Department of Obstetrics & Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
18
|
Matthews Q, Brolo AG, Lum J, Duan X, Jirasek A. Raman spectroscopy of single human tumour cells exposed to ionizing radiationin vitro. Phys Med Biol 2010; 56:19-38. [DOI: 10.1088/0031-9155/56/1/002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Harfouche G, Vaigot P, Rachidi W, Rigaud O, Moratille S, Marie M, Lemaitre G, Fortunel NO, Martin MT. Fibroblast growth factor type 2 signaling is critical for DNA repair in human keratinocyte stem cells. Stem Cells 2010; 28:1639-48. [PMID: 20681019 PMCID: PMC2996082 DOI: 10.1002/stem.485] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Tissue stem cells must be endowed with superior maintenance and repair systems to ensure genomic stability over multiple generations, which would be less necessary in more differentiated cells. We previously reported that human keratinocyte stem cells were more resistant to ionizing radiation toxicity than their direct progeny, the keratinocyte progenitor cells. In the present study we addressed the mechanisms underlying this difference. Investigations of DNA repair showed that both single and double DNA strand breaks were repaired more rapidly and more efficiently in stem cells than in progenitors. As cell signaling is a key regulatory step in the management of DNA damage, a gene profiling study was performed. Data revealed that several genes of the fibroblast growth factor type 2 (FGF2) signaling pathway were induced by DNA damage in stem cells and not in progenitors. Furthermore, an increased content of the FGF2 protein was found in irradiated stem cells, both for the secreted and the cellular forms of the protein. To examine the role of endogenous FGF2 in DNA repair, stem cells were exposed to FGF2 pathway inhibitors. Blocking the FGF2 receptor (FGF receptor 1) or the kinase (Ras-mitogen-activated protein kinase 1) resulted in a inhibition of single and double DNA strand-break repair in the keratinocyte stem cells. Moreover, supplementing the progenitor cells with exogenous FGF2 activated their DNA repair. We propose that, apart from its well-known role as a strong mitogen and prosurvival factor, FGF2 helps to maintain genomic integrity in stem cells by activating stress-induced DNA repair. Stem Cells 2010; 28:1639–1648.
Collapse
Affiliation(s)
- Ghida Harfouche
- CEA, iRCM, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Evry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rigaud O, Fortunel NO, Vaigot P, Cadio E, Martin MT, Lundh O, Faure J, Rechatin C, Malka V, Gauduel YA. Exploring ultrashort high-energy electron-induced damage in human carcinoma cells. Cell Death Dis 2010; 1:e73. [PMID: 21364677 PMCID: PMC3032345 DOI: 10.1038/cddis.2010.46] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- O Rigaud
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA, 2 rue G. Crémieux, Evry 91057, France
| | - N O Fortunel
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA, 2 rue G. Crémieux, Evry 91057, France
| | - P Vaigot
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA, 2 rue G. Crémieux, Evry 91057, France
| | - E Cadio
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA, 2 rue G. Crémieux, Evry 91057, France
| | - M T Martin
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA, 2 rue G. Crémieux, Evry 91057, France
| | - O Lundh
- LOA, CNRS UMR 7639, Ecole Polytechnique Paris Tech, ENSTA Paris Tech, Palaiseau Cedex 91761, France
| | - J Faure
- LOA, CNRS UMR 7639, Ecole Polytechnique Paris Tech, ENSTA Paris Tech, Palaiseau Cedex 91761, France
| | - C Rechatin
- LOA, CNRS UMR 7639, Ecole Polytechnique Paris Tech, ENSTA Paris Tech, Palaiseau Cedex 91761, France
| | - V Malka
- LOA, CNRS UMR 7639, Ecole Polytechnique Paris Tech, ENSTA Paris Tech, Palaiseau Cedex 91761, France
| | - Y A Gauduel
- LOA, CNRS UMR 7639, Ecole Polytechnique Paris Tech, ENSTA Paris Tech, Palaiseau Cedex 91761, France
| |
Collapse
|
21
|
Meade AD, Clarke C, Byrne HJ, Lyng FM. Fourier Transform Infrared Microspectroscopy and Multivariate Methods for Radiobiological Dosimetry. Radiat Res 2010; 173:225-37. [DOI: 10.1667/rr1836.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Hughes C, Liew M, Sachdeva A, Bassan P, Dumas P, Hart CA, Brown MD, Clarke NW, Gardner P. SR-FTIR spectroscopy of renal epithelial carcinoma side population cells displaying stem cell-like characteristics. Analyst 2010; 135:3133-41. [DOI: 10.1039/c0an00574f] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Hanot M, Hoarau J, Carrière M, Angulo JF, Khodja H. Membrane-dependent bystander effect contributes to amplification of the response to alpha-particle irradiation in targeted and nontargeted cells. Int J Radiat Oncol Biol Phys 2009; 75:1247-53. [PMID: 19857788 DOI: 10.1016/j.ijrobp.2009.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 07/08/2009] [Accepted: 07/08/2009] [Indexed: 11/16/2022]
Abstract
PURPOSE Free radicals are believed to play an active role in the bystander response. This study investigated their origin as well as their temporal and spatial impacts in the bystander effect. METHODS AND MATERIALS We employed a precise alpha-particle microbeam to target a small fraction of subconfluent osteoblastic cells (MC3T3-E1). gammaH2AX-53BP1 foci, oxidative metabolism changes, and micronuclei induction in targeted and bystander cells were assessed. RESULTS Cellular membranes and mitochondria were identified as two distinct reactive oxygen species producers. The global oxidative stress observed after irradiation was significantly attenuated after cells were treated with filipin, evidence for the primal role of membrane in the bystander effect. To determine the membrane's impact at a cellular level, micronuclei yield was measured when various fractions of the cell population were individually targeted while the dose per cell remained constant. Induction of micronuclei increased in bystander cells as well as in targeted cells and was attenuated by filipin treatment, demonstrating a role for bystander signals between irradiated cells in an autocrine/paracrine manner. CONCLUSIONS A complex interaction of direct irradiation and bystander signals leads to a membrane-dependent amplification of cell responses that could influence therapeutic outcomes in tissues exposed to low doses or to environmental exposure.
Collapse
Affiliation(s)
- Maïté Hanot
- CEA, IRAMIS, SIS2M, F-91191 Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
24
|
Mothersill C, Seymour C. Implications for environmental health of multiple stressors. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2009; 29:A21-A28. [PMID: 19454807 DOI: 10.1088/0952-4746/29/2a/s02] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recent insights into the mechanisms underlying the biological effects of low dose effects of ionising radiation have revealed that similar mechanisms can be induced by chemical stressors in the environment. This means that interactions between radiation and chemicals are likely and that the outcomes following mixed exposures to radiation and chemicals may not be predictable for human health, by consideration of single agent effects. Our understanding of the biological effects of low dose exposure has undergone a major paradigm shift. We now possess technologies which can detect very subtle changes in cells due to small exposures to radiation or other pollutants. We also understand much more now about cell communication, systems biology and the need to consider effects of low dose exposure at different hierarchical levels of organisation from molecules up to and including ecosystems. Furthermore we understand, at least in part, some of the mechanisms which drive low dose effects and which perpetuate these not only in the exposed organism but also in its progeny and in certain cases, its kin. This means that previously held views about safe doses or lack of harmful effects cannot be sustained. The International Commission on Radiological Protection (ICRP) and all national radiation and environmental protection organisations have always accepted a theoretical risk and have applied the precautionary principle and the LNT (linear-non-threshold) model which basically says that there is no safe dose of radiation. Therefore even in the absence of visible effects, exposure of people to radiation is strictly limited. This review will consider the historical context and the new discoveries and will focus on evidence for emergent effects after mixed exposures to combined stressors which include ionising radiation. The implications for regulation of low dose exposures to protect human health and environmental security will be discussed.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | | |
Collapse
|
25
|
Flaccavento G, Folkard M, Noble JA, Prise KM, Vojnovic B. Substrate evaluation for a microbeam endstation using unstained cell imaging. Appl Radiat Isot 2008; 67:460-3. [PMID: 18684631 DOI: 10.1016/j.apradiso.2008.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cellular imaging system, optimized for unstained cells seeded onto a thin substrate, is under development. This system will be a component of the endstation for the microbeam cell-irradiation facility at the University of Surrey. Previous irradiation experiments at the Gray Cancer Institute (GCI) have used Mylar film to support the cells [Folkard, M., Prise, K., Schettino, G., Shao, C., Gilchrist, S., Vojnovic, B., 2005. New insights into the cellular response to radiation using microbeams. Nucl. Instrum. Methods B 231, 189-194]. Although suitable for fluorescence microscopy, the Mylar often creates excessive optical noise when used with non-fluorescent microscopy. A variety of substrates are being investigated to provide appropriate optical clarity, cell adhesion, and radiation attenuation. This paper reports on our investigations to date.
Collapse
Affiliation(s)
- G Flaccavento
- Gray Institute for Radiation Oncology & Biology, Radiobiology Research Institute, Churchill Hospital, Oxford OX3 7LJ, UK.
| | | | | | | | | |
Collapse
|