2
|
Carlson PM, Mohan M, Patel RB, Birstler J, Nettenstrom L, Sheerar D, Fox K, Rodriguez M, Hoefges A, Hernandez R, Zahm C, Kim K, McNeel DG, Weichert J, Morris ZS, Sondel PM. Optimizing Flow Cytometric Analysis of Immune Cells in Samples Requiring Cryopreservation from Tumor-Bearing Mice. THE JOURNAL OF IMMUNOLOGY 2021; 207:720-734. [PMID: 34261667 DOI: 10.4049/jimmunol.2000656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
Most shared resource flow cytometry facilities do not permit analysis of radioactive samples. We are investigating low-dose molecular targeted radionuclide therapy (MTRT) as an immunomodulator in combination with in situ tumor vaccines and need to analyze radioactive samples from MTRT-treated mice using flow cytometry. Further, the sudden shutdown of core facilities in response to the COVID-19 pandemic has created an unprecedented work stoppage. In these and other research settings, a robust and reliable means of cryopreservation of immune samples is required. We evaluated different fixation and cryopreservation protocols of disaggregated tumor cells with the aim of identifying a protocol for subsequent flow cytometry of the thawed sample, which most accurately reflects the flow cytometric analysis of the tumor immune microenvironment of a freshly disaggregated and analyzed sample. Cohorts of C57BL/6 mice bearing B78 melanoma tumors were evaluated using dual lymphoid and myeloid immunophenotyping panels involving fixation and cryopreservation at three distinct points during the workflow. Results demonstrate that freezing samples after all staining and fixation are completed most accurately matches the results from noncryopreserved equivalent samples. We observed that cryopreservation of living, unfixed cells introduces a nonuniform alteration to PD1 expression. We confirm the utility of our cryopreservation protocol by comparing tumors treated with in situ tumor vaccines, analyzing both fresh and cryopreserved tumor samples with similar results. Last, we use this cryopreservation protocol with radioactive specimens to demonstrate potentially beneficial effector cell changes to the tumor immune microenvironment following administration of a novel MTRT in a dose- and time-dependent manner.
Collapse
Affiliation(s)
- Peter M Carlson
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI.,Cellular and Molecular Biology Graduate Program, Bock Laboratories, University of Wisconsin-Madison, Madison, WI.,Medical Scientist Training Program, Health Sciences Learning Center, University of Wisconsin-Madison, Madison, WI
| | - Manasi Mohan
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Ravi B Patel
- Department of Radiation Oncology, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA
| | - Jen Birstler
- Department of Biostatistics and Medical Informatics, Wisconsin Alumni Research Foundation, Madison, WI
| | - Lauren Nettenstrom
- Flow Cytometry Laboratory, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Dagna Sheerar
- Flow Cytometry Laboratory, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Kathryn Fox
- Flow Cytometry Laboratory, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Matthew Rodriguez
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Anna Hoefges
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI.,Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Reinier Hernandez
- Department of Radiology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Chris Zahm
- Department of Medicine, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, Wisconsin Alumni Research Foundation, Madison, WI
| | - Douglas G McNeel
- Department of Medicine, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Jamey Weichert
- Department of Radiology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI.,Department of Medical Physics, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI; and
| | - Zachary S Morris
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Paul M Sondel
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI; .,Department of Pediatrics, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
3
|
Park J, Kwon T, Lee SS, Jin YW, Seong KM. Mapping the research trends on the biological effects of radiation less than 100 mSv: a bibliometric analysis for 30 years publication. Int J Radiat Biol 2019; 95:527-536. [DOI: 10.1080/09553002.2019.1552373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jina Park
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - TaeWoo Kwon
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Seung-Sook Lee
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| |
Collapse
|
4
|
Jelonek K, Pietrowska M, Widlak P. Systemic effects of ionizing radiation at the proteome and metabolome levels in the blood of cancer patients treated with radiotherapy: the influence of inflammation and radiation toxicity. Int J Radiat Biol 2017; 93:683-696. [PMID: 28281355 DOI: 10.1080/09553002.2017.1304590] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Blood is the most common replacement tissue used to study systemic responses of organisms to different types of pathological conditions and environmental insults. Local irradiation during cancer radiotherapy induces whole body responses that can be observed at the blood proteome and metabolome levels. Hence, comparative blood proteomics and metabolomics are emerging approaches used in the discovery of radiation biomarkers. These techniques enable the simultaneous measurement of hundreds of molecules and the identification of sets of components that can discriminate different physiological states of the human body. Radiation-induced changes are affected by the dose and volume of irradiated tissues; hence, the molecular composition of blood is a hypothetical source of biomarkers for dose assessment and the prediction and monitoring of systemic responses to radiation. This review aims to provide a comprehensive overview on the available evidence regarding molecular responses to ionizing radiation detected at the level of the human blood proteome and metabolome. It focuses on patients exposed to radiation during cancer radiotherapy and emphasizes effects related to radiation-induced toxicity and inflammation. CONCLUSIONS Systemic responses to radiation detected at the blood proteome and metabolome levels are primarily related to the intensity of radiation-induced toxicity, including inflammatory responses. Thus, several inflammation-associated molecules can be used to monitor or even predict radiation-induced toxicity. However, these abundant molecular features have a rather limited applicability as universal biomarkers for dose assessment, reflecting the individual predisposition of the immune system and tissue-specific mechanisms involved in radiation-induced damage.
Collapse
Affiliation(s)
- Karol Jelonek
- a Center for Translational Research and Molecular Biology of Cancer , Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch , Gliwice , Poland
| | - Monika Pietrowska
- a Center for Translational Research and Molecular Biology of Cancer , Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch , Gliwice , Poland
| | - Piotr Widlak
- a Center for Translational Research and Molecular Biology of Cancer , Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch , Gliwice , Poland
| |
Collapse
|
5
|
Beck M, Tabury K, Moreels M, Jacquet P, Van Oostveldt P, De Vos WH, Baatout S. Simulated microgravity decreases apoptosis in fetal fibroblasts. Int J Mol Med 2012; 30:309-13. [PMID: 22614095 DOI: 10.3892/ijmm.2012.1001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 02/20/2012] [Indexed: 11/05/2022] Open
Abstract
Space travel is a major challenge for human beings. Especially, the mechanisms through which space conditions might alter animal development have been questioned for a long time. The two major physical stress factors that are of relevance in this context are space radiation and weightlessness. While it has been extensively shown that high doses of ionizing radiation induce deleterious effects on embryonic development, so far, little is known about the potential harmful effects of radiation in combination with microgravity on the developing organism. In the present study, we investigated the effects of simulated microgravity on irradiated STO mouse fetal fibroblast cells using a random positioning machine (RPM). Radiation-induced cell cycle changes were not affected when cells were subjected to simulated microgravity for 24 h. Moreover, no morphological differences were observed in irradiated samples exposed to simulated microgravity compared to cells that were exclusively irradiated. However, microgravity simulation significantly decreased the level of apoptosis at all doses as measured by caspase-3 activity and it prevented cells from undergoing radiation-induced size increase up to 1 Gy.
Collapse
Affiliation(s)
- Michaël Beck
- Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium
| | | | | | | | | | | | | |
Collapse
|