1
|
Bourgois A, Cosler G, Riccobono D, Le Gallic C, François S, Van der Meeren A. DTPA and anti-inflammatory drug associations to alleviate Pu-induced response of macrophages in vitro. Toxicol In Vitro 2025; 104:106007. [PMID: 39837393 DOI: 10.1016/j.tiv.2025.106007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
Internal contamination by inhalation of plutonium poorly soluble compounds leads to their long time retention in alveolar macrophages inducing delayed pathology development. As previous studies highlighted co-localization of retained Pu and inflammatory lesions, this study was designed to assess the combined effect of the reference treatment (DTPA) and anti-inflammatory drugs on Pu-induced early response of macrophages in vitro. Pu colloids, mimicking poorly soluble Pu, were characterized using filtration and solid-state nuclear track detectors CR39. Their bioavailability was determined using a biphasic acellular model. Treatment effects on Pu dissolution and release as well as on Pu-induced pro-inflammatory response were assessed over 7 days on macrophage-like cells. DTPA treatment, associated or not with anti-inflammatory drug, increased Pu dissolution and release from contaminated THP-1 differentiated cells after 7 days. Significant decreases in Pu-induced IL-8 and MCP-1 secretions were also observed with anti-inflammatory treatment associated or not with DTPA. This study highlighted the ability of DTPA to partially dissolve a poorly soluble form of Pu as well as the ability of anti-inflammatory drugs to modulate Pu-induced pro-inflammatory response in macrophage-like cells. These treatments seem a promising strategy to improve the clinical management of Pu pulmonary contaminations and to limit delayed pulmonary pathology occurrence.
Collapse
Affiliation(s)
- Alexandra Bourgois
- French Armed Forces Biomedical Research Institute (IRBA), Radiation Biological Effects Department, Brétigny-sur-Orge, France.
| | - Guillaume Cosler
- French Armed Forces Biomedical Research Institute (IRBA), Radiation Biological Effects Department, Brétigny-sur-Orge, France
| | - Diane Riccobono
- French Armed Forces Biomedical Research Institute (IRBA), Radiation Biological Effects Department, Brétigny-sur-Orge, France; INSERM 1296: Radiation, Defense, Health and Environment, Lyon and Brétigny-sur-Orge, France
| | - Clélia Le Gallic
- French Armed Forces Biomedical Research Institute (IRBA), Radiation Biological Effects Department, Brétigny-sur-Orge, France; Present address: French Government Defense Procurement and Technology Agency (DGA), CBRN Control, Vert-le-Petit, France
| | - Sabine François
- French Armed Forces Biomedical Research Institute (IRBA), Radiation Biological Effects Department, Brétigny-sur-Orge, France; INSERM 1296: Radiation, Defense, Health and Environment, Lyon and Brétigny-sur-Orge, France
| | - Anne Van der Meeren
- Atomic Energy and Alternative Energies Commission (CEA), Laboratory of Radiotoxicology, CEA, Paris-Saclay University, Bruyères-le-Châtel, France
| |
Collapse
|
2
|
Griffiths NM, Van der Meeren A, Angulo JF, Vincent-Naulleau S. Research on the Radiotoxicology of Plutonium Using Animals: Consideration of the 3Rs-Replace, Reduce, Refine. HEALTH PHYSICS 2020; 119:133-140. [PMID: 32301862 DOI: 10.1097/hp.0000000000001258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To characterize the health effects of incorporated plutonium, many experiments have been conducted using different animal models. These range from (1) applied (tissue uptake/retention determination, decorporation therapy efficacy), (2) fundamental (gene expression, cancer induction), and (3) dosimetry models. In recent years, the use of animals for scientific purposes has become a public concern. The application of the 3Rs - Replace (use of alternative methods or animals not considered capable of experiencing pain, suffering, and distress), Reduce (reduction in animal numbers), and Refine (better animal welfare and minimization of suffering, pain and distress) - has increased to address ethical concerns and legislative requirements. The introduction of novel non-animal technologies is also an important factor as complementary options to animal experimentation. In radiotoxicology research, it seems there is a natural tendency to Replace given the possibility of data reuse obtained from contamination cases in man and animal studies. The creation of "registries" and "repositories" for nuclear industry workers (civil and military) is now a rich legacy for radiotoxicological measurements. Similarly, Reduction in animal numbers can be achieved by good experimental planning with prior statistical analyses of animal numbers required to obtain robust data. Multiple measurements in the same animal over time (external body counting, excreta collection) with appropriate detection instruments also allow Reduction. In terms of Refinement, this has become "de rigueur" and a necessity given the societal and legal concerns for animal welfare. For research in radiotoxicology, particularly long-term studies, better housing conditions within the constraints of radiation protection issues for research workers are an important concern. These are all pertinent considerations for the 3Rs remit and future research in radiotoxicology.
Collapse
Affiliation(s)
- Nina M Griffiths
- Laboratoire de RadioToxicologie, CEA, Université Paris-Saclay, Bruyères-le-Châtel, 91297 ARPAJON, France
| | - Anne Van der Meeren
- Laboratoire de RadioToxicologie, CEA, Université Paris-Saclay, Bruyères-le-Châtel, 91297 ARPAJON, France
| | - Jaime F Angulo
- Laboratoire de RadioToxicologie, CEA, Université Paris-Saclay, Bruyères-le-Châtel, 91297 ARPAJON, France
| | - Silvia Vincent-Naulleau
- Bureau des Etudes Biomédicales chez l'Animal, CEA/DRF/D3P/BEBA, 92260 FONTENAY-aux-ROSES, France
| |
Collapse
|
3
|
S N SG, Raviraj R, Nagarajan D, Zhao W. Radiation-induced lung injury: impact on macrophage dysregulation and lipid alteration - a review. Immunopharmacol Immunotoxicol 2018; 41:370-379. [PMID: 30442050 DOI: 10.1080/08923973.2018.1533025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lung cancer continues to be the leading cause of cancer deaths and more than one million lung cancer patients will die every year worldwide. Radiotherapy (RT) plays an important role in lung cancer treatment, but the side effects of RT are pneumonitis and pulmonary fibrosis. RT-induced lung injury causes damage to alveolar-epithelial cells and vascular endothelial cells. Macrophages play an important role in the development of pulmonary fibrosis despite its role in immune response. These injury activated macrophages develop into classically activated M1 macrophage or alternative activated M2 macrophage. It secretes cytokines, interleukins, interferons, and nitric oxide. Several pro-inflammatory lipids and pro-apoptotic proteins cause lipotoxicity such as LDL, FC, DAG, and FFA. The overall findings in this review conclude the importance of macrophages in inducing toxic/inflammatory effects during RT of lung cancer, which is clinically vital to treat the radiation-induced fibrosis.
Collapse
Affiliation(s)
- Sunil Gowda S N
- a Radiation Biology Laboratory, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur , India
| | - Raghavi Raviraj
- a Radiation Biology Laboratory, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur , India
| | - Devipriya Nagarajan
- a Radiation Biology Laboratory, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur , India
| | - Weiling Zhao
- b School of Biomedical Informatics , The University of Texas Health Sciences Center , Houston , TX , USA
| |
Collapse
|
4
|
Léost L, Roques J, Van Der Meeren A, Vincent L, Sbirrazzuoli N, Hennig C, Rossberg A, Aupiais J, Pagnotta S, Den Auwer C, Di Giorgio C. Towards the development of chitosan nanoparticles for plutonium pulmonary decorporation. Dalton Trans 2018; 47:11605-11618. [PMID: 30090882 DOI: 10.1039/c8dt02419g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the 1940s, great amounts of Plutonium (Pu) have been produced for both military and civil purposes. Until now, the standard therapy for decorporation following inhalation has been the intravenous injection of diethylenetriaminepentaacetic acid ligand (Ca-DTPA form). This method offers a strong complexing constant for Pu(iv) but has poor chemical specificity, therefore its efficacy is limited to actinides present in the blood. Consequently, there is no decorporation treatment currently available which efficiently removes the intracellular Pu(iv) trapped in the pulmonary macrophages. Our research shows that a nanoparticle approach could be of particular interest due to large contact area and ability to target the retention compartments of the lungs. In this study, we have focused on the inhalation process involving forms of Pu(iv) with poor solubility. We explored the design of biocompatible nanoparticles able to target the macrophages in the lung alveoli and to chelate the forms of Pu(iv) with poor solubility. Nanoparticle formation was achieved through an ionic cross-linking concept using a polycationic polymer and an anionic chelate linker. We chose N-trimethyl chitosan, for its biocompatibility, as the polycationic polymer base of the nanoparticle and the phosphonic analogue of DTPA, diethylenetriamine-pentamethylenephosphonic acid (DTPMP) as the anionic chelating linker in forming NPs TMC-DTPMP. The synthesis and physico-chemical characterization of these NPs are presented. Secondly, the complexation mechanisms of TMC-DTPMP NPs with Thorium (Th(iv)) are discussed in terms of efficiency and structure. The Extended X-Ray Absorption Fine Structure (EXAFS) of the TMC-DTPMP complex with Th(iv) as well as Pu(iv) are defined and completed with DFT calculations to further delineate the plutonium coordination sphere after complexation. Finally, preliminary cytotoxicity tests onto macrophages were assayed.
Collapse
Affiliation(s)
- Laurane Léost
- Université Côte d'Azur, Institut de Chimie de Nice, UMR7272, 06108 Nice, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lamart S, Griffiths NM, Tchitchek N, Angulo JF, Van der Meeren A. Analysis methodology and development of a statistical tool for biodistribution data from internal contamination with actinides. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2017; 37:296-308. [PMID: 28245201 DOI: 10.1088/1361-6498/37/1/296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The aim of this work was to develop a computational tool that integrates several statistical analysis features for biodistribution data from internal contamination experiments. These data represent actinide levels in biological compartments as a function of time and are derived from activity measurements in tissues and excreta. These experiments aim at assessing the influence of different contamination conditions (e.g. intake route or radioelement) on the biological behavior of the contaminant. The ever increasing number of datasets and diversity of experimental conditions make the handling and analysis of biodistribution data difficult. This work sought to facilitate the statistical analysis of a large number of datasets and the comparison of results from diverse experimental conditions. Functional modules were developed using the open-source programming language R to facilitate specific operations: descriptive statistics, visual comparison, curve fitting, and implementation of biokinetic models. In addition, the structure of the datasets was harmonized using the same table format. Analysis outputs can be written in text files and updated data can be written in the consistent table format. Hence, a data repository is built progressively, which is essential for the optimal use of animal data. Graphical representations can be automatically generated and saved as image files. The resulting computational tool was applied using data derived from wound contamination experiments conducted under different conditions. In facilitating biodistribution data handling and statistical analyses, this computational tool ensures faster analyses and a better reproducibility compared with the use of multiple office software applications. Furthermore, re-analysis of archival data and comparison of data from different sources is made much easier. Hence this tool will help to understand better the influence of contamination characteristics on actinide biokinetics. Our approach can aid the optimization of treatment protocols and therefore contribute to the improvement of the medical response after internal contamination with actinides.
Collapse
Affiliation(s)
- Stephanie Lamart
- Laboratoire de RadioToxicologie, CEA, Université Paris-Saclay, 91297 Arpajon, France
| | | | | | | | | |
Collapse
|
6
|
Van der Meeren A, Moureau A, Griffiths NM. Macrophages as key elements of Mixed-oxide [U-Pu(O2)] distribution and pulmonary damage after inhalation? Int J Radiat Biol 2014; 90:1095-103. [PMID: 25029673 DOI: 10.3109/09553002.2014.943848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
UNLABELLED Abstract Purpose: To investigate the consequences of alveolar macrophage (AM) depletion on Mixed OXide fuel (MOX: U, Pu oxide) distribution and clearance, as well as lung damage following MOX inhalation. MATERIALS AND METHODS Rats were exposed to MOX by nose only inhalation. AM were depleted with intratracheal administration of liposomal clodronate at 6 weeks. Lung changes, macrophage activation, as well as local and systemic actinide distribution were studied up to 3 months post-inhalation. RESULTS Clodronate administration modified excretion/retention patterns of α activity. At 3 months post-inhalation lung retention was higher in clodronate-treated rats compared to Phosphate Buffered Saline (PBS)-treated rats, and AM-associated α activity was also increased. Retention in liver was higher in clodronate-treated rats and fecal and urinary excretions were lower. Three months after inhalation, rats exhibited lung fibrotic lesions and alveolitis, with no marked differences between the two groups. Foamy macrophages of M2 subtype [inducible Nitric Oxide Synthase (iNOS) negative but galectin-3 positive] were frequently observed, in correlation with the accumulation of MOX particles. AM from all MOX-exposed rats showed increased chemokine levels as compared to sham controls. CONCLUSION Despite the transient reduced AM numbers in clodronate-treated animals no major differences on lung damage were observed as compared to non-treated rats after MOX inhalation. The higher lung activity retention in rats receiving clodronate seems to be part of a general inflammatory response and needs further investigation.
Collapse
Affiliation(s)
- Anne Van der Meeren
- Laboratoire de RadioToxicologie, CEA/DSV/iRCM, Bruyères le Châtel , Arpajon , France
| | | | | |
Collapse
|
7
|
Suslova KG, Khokhryakov VF, Sokolova AB, Miller SC. 238Pu: a review of the biokinetics, dosimetry, and implications for human exposures. HEALTH PHYSICS 2012; 102:251-262. [PMID: 22420017 DOI: 10.1097/hp.0b013e318234899a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Plutonium-238 (238Pu) has a half-life of about 87.7 y and thus a higher specific activity than 239Pu. It is used in radioisotope thermoelectric generators and is a substantial source of plutonium alpha-radiation in spent nuclear fuels. Early animal studies demonstrated differences in the biokinetics of inhaled oxides of 238Pu and 239Pu with 238Pu having a substantially more rapid translocation from the lungs to the systemic organs, particularly the skeleton. This resulted in the predominant occurrence of skeletal cancers in animals exposed to 238Pu oxides but lung cancers in those with exposures to 239Pu oxides. The anatomical distribution of osteogenic sarcomas seen in animal studies was similar to that observed with 239Pu and also in plutonium workers but differed from naturally occurring tumors. The in vivo "solubility" of 238Pu has been associated with the relative amounts of 238Pu/239Pu in the particles and calcination temperatures during the preparation of the dioxides. There is experimental evidence of in vivo 238Pu particle fragmentation attributed to nuclear recoil during radioactive decay. The resulting conversion of microparticles to nanoparticles may alter their interactions with macrophages and transport across epithelial barriers. There are few documented cases of human exposures, but the biokinetics appeared to depend on the chemical and physical nature of the aerosols. Robust human biokinetic and dosimetric models have not been developed, due in part to the lack of data. With the acceleration of nuclear technologies and the greater demand for reprocessing and/or disposal of spent nuclear fuels, the potential for human exposure to 238Pu will likely increase in the future.
Collapse
Affiliation(s)
- Klara G Suslova
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk, Chelyabinsk Region, Russia.
| | | | | | | |
Collapse
|
8
|
Van der Meeren A, Gremy O, Renault D, Miroux A, Bruel S, Griffiths N, Tourdes F. Plutonium behavior after pulmonary administration according to solubility properties, and consequences on alveolar macrophage activation. JOURNAL OF RADIATION RESEARCH 2012; 53:184-194. [PMID: 22510590 DOI: 10.1269/jrr.11112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The physico-chemical form in which plutonium enters the body influences the lung distribution and the transfer rate from lungs to blood. In the present study, we evaluated the early lung damage and macrophage activation after pulmonary contamination of plutonium of various preparation modes which produce different solubility and distribution patterns. Whatever the solubility properties of the contaminant, macrophages represent a major retention compartment in lungs, with 42 to 67% of the activity from broncho-alveolar lavages being associated with macrophages 14 days post-contamination. Lung changes were observed 2 and 6 weeks post-contamination, showing inflammatory lesions and accumulation of activated macrophages (CD68 positive) in plutonium-contaminated rats, although no increased proliferation of pneumocytes II (TTF-1 positive cells) was found. In addition, acid phosphatase activity in macrophages from contaminated rats was enhanced 2 weeks post-contamination as compared to sham groups, as well as inflammatory mediator levels (TNF-α, MCP-1, MIP-2 and CINC-1) in macrophage culture supernatants. Correlating with the decrease in activity remaining in macrophages after plutonium contamination, inflammatory mediator production returned to basal levels 6 weeks post-exposure. The production of chemokines by macrophages was evaluated after contamination with Pu of increasing solubility. No correlation was found between the solubility properties of Pu and the activation level of macrophages. In summary, our data indicate that, despite the higher solubility of plutonium citrate or nitrate as compared to preformed colloids or oxides, macrophages remain the main lung target after plutonium contamination and may participate in the early pulmonary damage.
Collapse
Affiliation(s)
- Anne Van der Meeren
- CEA/DSV/IRCM/SREIT, Laboratory of Radiotoxicology, Centre DAM-Ile de France, Arpajon cedex, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Sabin RJ, Anderson RM. Cellular Senescence - its role in cancer and the response to ionizing radiation. Genome Integr 2011; 2:7. [PMID: 21834983 PMCID: PMC3169443 DOI: 10.1186/2041-9414-2-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/11/2011] [Indexed: 12/11/2022] Open
Abstract
Cellular senescence is a normal biological process that is initiated in response to a range of intrinsic and extrinsic factors that functions to remove irreparable damage and therefore potentially harmful cells, from the proliferative pool. Senescence can therefore be thought of in beneficial terms as a tumour suppressor. In contrast to this, there is a growing body of evidence suggesting that senescence is also associated with the disruption of the tissue microenvironment and development of a pro-oncogenic environment, principally via the secretion of senescence-associated pro-inflammatory factors. The fraction of cells in a senescent state is known to increase with cellular age and from exposure to various stressors including ionising radiation therefore, the implications of the detrimental effects of the senescent phenotype are important to understand within the context of the increasing human exposure to ionising radiation. This review will discuss what is currently understood about senescence, highlighting possible associations between senescence and cancer and, how exposure to ionising radiation may modify this.
Collapse
Affiliation(s)
- Rebecca J Sabin
- Centre for Cell and Chromosome Biology and Centre for Infection, Immunity and Disease Mechanisms, Division of Biosciences, Brunel University, West London, UB8 3PH, UK.
| | | |
Collapse
|
10
|
Grémy O, Tsapis N, Chau Q, Renault D, Abram MC, Van der Meeren A. Preferential Decorporation of Americium by Pulmonary Administration of DTPA Dry Powder after Inhalation of Aged PuO2Containing Americium in Rats. Radiat Res 2010; 174:637-44. [DOI: 10.1667/rr2203.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Griffiths NM, Van der Meeren A, Fritsch P, Abram MC, Bernaudin JF, Poncy JL. Late-occurring pulmonary pathologies following inhalation of mixed oxide (uranium + plutonium oxide) aerosol in the rat. HEALTH PHYSICS 2010; 99:347-356. [PMID: 20699696 DOI: 10.1097/hp.0b013e3181c75750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Accidental exposure by inhalation to alpha-emitting particles from mixed oxide (MOX: uranium and plutonium oxide) fuels is a potential long-term health risk to workers in nuclear fuel fabrication plants. For MOX fuels, the risk of lung cancer development may be different from that assigned to individual components (plutonium, uranium) given different physico-chemical characteristics. The objective of this study was to investigate late effects in rat lungs following inhalation of MOX aerosols of similar particle size containing 2.5 or 7.1% plutonium. Conscious rats were exposed to MOX aerosols and kept for their entire lifespan. Different initial lung burdens (ILBs) were obtained using different amounts of MOX. Lung total alpha activity was determined by external counting and at autopsy for total lung dose calculation. Fixed lung tissue was used for anatomopathological, autoradiographical, and immunohistochemical analyses. Inhalation of MOX at ILBs ranging from 1-20 kBq resulted in lung pathologies (90% of rats) including fibrosis (70%) and malignant lung tumors (45%). High ILBs (4-20 kBq) resulted in reduced survival time (N = 102; p < 0.05) frequently associated with lung fibrosis. Malignant tumor incidence increased linearly with dose (up to 60 Gy) with a risk of 1-1.6% Gy for MOX, similar to results for industrial plutonium oxide alone (1.9% Gy). Staining with antibodies against Surfactant Protein-C, Thyroid Transcription Factor-1, or Oct-4 showed differential labeling of tumor types. In conclusion, late effects following MOX inhalation result in similar risk for development of lung tumors as compared with industrial plutonium oxide.
Collapse
Affiliation(s)
- N M Griffiths
- CEA/DSV/iRCM/Laboratoire de RadioToxicologie, Bruyeres le Châtel, 91297 ARPAJON France.
| | | | | | | | | | | |
Collapse
|
12
|
Simmons JA, Richards SR. A microdosimetric reassessment of new data on the effects of plutonium dioxide inhalation by beagle dogs. Radiat Res 2010; 173:818-28. [PMID: 20518661 DOI: 10.1667/rr2058.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Traditionally, the assessment of the effects of radiation on living tissue has been made in terms of absorbed dose. This concept, however, might not be the most appropriate when considering the effects arising from the inhalation of insoluble radioactive particulates in inhomogeneous tissue such as the lung. We have therefore applied microdosimetric methods to this problem and, in particular, investigated in detail how energy depositions are distributed when alpha particles travel through parenchymal lung tissue. Sections of material derived from rat, beagle and human lung were examined in an image analyzer, and an imaginary plutonium dioxide particulate was placed on the surface of an alveolar sac. The hypothetical alpha particles emitted from it were followed to the ends of their tracks so that the effects of the material's real structure could be followed in detail. It was found that, taking such detail into account, the alpha particles traveled much greater distances than might have been thought on the basis of a uniform, structureless lung. It was also found that the specific energy distributions can cover several orders of magnitude and can differ significantly between tissue as a whole, cells and nuclei at low exposures. Attempts are made to correlate these results with recently published data on beagle dogs that had inhaled graded exposure levels of plutonium dioxide aerosols.
Collapse
|