1
|
Massive expansion of multiple clones in the mouse hematopoietic system long after whole-body X-irradiation. Sci Rep 2022; 12:17276. [PMID: 36241679 PMCID: PMC9568546 DOI: 10.1038/s41598-022-21621-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Clonal hematopoiesis (CH) is prevalent in the elderly and associates with hematologic malignancy and cardiovascular disease. Although the risk of developing these diseases increases with radiation doses in atomic-bomb survivors, the causal relationship between radiation exposure and CH is unclear. This study investigated whether radiation exposure induces CH in mice 12-18 months after 3-Gy whole-body irradiation. We found radiation-associated increases in peripheral blood myeloid cells and red blood cell distribution width (RDW). Deep sequencing of bone marrow and non-hematopoietic tissue cells revealed recurrent somatic mutations specifically in the hematopoietic system in 11 of 12 irradiated mice but none in 6 non-irradiated mice. The irradiated mice possessed mutations with variant allele frequencies (VAFs) of > 0.02 on an average of 5.8 per mouse; mutations with VAFs of > 0.1 and/or deletion were prevalent. Examining hematopoietic stem/progenitor cells in two irradiated mice revealed several mutations co-existing in the same clones and multiple independent clones that deliver 60-80% of bone marrow nuclear cells. Our results indicate development of massive CH due to radiation exposure. Moreover, we have characterized mutations in radiation-induced CH.
Collapse
|
2
|
Trimidal SG, Benjamin R, Bae JE, Han MV, Kong E, Singer A, Williams TS, Yang B, Schiller MR. Can Designer Indels Be Tailored by Gene Editing?: Can Indels Be Customized? Bioessays 2019; 41:e1900126. [PMID: 31693213 PMCID: PMC7202862 DOI: 10.1002/bies.201900126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/01/2019] [Indexed: 12/23/2022]
Abstract
Genome editing with engineered nucleases (GEENs) introduce site-specific DNA double-strand breaks (DSBs) and repairs DSBs via nonhomologous end-joining (NHEJ) pathways that eventually create indels (insertions/deletions) in a genome. Whether the features of indels resulting from gene editing could be customized is asked. A review of the literature reveals how gene editing technologies via NHEJ pathways impact gene editing. The survey consolidates a body of literature that suggests that the type (insertion, deletion, and complex) and the approximate length of indel edits can be somewhat customized with different GEENs and by manipulating the expression of key NHEJ genes. Structural data suggest that binding of GEENs to DNA may interfere with binding of key components of DNA repair complexes, favoring either classical- or alternative-NHEJ. The hypotheses have some limitations, but if validated, will enable scientists to better control indel makeup, holding promise for basic science and clinical applications of gene editing. Also see the video abstract here https://youtu.be/vTkJtUsLi3w.
Collapse
Affiliation(s)
- Sara G Trimidal
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Ronald Benjamin
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Ji Eun Bae
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Mira V Han
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Elizabeth Kong
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Aaron Singer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Tyler S Williams
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Bing Yang
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Martin R Schiller
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| |
Collapse
|
3
|
Radiation-Induced Reactions in The Liver - Modulation of Radiation Effects by Lifestyle-Related Factors. Int J Mol Sci 2018; 19:ijms19123855. [PMID: 30513990 PMCID: PMC6321068 DOI: 10.3390/ijms19123855] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Radiation has a wide variety of effects on the liver. Fibrosis is a concern in medical fields as one of the acute effects of high-dose irradiation, such as with cancer radiotherapies. Cancer is also an important concern following exposure to radiation. The liver has an active metabolism and reacts to radiations. In addition, effects are modulated by many environmental factors, such as high-calorie foods or alcohol beverages. Adaptations to other environmental conditions could also influence the effects of radiation. Reactions to radiation may not be optimally regulated under conditions modulated by the environment, possibly leading to dysregulation, disease or cancer. Here, we introduce some reactions to ionizing radiation in the liver, as demonstrated primarily in animal experiments. In addition, modulation of radiation-induced effects in the liver due to factors such as obesity, alcohol drinking, or supplements derived from foods are reviewed. Perspectives on medical applications by modulations of radiation effects are also discussed.
Collapse
|
4
|
Ono T, Umata T, Okudaira N, Uehara Y, Norimura T. Mutations Induced by Tritiated Water in Mouse Spleen. FUSION SCIENCE AND TECHNOLOGY 2011. [DOI: 10.13182/fst11-a12626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- T. Ono
- Tohoku University, Graduate School of Medicine, Seiryo-machi 2-1, Sendai, MIYAGI 980-8575 Japan and
| | - T. Umata
- University of Occupational and Environmental Health, Iseigaoka 1-1, Kitakyushu, FUKUOKA 807-8555 Japan
| | - N. Okudaira
- Tohoku University, Graduate School of Medicine, Seiryo-machi 2-1, Sendai, MIYAGI 980-8575 Japan and
| | - Y. Uehara
- Tohoku University, Graduate School of Medicine, Seiryo-machi 2-1, Sendai, MIYAGI 980-8575 Japan and
| | - T. Norimura
- University of Occupational and Environmental Health, Iseigaoka 1-1, Kitakyushu, FUKUOKA 807-8555 Japan
| |
Collapse
|
5
|
Okudaira N, Uehara Y, Fujikawa K, Kagawa N, Ootsuyama A, Norimura T, Saeki KI, Nohmi T, Masumura KI, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Ono T. Radiation Dose-Rate Effect on Mutation Induction in Spleen and Liver of gpt delta Mice. Radiat Res 2010; 173:138-47. [DOI: 10.1667/rr1932.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Naohito Okudaira
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yoshihiko Uehara
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Kazuo Fujikawa
- Deparment of Life Science, Faculty of Science and Technology, Kinki University, Kowakae, Higashiosaka 577-8502, Japan
| | - Nao Kagawa
- Deparment of Life Science, Faculty of Science and Technology, Kinki University, Kowakae, Higashiosaka 577-8502, Japan
| | - Akira Ootsuyama
- Department of Radiation Biology and Health, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Toshiyuki Norimura
- Department of Radiation Biology and Health, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Ken-ichi Saeki
- Yokohama College of Pharmacy, Totsuka-ku, Yokohama 245-0066, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Ken-ichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Tsuneya Matsumoto
- Institute for Environmental Sciences, Rokkasho, Aomori 039-3212, Japan
| | - Yoichi Oghiso
- Institute for Environmental Sciences, Rokkasho, Aomori 039-3212, Japan
| | - Kimio Tanaka
- Institute for Environmental Sciences, Rokkasho, Aomori 039-3212, Japan
| | - Kazuaki Ichinohe
- Institute for Environmental Sciences, Rokkasho, Aomori 039-3212, Japan
| | - Shingo Nakamura
- Institute for Environmental Sciences, Rokkasho, Aomori 039-3212, Japan
| | - Satoshi Tanaka
- Institute for Environmental Sciences, Rokkasho, Aomori 039-3212, Japan
| | - Tetsuya Ono
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
6
|
Hidaka M, Oda S, Kuwahara Y, Fukumoto M, Mitani H. Cell lines derived from a medaka radiation-sensitive mutant have defects in DNA double-strand break responses. JOURNAL OF RADIATION RESEARCH 2009; 51:165-171. [PMID: 19952493 DOI: 10.1269/jrr.09107] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
It was reported that the radiation-sensitive Medaka mutant "ric1" has a defect in the repair of DNA double-strand breaks (DSBs) induced by gamma-rays during early embryogenesis. To study the cellular response of a ric1 mutant to ionizing radiation (IR), we established the mutant embryonic cell lines RIC1-e9, RIC1-e42, RIC1-e43. Following exposure to gamma-irradiation, the DSBs in wild-type cells were repaired within 1 h, while those in RIC1 cells were not rejoined even after 2 h. Cell death was induced in the wild-type cells with cell fragmentation, but only a small proportion of the RIC1 cells underwent cell death, and without cell fragmentation. Although both wild-type and RIC1 cells showed mitotic inhibition immediately after gamma-irradiation, cell division was much slower to resume in the wild-type cells (20 h versus 12 h). In both wild-type and RIC1 cells, Ser139 phosphorylated H2AX (gammaH2AX) foci were formed after gamma-irradiation, however, the gammaH2AX foci disappeared more quickly in the RIC1 cell lines. These results suggest that the instability of gammaH2AX foci in RIC1 cells cause an aberration of the DNA damage response. As RIC1 cultured cells showed similar defective DNA repair as ric1 embryos and RIC1 cells revealed defective cell death and cell cycle checkpoint, they are useful for investigating DNA damage responses in vitro.
Collapse
Affiliation(s)
- Masayuki Hidaka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
7
|
Uehara Y, Ikehata H, Furuya M, Kobayashi S, He D, Chen Y, Komura JI, Ohtani H, Shimokawa I, Ono T. XPC is involved in genome maintenance through multiple pathways in different tissues. Mutat Res 2009; 670:24-31. [PMID: 19615386 DOI: 10.1016/j.mrfmmm.2009.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/26/2009] [Accepted: 06/30/2009] [Indexed: 05/28/2023]
Abstract
In an attempt to evaluate the role of the Xpc gene in maintaining genomic stability in vivo under normal conditions, the age-dependent accumulation of spontaneous mutations in different tissues was analyzed in Xpc-deficient lacZ-transgenic mice. Brain, testis, and small intestine revealed no effects from the Xpc-deficiency, whereas liver, spleen, heart, and lung showed an enhanced age-related accumulation of mutations in Xpc-deficient mice. In the spleen, the effect was not obvious at 2 and 12 months of age, but became apparent at 23 months. The magnitude of the observed effect at an advanced age was similar in the liver, spleen and heart, but was comparatively smaller in the lung. Haploinsufficiency was observed in liver and spleen but not in heart and lung. Analysis of DNA sequences in the mutants revealed that the frequency of G:C to T:A changes were elevated in the liver and heart of Xpc-deficient aged mice, supporting the possible involvement of XPC in base excision repair of oxidized guanine. The occurrence of two or more mutations within a single lacZ gene was termed a multiple mutation and was also elevated in old Xpc-deficient mice. Among the clones examined, two mutant clones showed as many as four mutations within a short stretch of DNA. This is the first demonstration to support suggestions for the existence of a role for XPC in the suppression of multiple mutations. These multiple mutations could conceivably be generated by error-prone trans-lesional DNA synthesis. Overall, these results indicate that there may be diverse roles or mechanisms through which XPC participates in genome maintenance in different tissues.
Collapse
Affiliation(s)
- Yoshihiko Uehara
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|