1
|
Gao Y, Wang X, Cloutier P, Zheng Y, Sanche L. Oxygen Effect on 0-30 eV Electron Damage to DNA Under Different Hydration Levels: Base and Clustered Lesions, Strand Breaks and Crosslinks. Molecules 2024; 29:6033. [PMID: 39770123 PMCID: PMC11680046 DOI: 10.3390/molecules29246033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Studies on radiosensitization of biological damage by O2 began about a century ago and it remains one of the most significant subjects in radiobiology. It has been related to increased production of oxygen radicals and other reactive metabolites, but only recently to the action of the numerous low-energy electrons (LEEs: 0-30 eV) produced by ionizing radiation. We provide the first complete set of G-values (yields of specific products per energy deposited) for all conformational damages induced to plasmid DNA by LEEs (GLEE (O2)) and 1.5 keV X-rays (GX(O2)) under oxygen at atmospheric pressure. The experiments are performed in a chamber, under humidity levels ranging from 2.5 to 33 water molecules/base. Photoelectrons from 0 to 30 eV are produced by X-rays incident on a tantalum substrate covered with DNA. Damage yields are measured by electrophoresis as a function of X-ray fluence. The oxygen enhancement ratio GLEE(O2)/GLEE(N2), which lies around 2 for potentially lethal cluster lesions, is similar to that found with cells. The average ratio, GLEE(O2)/GX(O2), of 12 for cluster lesions and crosslinks strongly suggest that DNA damages that harm cells are much more likely to be created by LEEs than any other initial species generated by X-rays in the presence of O2.
Collapse
Affiliation(s)
- Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China; (Y.G.); (X.W.); (Y.Z.)
| | - Xuran Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China; (Y.G.); (X.W.); (Y.Z.)
| | - Pierre Cloutier
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China; (Y.G.); (X.W.); (Y.Z.)
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| |
Collapse
|
2
|
Gao Y, Dong Y, Wang X, Su W, Cloutier P, Zheng Y, Sanche L. Comparisons between the Direct and Indirect Effect of 1.5 keV X-rays and 0-30 eV Electrons on DNA: Base Lesions, Stand Breaks, Cross-Links, and Cluster Damages. J Phys Chem B 2024; 128:11041-11053. [PMID: 39453992 DOI: 10.1021/acs.jpcb.4c02799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
The interaction of low energy electrons (LEEs; 1-30 eV) with genomic material can induce multiple types of damage that may cause the loss of genetic information, mutations, genome instability, and cell death. For all damages measurable by electrophoresis, we provide the first complete set of G-values (yield of a specific product per energy deposited) induced in plasmid DNA by the direct and indirect effects of LEEs (GLEE) and 1.5 keV X-rays (GX) under identical conditions. Low energy photoelectrons are produced via X-rays incident on a tantalum (Ta) substrate covered with DNA and placed in a chamber filled with nitrogen at atmospheric pressure, under four different humidity levels, ranging from dry conditions to full hydration (Γ = 2.5 to Γ = 33, where Γ is the number of water molecules/nucleotide). Damage yields are measured as a function of X-ray fluence and humidity. GLEE values are between 2 and 27 times larger than those for X-rays. At Γ = 2.5 and 33, GLEE values for double strand breaks are 27 and 16 times larger than GX, respectively. The indirect effect contributes ∼50% to the total damage. These G-values allow quantification of potentially lethal lesions composed of strand breaks and/or base damages in the presence of varying amounts of water, i.e., closer to cellular conditions.
Collapse
Affiliation(s)
- Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yanfang Dong
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 47100, P. R. China
| | - Xuran Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Wenyue Su
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Pierre Cloutier
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
3
|
Młynarczyk D, Puig P, Barquinero JF, Armero C, Gómez-Rubio V. Comparative analysis of the yields of dicentrics and chromosomal translocations. Int J Radiat Biol 2024; 100:1193-1201. [PMID: 38953797 DOI: 10.1080/09553002.2024.2369077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/09/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE Chromosomal dicentrics and translocations are commonly employed as biomarkers to estimate radiation doses. The main goal of this article is to perform a comparative analysis of yields of both types of aberrations. The objective is to determine if there are relevant distinctions between both yields, allowing for a comprehensive assessment of their respective suitability and accuracy in the estimation of radiation doses. MATERIALS AND METHODS The analysis involved data from a partial-radiation simulation study with the calibration data obtained through two scoring methods: conventional and PAINT modified. Subsequently, a Bayesian bivariate zero-inflated Poisson model was employed to compare the posterior marginal density of the mean of dicentrics and translocations and assess the differences between them. RESULTS When employing the conventional method of scoring, the findings indicate that there is no notable disparity between the yield of observed translocations and dicentrics. However, when utilizing the PAINT modified method, a notable discrepancy is observed for higher doses, indicating a relevant difference in the mean number of the two types of aberrations. CONCLUSIONS The choice of scoring method significantly influences the analysis of radiation-induced aberrations, especially when distinguishing between complex and simple chromosomal formations. Further research and analysis are necessary to gain a deeper understanding of the factors and mechanisms impacting the formation of dicentrics and translocations.
Collapse
Affiliation(s)
- Dorota Młynarczyk
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Pedro Puig
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centre de Recerca Matemàtica, Bellaterra, Spain
| | - Joan F Barquinero
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Armero
- Departament d'Estadística i Investigació Operativa, Universitat de València, València, Spain
| | - Virgilio Gómez-Rubio
- Department of Mathematics, School of Industrial Engineering, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
4
|
Rezaee M, Adhikary A. The Effects of Particle LET and Fluence on the Complexity and Frequency of Clustered DNA Damage. DNA 2024; 4:34-51. [PMID: 38282954 PMCID: PMC10810015 DOI: 10.3390/dna4010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Motivation Clustered DNA-lesions are predominantly induced by ionizing radiation, particularly by high-LET particles, and considered as lethal damage. Quantification of this specific type of damage as a function of radiation parameters such as LET, dose rate, dose, and particle type can be informative for the prediction of biological outcome in radiobiological studies. This study investigated the induction and complexity of clustered DNA damage for three different types of particles at an LET range of 0.5-250 keV/μm. Methods Nanometric volumes (36.0 nm3) of 15 base-pair DNA with its hydration shell was modeled. Electron, proton, and alpha particles at various energies were simulated to irradiate the nanometric volumes. The number of ionization events, low-energy electron spectra, and chemical yields for the formation of °OH, H°, e aq - , and H2O2 were calculated for each particle as a function of LET. Single- and double-strand breaks (SSB and DSB), base release, and clustered DNA-lesions were computed from the Monte-Carlo based quantification of the reactive species and measured yields of the species responsible for the DNA lesion formation. Results The total amount of DNA damage depends on particle type and LET. The number of ionization events underestimates the quantity of DNA damage at LETs higher than 10 keV/μm. Minimum LETs of 9.4 and 11.5 keV/μm are required to induce clustered damage by a single track of proton and alpha particles, respectively. For a given radiation dose, an increase in LET reduces the number of particle tracks, leading to more complex clustered DNA damage, but a smaller number of separated clustered damage sites. Conclusions The dependency of the number and the complexity of clustered DNA damage on LET and fluence suggests that the quantification of this damage can be a useful method for the estimation of the biological effectiveness of radiation. These results also suggest that medium-LET particles are more appropriate for the treatment of bulk targets, whereas high-LET particles can be more effective for small targets.
Collapse
Affiliation(s)
- Mohammad Rezaee
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University, 1550 Orleans St., Baltimore, MD 21231, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI 48309, USA
| |
Collapse
|
5
|
Wintenberg M, Manglass L, Martinez NE, Blenner M. Global Transcriptional Response of Escherichia coli Exposed In Situ to Different Low-Dose Ionizing Radiation Sources. mSystems 2023; 8:e0071822. [PMID: 36779725 PMCID: PMC10134817 DOI: 10.1128/msystems.00718-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/11/2023] [Indexed: 02/14/2023] Open
Abstract
Characterization of biological and chemical responses to ionizing radiation by various organisms is essential for potential applications in bioremediation, alternative modes of detecting nuclear material, and national security. Escherichia coli DH10β is an optimal system to study the microbial response to low-dose ionizing radiation at the transcriptional level because it is a well-characterized model bacterium and its responses to other environmental stressors, including those to higher radiation doses, have been elucidated in prior studies. In this study, RNA sequencing with downstream transcriptomic analysis (RNA-seq) was employed to characterize the global transcriptional response of stationary-phase E. coli subjected to 239Pu, 3H (tritium), and 55Fe, at an approximate absorbed dose rate of 10 mGy day-1 for 1 day and 15 days. Differential expression analysis identified significant changes in gene expression of E. coli for both short- and long-term exposures. Radionuclide source exposure induced differential expression in E. coli of genes involved in biosynthesis pathways of nuclear envelope components, amino acids, and siderophores, transport systems such as ABC transporters and type II secretion proteins, and initiation of stress response and regulatory systems of temperature stress, the RpoS regulon, and oxidative stress. These findings provide a basic understanding of the relationship between low-dose exposure and biological effect of a model bacterium that is critical for applications in alternative nuclear material detection and bioremediation. IMPORTANCE Escherichia coli strain DH10β, a well-characterized model bacterium, was subjected to short-term (1-day) and long-term (15-day) exposures to three different in situ radiation sources comprised of radionuclides relevant to nuclear activities to induce a measurable and identifiable genetic response. We found E. coli had both common and unique responses to the three exposures studied, suggesting both dose rate- and radionuclide-specific effects. This study is the first to provide insights into the transcriptional response of a microorganism in short- and long-term exposure to continuous low-dose ionizing radiation with multiple in situ radionuclide sources and the first to examine microbial transcriptional response in stationary phase. Moreover, this work provides a basis for the development of biosensors and informing more robust dose-response relationships to support ecological risk assessment.
Collapse
Affiliation(s)
- Molly Wintenberg
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, USA
| | - Lisa Manglass
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
- Department of Physics and Engineering, Francis Marion University, Florence, South Carolina, USA
| | - Nicole E. Martinez
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
6
|
Narayanan S J J, Tripathi D, Verma P, Adhikary A, Dutta AK. Secondary Electron Attachment-Induced Radiation Damage to Genetic Materials. ACS OMEGA 2023; 8:10669-10689. [PMID: 37008102 PMCID: PMC10061531 DOI: 10.1021/acsomega.2c06776] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Reactions of radiation-produced secondary electrons (SEs) with biomacromolecules (e.g., DNA) are considered one of the primary causes of radiation-induced cell death. In this Review, we summarize the latest developments in the modeling of SE attachment-induced radiation damage. The initial attachment of electrons to genetic materials has traditionally been attributed to the temporary bound or resonance states. Recent studies have, however, indicated an alternative possibility with two steps. First, the dipole-bound states act as a doorway for electron capture. Subsequently, the electron gets transferred to the valence-bound state, in which the electron is localized on the nucleobase. The transfer from the dipole-bound to valence-bound state happens through a mixing of electronic and nuclear degrees of freedom. In the presence of aqueous media, the water-bound states act as the doorway state, which is similar to that of the presolvated electron. Electron transfer from the initial doorway state to the nucleobase-bound state in the presence of bulk aqueous media happens on an ultrafast time scale, and it can account for the decrease in DNA strand breaks in aqueous environments. Analyses of the theoretically obtained results along with experimental data have also been discussed.
Collapse
Affiliation(s)
- Jishnu Narayanan S J
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| | - Divya Tripathi
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| | - Pooja Verma
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| | - Amitava Adhikary
- Department
of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Achintya Kumar Dutta
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
7
|
Mechanisms of Nanoscale Radiation Enhancement by Metal Nanoparticles: Role of Low Energy Electrons. Int J Mol Sci 2023; 24:ijms24054697. [PMID: 36902132 PMCID: PMC10003700 DOI: 10.3390/ijms24054697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Metal nanoparticles are considered as highly promising radiosensitizers in cancer radiotherapy. Understanding their radiosensitization mechanisms is critical for future clinical applications. This review is focused on the initial energy deposition by short-range Auger electrons; when high energy radiation is absorbed by gold nanoparticles (GNPs) located near vital biomolecules; such as DNA. Auger electrons and the subsequent production of secondary low energy electrons (LEEs) are responsible for most the ensuing chemical damage near such molecules. We highlight recent progress on DNA damage induced by the LEEs produced abundantly within about 100 nanometers from irradiated GNPs; and by those emitted by high energy electrons and X-rays incident on metal surfaces under differing atmospheric environments. LEEs strongly react within cells; mainly via bound breaking processes due to transient anion formation and dissociative electron attachment. The enhancement of damages induced in plasmid DNA by LEEs; with or without the binding of chemotherapeutic drugs; are explained by the fundamental mechanisms of LEE interactions with simple molecules and specific sites on nucleotides. We address the major challenge of metal nanoparticle and GNP radiosensitization; i.e., to deliver the maximum local dose of radiation to the most sensitive target of cancer cells (i.e., DNA). To achieve this goal the emitted electrons from the absorbed high energy radiation must be short range, and produce a large local density of LEEs, and the initial radiation must have the highest possible absorption coefficient compared to that of soft tissue (e.g., 20-80 keV X-rays).
Collapse
|
8
|
Omac B, Moreira RG, Castell‐Perez E. Integration of electron beam technology into fresh produce wash water line: Effect of inoculum suspension medium and water quality parameters on the radioresistance of
Salmonella
Typhimurium
ATCC
13311. J Food Saf 2021. [DOI: 10.1111/jfs.12946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Basri Omac
- Department of Food Processing Munzur University Tunceli Turkey
| | - Rosana G. Moreira
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas USA
| | - Elena Castell‐Perez
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas USA
| |
Collapse
|
9
|
Gao Y, Zheng Y, Sanche L. Low-Energy Electron Damage to Condensed-Phase DNA and Its Constituents. Int J Mol Sci 2021; 22:7879. [PMID: 34360644 PMCID: PMC8345953 DOI: 10.3390/ijms22157879] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/18/2022] Open
Abstract
The complex physical and chemical reactions between the large number of low-energy (0-30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.
Collapse
Affiliation(s)
- Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China;
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China;
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| |
Collapse
|
10
|
Sala L, Zerolová A, Rodriguez A, Reimitz D, Davídková M, Ebel K, Bald I, Kočišek J. Folding DNA into origami nanostructures enhances resistance to ionizing radiation. NANOSCALE 2021; 13:11197-11203. [PMID: 34142687 PMCID: PMC8247635 DOI: 10.1039/d1nr02013g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/04/2021] [Indexed: 05/22/2023]
Abstract
We report experimental results on damage induced by ionizing radiation to DNA origami triangles which are commonly used prototypes for scaffolded DNA origami nanostructures. We demonstrate extreme stability of DNA origami upon irradiation, which is caused by (i) the multi-row design holding the shape of the origami even after severe damage to the scaffold DNA and (ii) the reduction of damage to the scaffold DNA due to the protective effect of the folded structure. With respect to damage induced by ionizing radiation, the protective effect of the structure is superior to that of a naturally paired DNA double helix. Present results allow estimating the stability of scaffolded DNA origami nanostructures in applications such as nanotechnology, pharmacy or in singulo molecular studies where they are exposed to ionizing radiation from natural and artificial sources. Additionally, possibilities are opened for scaffolded DNA use in the design of radiation-resistant and radio-sensitive materials.
Collapse
Affiliation(s)
- Leo Sala
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 18223 Prague, Czech Republic.
| | - Agnes Zerolová
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 18223 Prague, Czech Republic. and Department of Chemistry, Technical University of Liberec, 46117, Liberec, Czech Republic
| | - Alvaro Rodriguez
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 18223 Prague, Czech Republic.
| | - Dan Reimitz
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 18223 Prague, Czech Republic.
| | - Marie Davídková
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Prague, Czech Republic
| | - Kenny Ebel
- Institute of Chemistry-Physical Chemistry, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany
| | - Ilko Bald
- Institute of Chemistry-Physical Chemistry, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany
| | - Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 18223 Prague, Czech Republic.
| |
Collapse
|
11
|
Murray V, Hardie ME, Gautam SD. Comparison of Different Methods to Determine the DNA Sequence Preference of Ionising Radiation-Induced DNA Damage. Genes (Basel) 2019; 11:genes11010008. [PMID: 31861886 PMCID: PMC7016695 DOI: 10.3390/genes11010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 11/29/2022] Open
Abstract
Ionising radiation (IR) is known to induce a wide variety of lesions in DNA. In this review, we compared three different techniques that examined the DNA sequence preference of IR-induced DNA damage at nucleotide resolution. These three techniques were: the linear amplification/polymerase stop assay, the end-labelling procedure, and Illumina next-generation genome-wide sequencing. The DNA sequence preference of IR-induced DNA damage was compared in purified DNA sequences including human genomic DNA. It was found that the DNA sequence preference of IR-induced DNA damage identified by the end-labelling procedure (that mainly detected single-strand breaks) and Illumina next-generation genome-wide sequencing (that mainly detected double-strand breaks) was at C nucleotides, while the linear amplification/polymerase stop assay (that mainly detected base damage) was at G nucleotides. A consensus sequence at the IR-induced DNA damage was found to be 5′-AGGC*C for the end-labelling technique, 5′-GGC*MH (where * is the cleavage site, M is A or C, H is any nucleotide except G) for the genome-wide technique, and 5′-GG* for the linear amplification/polymerase stop procedure. These three different approaches are important because they provide a deeper insight into the mechanism of action of IR-induced DNA damage.
Collapse
Affiliation(s)
- Vincent Murray
- Correspondence: ; Tel.: +61-2-9385-2028; Fax: +61-2-9385-1483
| | | | | |
Collapse
|
12
|
Hardie ME, Murray V. The sequence preference of gamma radiation-induced DNA damage as determined by a polymerase stop assay. Int J Radiat Biol 2019; 95:1613-1626. [PMID: 31498026 DOI: 10.1080/09553002.2019.1665216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose: The aim of this paper was to investigate the sequence preference of ionizing radiation (IR)-induced DNA damage as assessed by a linear amplification/polymerase stop (LA/PS) assay. The LA/PS assay is able to detect a wide range of IR-induced DNA lesions and this technique was utilized to quantitatively determine the preferential sites of gamma irradiation-induced DNA lesions in three different DNA sequences.Materials and methods: This analysis was performed on an automated DNA sequencer with capillary electrophoresis and laser-induced fluorescence detection.Results: The main outcome of this study was that G nucleotides were preferentially found at IR-induced polymerase stop sites. The individual nucleotides at the IR-induced DNA damage sites were analyzed and a consensus sequence of 5'-GG* (where * indicates the damaged nucleotide) was observed. In a separate method of analysis, the dinucleotides and trinucleotides at the IR-induced DNA damage sites were examined and 5'-GG* and 5'-G*G dinucleotides and 5'-GG*G trinucleotides were found to be the most prevalent. The use of the LA/PS assay permits a large number of IR-induced DNA lesions to be detected in the one procedure including: double- and single-strand breaks, apurinic/apyrimidinic sites and base damage.Conclusions: It was concluded that 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy-G) and the degradation products of 8-oxoG were possibly the main lesions detected. To our knowledge, this is the first occasion that the DNA sequence preference of IR-induced DNA damage as detected by a LA/PS assay has been reported.
Collapse
Affiliation(s)
- Megan E Hardie
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
13
|
Belousov AV, Morozov VN, Krusanov GA, Kolyvanova MA, Shtil AA. The Effect of Gold Nanoparticle Surface Modification with Polyethylene Glycol on the Absorbed Dose Distribution upon Irradiation with 137Cs and 60Co Photons. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Hardie ME, Gautam SD, Murray V. The genome-wide sequence preference of ionising radiation-induced cleavage in human DNA. Mol Biol Rep 2019; 46:3731-3745. [PMID: 31037547 DOI: 10.1007/s11033-019-04815-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/11/2019] [Indexed: 12/26/2022]
Abstract
For ionising radiation (IR)-induced cellular toxicity, DNA cleavage is thought to be a crucial step. In this paper, the genome-wide DNA sequence preference of gamma radiation-induced cleavage was investigated in purified human DNA. We utilised Illumina short read technology and over 80 million double-strand breaks (DSBs) were analysed in this study. The frequency of occurrence of individual nucleotides at the 50,000 most frequently cleaved sites was calculated and C nucleotides were found to be most prevalent at the cleavage site, followed by G and T, with A being the least prevalent. 5'-C*C and 5'-CC* dinucleotides (where * is the cleavage site) were found to be the present at the highest frequency at the cleavage site; while it was 5'-CC*C for trinucleotides and 5'-GCC*C and 5'-CC*CC for tetranucleotides. The frequency of occurrence of individual nucleotides at the most frequently cleaved sites was determined and the nucleotides in the sequence 5'-GGC*MH (where M is A or C, H is any nucleotide except G) were found to occur most frequently for DNA that was treated with endonuclease IV (to remove blocking 3'-phosphoglycolate termini); and 5'-GSC*MH (where S is G or C) for non-endonuclease IV-treated DNA. It was concluded that GC-rich sequences were preferentially targeted for cleavage by gamma irradiation. This was the first occasion that an extensive examination of the genome-wide DNA sequence preference of IR-induced DSBs has been performed.
Collapse
Affiliation(s)
- Megan E Hardie
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shweta D Gautam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
15
|
Cai Y, Zhou L, Gao Y, Liu W, Shao Y, Zheng Y. Contribution of Base Damages to the Molecular Radiosensitization Mechanism of Platinum Chemotherapeutic Drugs. ChemistrySelect 2019. [DOI: 10.1002/slct.201803400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yanming Cai
- Research Institute of Photocatalysis, S; tate Key Laboratory of Photocatalysis on Energy and Environment; Fuzhou University; Fuzhou 350116 P.R. China
| | - Limei Zhou
- Research Institute of Photocatalysis, S; tate Key Laboratory of Photocatalysis on Energy and Environment; Fuzhou University; Fuzhou 350116 P.R. China
| | - Yingxia Gao
- Research Institute of Photocatalysis, S; tate Key Laboratory of Photocatalysis on Energy and Environment; Fuzhou University; Fuzhou 350116 P.R. China
| | - Wenhui Liu
- Research Institute of Photocatalysis, S; tate Key Laboratory of Photocatalysis on Energy and Environment; Fuzhou University; Fuzhou 350116 P.R. China
| | - Yu Shao
- Research Institute of Photocatalysis, S; tate Key Laboratory of Photocatalysis on Energy and Environment; Fuzhou University; Fuzhou 350116 P.R. China
| | - Yi Zheng
- Research Institute of Photocatalysis, S; tate Key Laboratory of Photocatalysis on Energy and Environment; Fuzhou University; Fuzhou 350116 P.R. China
| |
Collapse
|
16
|
Brodeur N, Cloutier P, Bass AD, Bertrand G, Hunting DJ, Grandbois M, Sanche L. Absolute cross section for DNA damage induced by low-energy (10 eV) electrons: Experimental refinements and sample characterization by AFM. J Chem Phys 2018; 149:164904. [PMID: 30384690 DOI: 10.1063/1.5041805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This work describes multiple experimental improvements for measuring absolute cross sections of DNA damage induced by low-energy electrons in nanometer-thick films in vacuum. Measurements of such cross sections are particularly sensitive to film thickness and uniformity. Using atomic force microscopy in 70% ethanol, we present a novel and effective method to determine plasmid DNA film thickness and uniformity that combines height histograms and force-distance curves. We also investigate film deposition with DNA intercalated with 1,3-diaminopropane (Dap) on tantalum-coated substrates as a convenient and cost-effective alternative to the previously-used graphite substrate. The tantalum substrate permits deposition of films very similar to those formed on graphite. Using these refinements and further optimizations of the experimental procedure, we measure an absolute cross section of (7.4 ± 2.3) × 10-18 cm2 per nucleotide for conformational damage to a 3197 base-pair plasmid, induced by 10 eV electrons, which we believe should be considered as a reference value.
Collapse
Affiliation(s)
- N Brodeur
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - P Cloutier
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - A D Bass
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - G Bertrand
- Department of Pharmacology, University of Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - D J Hunting
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - M Grandbois
- Department of Pharmacology, University of Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - L Sanche
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
17
|
Schürmann R, Vogel S, Ebel K, Bald I. The Physico-Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy. Chemistry 2018. [PMID: 29522244 DOI: 10.1002/chem.201800804] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High-energy radiation is used in combination with radiosensitizing therapeutics to treat cancer. The most common radiosensitizers are halogenated nucleosides and cisplatin derivatives, and recently also metal nanoparticles have been suggested as potential radiosensitizing agents. The radiosensitizing action of these compounds can at least partly be ascribed to an enhanced reactivity towards secondary low-energy electrons generated along the radiation track of the high-energy primary radiation, or to an additional emission of secondary reactive electrons close to the tumor tissue. This is referred to as physico-chemical radiosensitization. In this Concept article we present current experimental methods used to study fundamental processes of physico-chemical radiosensitization and discuss the most relevant classes of radiosensitizers. Open questions in the current discussions are identified and future directions outlined, which can lead to optimized treatment protocols or even novel therapeutic concepts.
Collapse
Affiliation(s)
- Robin Schürmann
- Institute of Chemistry-Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.,Department 1-Analytical Chemistry and Reference Materials, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter Str. 11, 12489, Berlin, Germany
| | - Stefanie Vogel
- Institute of Chemistry-Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.,Department 1-Analytical Chemistry and Reference Materials, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter Str. 11, 12489, Berlin, Germany.,School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Kenny Ebel
- Institute of Chemistry-Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.,Department 1-Analytical Chemistry and Reference Materials, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter Str. 11, 12489, Berlin, Germany
| | - Ilko Bald
- Institute of Chemistry-Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.,Department 1-Analytical Chemistry and Reference Materials, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter Str. 11, 12489, Berlin, Germany
| |
Collapse
|
18
|
Zheng L, Greenberg MM. Traceless Tandem Lesion Formation in DNA from a Nitrogen-Centered Purine Radical. J Am Chem Soc 2018; 140:6400-6407. [PMID: 29738242 DOI: 10.1021/jacs.8b02828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitrogen-centered nucleoside radicals are commonly produced reactive intermediates in DNA exposed to γ-radiolysis and oxidants, but their reactivity is not well understood. Examination of the reactivity of independently generated 2'-deoxyadenosin- N6-yl radical (dA•) reveals that it is an initiator of tandem lesions, an important form of DNA damage that is a hallmark of γ-radiolysis. dA• yields O2-dependent tandem lesions by abstracting a hydrogen atom from the C5-methyl group of a 5'-adjacent thymidine to form 5-(2'-deoxyuridinyl)methyl radical (T•). The subsequently formed thymidine peroxyl radical adds to the 5'-adjacent dG, ultimately producing a 5'-OxodGuo-fdU tandem lesion. Importantly, the initial hydrogen abstraction repairs dA• to form dA. Thus, the involvement of dA• in tandem lesion formation is traceless by product analysis. The tandem lesion structure, as well as the proposed mechanism, are supported by LC-MS/MS, isotopic labeling, chemical reactivity experiments, and independent generation of T•. Tandem lesion formation efficiency is dependent on the ease of ionization of the 5'-flanking sequence, and the yields are >27% in the 5'-d(GGGT) flanking sequence. The traceless involvement of dA• in tandem lesion formation may be general for nitrogen-centered radicals in nucleic acids, and presents a new pathway for forming a deleterious form of DNA damage.
Collapse
Affiliation(s)
- Liwei Zheng
- Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Marc M Greenberg
- Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
19
|
Ellis-Gibbings L, Bass AD, Cloutier P, García G, Sanche L. Electron stimulated desorption from condensed pyrimidine and pyridazine. Phys Chem Chem Phys 2018; 19:13038-13048. [PMID: 28484763 DOI: 10.1039/c7cp00715a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Low energy electron (LEE) interactions and the formation of transient negative ions play a dominant role in radiation-induced dissociation of condensed-phase biomolecules (e.g. in radiotherapy). Here we present data on the LEE-induced dissociation and desorption of the DNA/RNA-base and radiosensitizing agent analogues pyrimidine and pyridazine. Vapors of each molecule were condensed on either a Pt or Ar substrate to form a multilayer film or a submonolayer molecular target, respectively. These were irradiated with electrons of 0-80 eV and the desorbing anionic and cationic fragments analysed via time of flight mass spectrometry. The detected cations are the same species seen in gas-phase mass spectra, albeit of differing relative intensity. Anion yield functions exhibit strong maxima, indicating that transient negative ions contribute significantly, via dissociative electron attachment (DEA), to molecular dissociation below 20 eV. For both molecules, the <5 eV shape resonances, seen experimentally and predicted by theory, do not result in fragment desorption. The main anionic fragments are H- and CN- for both molecules, additionally the fragments C-, CH- C2H- and CHN- desorb from pyrimidine and C- and C2H- from pyridazine, with some resonances lying above the ionization limit. Pyrimidine shows higher anion desorption yields than pyridazine for all species except H-. The anion signal also comprises dipolar dissociation (DD), investigated in both anionic and cationic yield functions. From analysis of anion and cation yields, fragmentation pathways are suggested. The direct ionization pathway provides information on the appearance energies for cations and their production processes in condensed phase.
Collapse
Affiliation(s)
- L Ellis-Gibbings
- Fundamental Physics Institute, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006 Madrid, Spain.
| | | | | | | | | |
Collapse
|
20
|
Gautam SD, Hardie ME, Murray V. The Sequence Preference of Gamma-Radiation-Induced Damage in End-Labeled DNA after Heat Treatment. Radiat Res 2017; 189:238-250. [PMID: 29286256 DOI: 10.1667/rr14886.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this work, we examined the DNA sequence preference of gamma-radiation-induced DNA damage in purified DNA sequences after heat treatment. DNA was fluorescently end-labeled and gamma-radiation-induced DNA cleavage was examined using capillary electrophoresis with laser-induced fluorescence detection. Our findings provide evidence that gamma-radiation-induced DNA damage to end-labeled DNA is nonrandom and has a sequence preference. The degree of cleavage was quantified at each nucleotide, and we observed that preferential cleavage occurred at C nucleotides with lesser cleavage at G nucleotides, while being very low at T nucleotides. The differences in percentage cleavage at individual nucleotides ranged up to sixfold. The DNA sequences surrounding the most intense radiation-induced DNA cleavage sites were examined and a consensus sequence 5'-AGGC*C (where C* is the cleavage site) was found. The highest intensity gamma-radiation-induced DNA cleavage sites were found at the dinucleotides, 5'-GG*, 5'-GC*, 5'-C*C and 5'-G*G and at the trinucleotides, 5'-GG*C, 5'-TC*A, 5'-GG*G and 5'-GC*C. These findings have implications for our understanding of ionizing radiation-induced DNA damage.
Collapse
Affiliation(s)
- Shweta D Gautam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Megan E Hardie
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
21
|
Dong Y, Chen Y, Zhou L, Shao Y, Fu X, Zheng Y. Molecular efficacy of radio- and chemotherapy sequences from direct DNA damage measurements. Int J Radiat Biol 2017; 93:1274-1282. [PMID: 28799445 DOI: 10.1080/09553002.2017.1366673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE To investigate the molecular aspects of the synergy between ionizing radiation and platinum (Pt) chemotherapeutic agents in cancer treatment with chemoradiation therapy (CRT) by measuring damages induced by low-energy electrons (LEE) to DNA bound to cisplatin. LEE are produced abundantly by any type of ionizing radiation and cisplatin represents a typical Pt-chemotherapeutic agents. MATERIALS AND METHODS Our strategy involves two parallel administrations of cisplatin and irradiation with a 4.6 and 9.6 eV electron fluence of 1.1 × 1012: (1) LEE bombardment of supercoiled DNA and its subsequent reaction with cisplatin; (2) the reaction of DNA with cisplatin followed by LEE irradiation. The damage yields for the loss of supercoiled (LS), single-strand breaks (SSB) and double-strand breaks (DSB) were obtained from gel electrophoresis analysis. Base modifications were revealed by treating the samples with Escherichia coli base excision repair endonuclease (Nth and Fpg). RESULTS The yields were deduced from the respective time-response for the reaction of DNA with cisplatin. The results show that binding cisplatin to DNA followed by LEE irradiation, consistently yields more DNA damages than the reverse order. In comparison to non-treated DNA, administration (2) results in an increase of LS and SSB of 1.4-3.3 folds and of DSB by more than an order of magnitude. Furthermore, after enzyme treatment, the yields of DSB rise by factors of 5.3-15.4, indicating a large increase of clustered damages, which should at least partially translate into an increase of lethal damages in cancer cells during the CRT. CONCLUSIONS Our results demonstrate that a strong synergy between radiation and cisplatin can only be achieved at the molecular level, if the drug is present at the time of irradiation. Furthermore, this work confirms the LEE mechanism previously proposed to explain the synergy between radiation and Pt drugs in CRT. It involves chemical sensitization of DNA prior to irradiation, to facilitate strand breaks and clustered damages induced by the highly reactive LEE.
Collapse
Affiliation(s)
- Yanfang Dong
- a Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment , Fuzhou University , Fuzhou , P.R. China
| | - Yunfeng Chen
- a Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment , Fuzhou University , Fuzhou , P.R. China
| | - Limei Zhou
- a Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment , Fuzhou University , Fuzhou , P.R. China
| | - Yu Shao
- a Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment , Fuzhou University , Fuzhou , P.R. China
| | - Xianzhi Fu
- a Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment , Fuzhou University , Fuzhou , P.R. China
| | - Yi Zheng
- a Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment , Fuzhou University , Fuzhou , P.R. China
| |
Collapse
|
22
|
Sage E, Shikazono N. Radiation-induced clustered DNA lesions: Repair and mutagenesis. Free Radic Biol Med 2017; 107:125-135. [PMID: 27939934 DOI: 10.1016/j.freeradbiomed.2016.12.008] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 12/18/2022]
Abstract
Clustered DNA lesions, also called Multiply Damaged Sites, is the hallmark of ionizing radiation. It is defined as the combination of two or more lesions, comprising strand breaks, oxidatively generated base damage, abasic sites within one or two DNA helix turns, created by the passage of a single radiation track. DSB clustered lesions associate DSB and several base damage and abasic sites in close vicinity, and are assimilated to complex DSB. Non-DSB clustered lesions comprise single strand break, base damage and abasic sites. At radiation with low Linear Energy Transfer (LET), such as X-rays or γ-rays clustered DNA lesions are 3-4 times more abundant than DSB. Their proportion and their complexity increase with increasing LET; they may represent a large part of the damage to DNA. Studies in vitro using engineered clustered DNA lesions of increasing complexity have greatly enhanced our understanding on how non-DSB clustered lesions are processed. Base excision repair is compromised, the observed hierarchy in the processing of the lesions within a cluster leads to the formation of SSB or DSB as repair intermediates and increases the lifetime of the lesions. As a consequence, the chances of mutation drastically increase. Complex DSB, either formed directly by irradiation or by the processing of non-DSB clustered lesions, are repaired by slow kinetics or left unrepaired and cause cell death or pass mitosis. In surviving cells, large deletions, translocations, and chromosomal aberrations are observed. This review details the most recent data on the processing of non-DSB clustered lesions and complex DSB and tends to demonstrate the high significance of these specific DNA damage in terms of genomic instability induction.
Collapse
Affiliation(s)
- Evelyne Sage
- Institut Curie, PSL Research University, CNRS, UMR3347, F-91405 Orsay, France.
| | - Naoya Shikazono
- Quantum Beam Science Research Directorate, National Institutes of Quantum and Radiological Science and Technology, Kansai Photon Science Institute, 8-1-7 Umemidai, Kizugawa-Shi, Kyoto 619-0215, Japan.
| |
Collapse
|
23
|
Rezaee M, Hill RP, Jaffray DA. The Exploitation of Low-Energy Electrons in Cancer Treatment. Radiat Res 2017; 188:123-143. [PMID: 28557630 DOI: 10.1667/rr14727.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Given the distinct characteristics of low-energy electrons (LEEs), particularly at energies less than 30 eV, they can be applied to a wide range of therapeutic modalities to improve cancer treatment. LEEs have been shown to efficiently produce complex molecular damage resulting in substantial cellular toxicities. Since LEEs are produced in copious amounts from high-energy radiation beam, including photons, protons and ions; the control of LEE distribution can potentially enhance the therapeutic radio of such beams. LEEs can play a substantial role in the synergistic effect between radiation and chemotherapy, particularly halogenated and platinum-based anticancer drugs. Radiosensitizing entities containing atoms of high atomic number such as gold nanoparticles can be a source of LEE production if high-energy radiation interacts with them. This can provide a high local density of LEEs in a cell and produce cellular toxicity. Auger-electron-emitting radionuclides also create a high number of LEEs in each decay, which can induce lethal damage in a cell. Exploitation of LEEs in cancer treatment, however, faces a few challenges, such as dosimetry of LEEs and selective delivery of radiosensitizing and chemotherapeutic molecules close to cellular targets. This review first discusses the rationale for utilizing LEEs in cancer treatment by explaining their mechanism of action, describes theoretical and experimental studies at the molecular and cellular levels, then discusses strategies for achieving modification of the distribution and effectiveness of LEEs in cancerous tissue and their associated clinical benefit.
Collapse
Affiliation(s)
- Mohammad Rezaee
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Ontario Cancer Institute and Campbell Family Institute for Cancer Research and Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Richard P Hill
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Ontario Cancer Institute and Campbell Family Institute for Cancer Research and Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - David A Jaffray
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Ontario Cancer Institute and Campbell Family Institute for Cancer Research and Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Folador EL, de Carvalho PVSD, Silva WM, Ferreira RS, Silva A, Gromiha M, Ghosh P, Barh D, Azevedo V, Röttger R. In silico identification of essential proteins in Corynebacterium pseudotuberculosis based on protein-protein interaction networks. BMC SYSTEMS BIOLOGY 2016; 10:103. [PMID: 27814699 PMCID: PMC5097352 DOI: 10.1186/s12918-016-0346-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/18/2016] [Indexed: 12/27/2022]
Abstract
Background Corynebacterium pseudotuberculosis (Cp) is a gram-positive bacterium that is classified into equi and ovis serovars. The serovar ovis is the etiological agent of caseous lymphadenitis, a chronic infection affecting sheep and goats, causing economic losses due to carcass condemnation and decreased production of meat, wool, and milk. Current diagnosis or treatment protocols are not fully effective and, thus, require further research of Cp pathogenesis. Results Here, we mapped known protein-protein interactions (PPI) from various species to nine Cp strains to reconstruct parts of the potential Cp interactome and to identify potentially essential proteins serving as putative drug targets. On average, we predict 16,669 interactions for each of the nine strains (with 15,495 interactions shared among all strains). An in silico sanity check suggests that the potential networks were not formed by spurious interactions but have a strong biological bias. With the inferred Cp networks we identify 181 essential proteins, among which 41 are non-host homologous. Conclusions The list of candidate interactions of the Cp strains lay the basis for developing novel hypotheses and designing according wet-lab studies. The non-host homologous essential proteins are attractive targets for therapeutic and diagnostic proposes. They allow for searching of small molecule inhibitors of binding interactions enabling modern drug discovery. Overall, the predicted Cp PPI networks form a valuable and versatile tool for researchers interested in Corynebacterium pseudotuberculosis. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0346-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edson Luiz Folador
- Department of General Biology, Instituto de Ciências Biológicas (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil.,Biotechnology Center (CBiotec), Federal University of Paraiba (UFPB), João Pessoa, Brazil
| | - Paulo Vinícius Sanches Daltro de Carvalho
- Department of General Biology, Instituto de Ciências Biológicas (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Wanderson Marques Silva
- Department of General Biology, Instituto de Ciências Biológicas (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rafaela Salgado Ferreira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Artur Silva
- Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Michael Gromiha
- Department of Biotechnology, Indian Institute of Technology (IIT) Madras, Tamilnadu, India
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
| | - Vasco Azevedo
- Department of General Biology, Instituto de Ciências Biológicas (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Richard Röttger
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
25
|
Greenberg MM. Reactivity of Nucleic Acid Radicals. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2016; 50:119-202. [PMID: 28529390 DOI: 10.1016/bs.apoc.2016.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nucleic acid oxidation plays a vital role in the etiology and treatment of diseases, as well as aging. Reagents that oxidize nucleic acids are also useful probes of the biopolymers' structure and folding. Radiation scientists have contributed greatly to our understanding of nucleic acid oxidation using a variety of techniques. During the past two decades organic chemists have applied the tools of synthetic and mechanistic chemistry to independently generate and study the reactive intermediates produced by ionizing radiation and other nucleic acid damaging agents. This approach has facilitated resolving mechanistic controversies and lead to the discovery of new reactive processes.
Collapse
|
26
|
Sahbani SK, Cloutier P, Bass AD, Hunting DJ, Sanche L. Electron Resonance Decay into a Biological Function: Decrease in Viability of E. coli Transformed by Plasmid DNA Irradiated with 0.5-18 eV Electrons. J Phys Chem Lett 2015; 6:3911-3914. [PMID: 26722892 PMCID: PMC5173358 DOI: 10.1021/acs.jpclett.5b01585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Transient negative ions (TNIs) are ubiquitous in electron-molecule scattering at low electron impact energies (0-20 eV) and are particularly effective in damaging large biomolecules. Because ionizing radiation generates mostly 0-20 eV electrons, TNIs are expected to play important roles in cell mutagenesis and death during radiotherapeutic cancer treatment, although this hypothesis has never been directly verified. Here, we measure the efficiency of transforming E. coli bacteria by inserting into the cells, pGEM-3ZfL(-) plasmid DNA that confers resistance to the antibiotic ampicillin. Before transformation, plasmids are irradiated with electrons of specific energies between 0.5 and 18 eV. The loss of transformation efficiency plotted as a function of irradiation energy reveals TNIs at 5.5 and 9.5 eV, corresponding to similar states observed in the yields of DNA double strand breaks. We show that TNIs are detectable in the electron-energy dependence of a biological process and can decrease cell viability.
Collapse
|
27
|
Alizadeh E, Orlando TM, Sanche L. Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Annu Rev Phys Chem 2015; 66:379-98. [PMID: 25580626 DOI: 10.1146/annurev-physchem-040513-103605] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many experimental and theoretical advances have recently allowed the study of direct and indirect effects of low-energy electrons (LEEs) on DNA damage. In an effort to explain how LEEs damage the human genome, researchers have focused efforts on LEE interactions with bacterial plasmids, DNA bases, sugar analogs, phosphate groups, and longer DNA moieties. Here, we summarize the current understanding of the fundamental mechanisms involved in LEE-induced damage of DNA and complex biomolecule films. Results obtained by several laboratories on films prepared and analyzed by different methods and irradiated with different electron-beam current densities and fluencies are presented. Despite varied conditions (e.g., film thicknesses and morphologies, intrinsic water content, substrate interactions, and extrinsic atmospheric compositions), comparisons show a striking resemblance in the types of damage produced and their yield functions. The potential of controlling this damage using molecular and nanoparticle targets with high LEE yields in targeted radiation-based cancer therapies is also discussed.
Collapse
Affiliation(s)
- Elahe Alizadeh
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, J1H 5N4 Sherbrooke, Canada
| | | | | |
Collapse
|
28
|
Kouass Sahbani S, Sanche L, Cloutier P, Bass AD, Hunting DJ. Loss of cellular transformation efficiency induced by DNA irradiation with low-energy (10 eV) electrons. J Phys Chem B 2014; 118:13123-31. [PMID: 25325149 DOI: 10.1021/jp508170c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Low energy electrons (LEEs) of energies less than 20 eV are generated in large quantities by ionizing radiation in biological matter. While LEEs are known to induce single (SSBs) and double strand breaks (DSBs) in DNA, their ability to inactivate cells by inducing nonreparable lethal damage has not yet been demonstrated. Here we observe the effect of LEEs on the functionality of DNA, by measuring the efficiency of transforming Escherichia coli with a [pGEM-3Zf (-)] plasmid irradiated with 10 eV electrons. Highly ordered DNA films were prepared on pyrolitic graphite by molecular self-assembly using 1,3-diaminopropane ions (Dap(2+)). The uniformity of these films permits the inactivation of approximately 50% of the plasmids compared to <10% using previous methods, which is sufficient for the subsequent determination of their functionality. Upon LEE irradiation, the fraction of functional plasmids decreased exponentially with increasing electron fluence, while LEE-induced isolated base damage, frank DSB, and non DSB-cluster damage increased linearly with fluence. While DSBs can be toxic, their levels were too low to explain the loss of plasmid functionality observed upon LEE irradiation. Similarly, non-DSB cluster damage, revealed by transforming cluster damage into DSBs by digestion with repair enzymes, also occurred relatively infrequently. The exact nature of the lethal damage remains unknown, but it is probably a form of compact cluster damage in which the lesions are too close to be revealed by purified repair enzymes. In addition, this damage is either not repaired or is misrepaired by E. coli, since it results in plasmid inactivation, when they contain an average of three lesions. Comparison with previous results from a similar experiment performed with γ-irradiated plasmids indicates that the type of clustered DNA lesions, created directly on cellular DNA by LEEs, may be more difficult to repair than those produced by other species from radiolysis.
Collapse
Affiliation(s)
- Saloua Kouass Sahbani
- Department of Nuclear Medicine & Radiobiology, Faculty of Medicine, Université de Sherbrooke , Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | | | |
Collapse
|
29
|
Pachnerová Brabcová K, Sihver L, Yasuda N, Matuo Y, Stěpán V, Davídková M. Clustered DNA damage on subcellular level: effect of scavengers. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:705-712. [PMID: 25034012 DOI: 10.1007/s00411-014-0557-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
Clustered DNA damages are induced by ionizing radiation, particularly of high linear energy transfer (LET). Compared to isolated DNA damage sites, their biological effects can be more severe. We investigated a clustered DNA damage induced by high LET radiation (C 290 MeV u(-1) and Fe 500 MeV u(-1)) in pBR322 plasmid DNA. The plasmid is dissolved in pure water or in aqueous solution of one of the three scavengers (coumarin-3-carboxylic acid, dimethylsulfoxide, and glycylglycine). The yield of double strand breaks (DSB) induced in the DNA plasmid-scavenger system by heavy ion radiation was found to decrease with increasing scavenging capacity due to reaction with hydroxyl radical, linearly with high correlation coefficients. The yield of non-DSB clusters was found to occur twice as much as the DSB. Their decrease with increasing scavenging capacity had lower linear correlation coefficients. This indicates that the yield of non-DSB clusters depends on more factors, which are likely connected to the chemical properties of individual scavengers.
Collapse
|
30
|
Kouass Sahbani S, Rezaee M, Cloutier P, Sanche L, Hunting DJ. Non-DSB clustered DNA lesions induced by ionizing radiation are largely responsible for the loss of plasmid DNA functionality in the presence of cisplatin. Chem Biol Interact 2014; 217:9-18. [PMID: 24732435 DOI: 10.1016/j.cbi.2014.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/18/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
The combination of cisplatin and ionizing radiation (IR) increases cell toxicity by both enhancing DNA damage and inhibiting repair mechanisms. Although the formation of cluster DNA lesions, particularly double-strand breaks (DSB) at the site of cisplatin-DNA-adducts has been reported to induce cell death, the contribution of DSB and non-DSB cluster lesions to the cellular toxicity is still unknown. Although both lesions are toxic, it is not always possible to measure their frequency and cell survival in the same model system. To overcome this problem, here, we investigate the effect of cisplatin-adducts on the induction of DSB and non-DSB cluster DNA lesions by IR and determine the impact of such lesions on plasmid functionality. Cluster lesions are two or more lesions on opposite DNA strands with a short distance such that error free repair is difficult or impossible. At a ratio of two cisplatin per plasmid, irradiation of platinated DNA in solution with (137)Cs γ-rays shows enhancements in the formation of DNA DSB and non-DSB cluster lesions by factors of 2.6 and 2.1, respectively, compared to unmodified DNA. However, in absolute terms, the yield for non-DSB cluster lesions is far larger than that for DSB, by a factor of 26. Unmodified and cisplatin-modified DNA were irradiated and subsequently transformed into Escherichia coli to give survival curves representing the functionality of the plasmid DNA as a function of radiation dose. Our results demonstrate that non-DSB cluster lesions are the only toxic lesions present at a sufficient frequency to account for the loss of DNA functionality. Our data also show that Frank-DSB lesions are simply too infrequent to account for the loss of DNA functionality. In conclusion, non-DSB cluster DNA damage is known to be difficult to repair and is probably the lesion responsible for the loss of functionality of DNA modified by cisplatin.
Collapse
Affiliation(s)
- S Kouass Sahbani
- Department of Nuclear Medicine & Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - M Rezaee
- Department of Nuclear Medicine & Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - P Cloutier
- Department of Nuclear Medicine & Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - L Sanche
- Department of Nuclear Medicine & Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - D J Hunting
- Department of Nuclear Medicine & Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|